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Abstract 

Adding an additional degree of non-membership, K. T. Atanassov introduced the concept of the intuitionistic fuzzy 
(IF) set (IF-set), which has rarely been applied to the game theory yet. The aim of this paper is to develop the 
concept and methodology of matrix games with IF-set goals in which goals of players are expressed with IF-sets 
and payoffs are expressed with real numbers rather than IF-sets. In this methodology, the concepts of IF-set goals 
and the solutions of matrix games with IF-set goals are proposed. It is proven that solutions of matrix games with 
IF-set goals can be obtained through solving the developed auxiliary linear programming models, which are the 
generalization of matrix games with fuzzy goals. The proposed methodology is illustrated with a numerical 
example. Furthermore, comparison analysis of the proposed methodology is conducted to show its advantages over 
matrix games with fuzzy goals.  
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1. Introduction 

Game theory has been used as a powerful analytical tool 
for decision making problems in the organizations or 
competitive systems. There are always uncertainty and 
imprecision existing in real-life decision making 
information. Therefore, taking into uncertainty and 
imprecision of information in decision making problems 
may be requested to construct mathematical models 
under fuzzy environments. Fuzzy game theory provides 
a way of solving real-life conflict problems with fuzzy 
information. Recently, an increasing number of papers 
and books1-15 have been published on this topic in which 
several types of fuzzy games have been investigated. 
The fuzzy set (F-set) uses only a membership function, 
which assigns to each element x  of the universe of 
discourse a number ( )xμ  from the unit interval [0, 1] to 

indicate the degree of belongingness to the F-set under 
consideration. The degree of non-belongingness is just 
automatically equal to 1 ( )xμ− . However, a human 
being who expresses the degree of membership of a 
given element in a F-set very often does not express 
corresponding degree of non-membership as the 
compliment to 1. On the other hand, sometimes it seems 
to be more natural to describe imprecise and uncertain 
opinions not only by the degree of membership. It is due 
to the fact that in some situations players also describe 
their negative feelings, i.e., their degrees of 
dissatisfaction about the outcomes of the game. 
Furthermore, it is possible that players are not so sure 
about the outcomes of the game. In other words, players 
may have some degree of hesitation or uncertainty. 
Thus, Atanassov16-18 introduced the concept of the 
intuitionistic fuzzy (IF) set (IF-set) which is 
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characterized by two functions expressing the degree of 
membership and the degree of non-membership, 
respectively. The degree of hesitation is equal to 1 
minus both the degree of membership and the degree of 
non-membership. The IF-set has been applied to 
different areas19-22. The idea of using the IF-set to 
represent the uncertain information of matrix games is 
useful. The reason is that the IF-set may indicate 
players’ preference information in terms of favor, 
against and neutral. Dealing with uncertain information, 
the IF-set may indicate information more abundant and 
flexible than the F-set. However, there exists less 
investigation on matrix games using the IF-set. 
Atanassov23 firstly described a game problem using the 
IF-set. Dimitrov24, 25 applied the IF-set to some market 
structure problems from a view point of economic 
orientation. Tenekedjiev et al26 discussed the rational 
conservative betting on sport game events by a fuzzy 
(partially rational) decision maker with the help of 
generalized lotteries of II type. The scheme accounted 
for the interval-valued character of probability 
elicitation results which were equivalently described by 
the IF-set in the mathematical expression. The fuzzy 
rational lottery with IF-set representation of the state 
uncertainty was proposed. Classical and conservative 
methods were proposed to transform the fuzzy rational 
lottery into ordinary lotteries, which were solved by the 
ordinary methods such as Wald’s maximin principle and 
utility theory. Li and Nan27 studied the matrix games in 
which payoffs of players are expressed with the IF-set 
and goals of players are not taken into consideration. 
The concepts of the solutions for matrix games with 
payoffs of IF-sets were defined and hereby a method 
was developed on the basis of a pair of auxiliary 
nonlinear/linear programming models, which were 
derived from the constructed bi-objective programming 
models. Li28 further extended the method27 to study the 
matrix games with payoffs of interval-valued IF-sets. 
The discussed matrix games27, 28 only taken into 
consideration uncertainty in payoffs of players, which 
was expressed with IF-sets. In reality, however, players 
may have their expected goals for the outcome of the 
game. The goals may be given by players with some 
uncertainty. Namely, players may have IF-set goals 
which are expressed with IF-sets (please see the 
following Definition 2). Therefore, game with IF-set 
goals is an important type of games in game theory. 
However, there exists no investigation on games with 

IF-set goals. In this paper, we study matrix games with 
IF-set goals in which goals of players are expressed 
with IF-sets and payoffs of players are real numbers 
rather than IF-sets. It is not difficult to see that the 
matrix game with IF-set goals differs from the matrix 
game with F-set goals, which was studied by Sakawa 
and Nishizaki12, 13 and Bector et al.1, 2 The former uses 
the degree of membership and the degree of non-
membership to express players’ goals while the latter 
only uses the degree of membership to express players’ 
goals. Thus, the degree of hesitation of the IF-set goals 
may not be equal to 0 while the degree of hesitation of 
the F-set goals is always equal to 0.  

The rest of this paper is organized as follows. The 
concept of an IF-set is briefly introduced in Section 2. 
In Section 3, matrix games with IF-set goals are 
formulated and the concept of their solutions is defined. 
It is proven that the solutions of matrix games with IF-
set goals can be obtained through solving the newly 
auxiliary linear programming models derived from a 
pair of bi-objective programming models. A numerical 
example and conclusion are given in Sections 4 and 5, 
respectively.  

2.  Intuitionistic Fuzzy Sets 

Definition 1. (Atanassov16-18) Let 1 2{ , , , }nZ z z z=  be a 
finite universal set. An IF-set C in Z  is an object having 
the form as { , ( ), ( ) | }l C l C l lC z z z z Zμ υ= < > ∈ , where 

( ) [0,1]C lzμ ∈  and ( ) [0,1]C lzυ ∈  are the degree of 
membership and degree of non-membership of an 
element lz Z∈  to the set C Z⊆ , respectively, and such 
that for every lz Z∈ , they satisfy the condition: 
0 ( ) ( ) 1C l C lz zμ υ≤ + ≤ .  

Let ( ) 1 ( ) ( )C l C l C lz z zπ μ υ= − − , which is called the 
intuitionistic index of an element lz  in the set C . It is 
the degree of indeterminacy membership of the element 

lz  to the set C . Obviously, 0 ( ) 1C lzπ≤ ≤ .  

3. IF-set goals and solving methods for matrix games 
with IF-set goals  

 
Let us consider the matrix games in which goals are 
expressed with IF-sets and payoffs of players are 
expressed with real numbers rather than IF-sets. For 
conciseness, such matrix games are called as matrix 
games with IF-set goals in the sequent. Assume that 

1 1 2{ , , , }mS δ δ δ=  and 2 1 2{ , , , }nS σ σ σ=  are sets of 
pure strategies for two players I and II, respectively. 
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The vectors T
1 2( , , , )mx x x=x  and T

1 2( , , , )ny y y=y  
are mixed strategies for players I and II, respectively, 
where ix  ( 1, 2, , )i m=  and jy  ( 1,2, , )j n=  are 
probabilities in which players I and II choose their pure 
strategies 1i Sδ ∈  and 2j Sσ ∈ , respectively. Sets of all 
mixed strategies for players I and II are denoted by X  
and Y , respectively, i.e.,  

1
{ | 1, 0 ( 1,2, , )}

m

i i
i

X x x i m
=

= = ≥ =∑x  

and 
1

{ | 1, 0 ( 1,2, , )}
n

j j
j

Y y y j n
=

= = ≥ =∑y . The payoff matrix 

for player I is concisely expressed as the matrix 
( )ij m na ×=F , where every ija  ( 1,2, , ; 1,2, , )i m j n= =  

is a real number. The payoff matrix for player  Ⅱ is 
( )ij m na ×− = −F  since the matrix game is zero-sum.  

In reality, however, players may have their respective 
expected goals for the outcome of the game. Generally, 
players may give their goals according to their 
judgments and estimations. However, these judgments 
and estimations are uncertain and imprecise or vague. In 
order to accommodate uncertain and imprecise nature of 
human judgment and estimation, we employ the IF-set 
to describe each player’ goal, i.e., assume that each 
player has an IF-set goal, which is defined as follows.  

 
Definition 2. (IF-set goals) Denote the set of the 
expected payoff of player I by 

T{ | ( ) } RD X Y= ∈ × ⊆x Fy x, y , where R  is the set of real 
numbers. Then, an IF-set goal 

T T T T{ , ( ), ( ) | }A AA Dμ υ= < > ∈x Fy x Fy x Fy x Fy  with 
respect to the payoff for player I is an IF-set on the set 
D , whose membership and non-membership functions 
are defined as follows:  

: [0,1]A Dμ →  
T T( )AD μ∈x Fy x Fy  

and 
: [0,1]A Dυ →  

T T( )AD υ∈x Fy x Fy ,  
 which satisfy the condition: T T0 ( ) ( ) 1A Aμ υ≤ + ≤x Fy x Fy .  

Similarly, an IF-set goal 
T T T T{ , ( ), ( ) | }B BB Dμ υ= < > ∈x Fy x Fy x Fy x Fy  with 

respect to the payoff for player II is an IF-set on the set 
D , whose membership and non-membership functions 
are defined as follows:  

: [0,1]B Dμ →  
T T( ) [0,1]BD μ∈ ∈x Fy x Fy  

and 
: [0,1]B Dυ →  

T T( ) [0,1]BD υ∈ ∈x Fy x Fy ,  
which satisfy the condition: T T0 ( ) ( ) 1B Bμ υ≤ + ≤x Fy x Fy .  

Obviously, if T T( ) ( ) 1A Aμ υ+ =x Fy x Fy  then the IF-set 
goal A  for player I is reduced to the F-set goal 

T T T T{ , ( ),1 ( ) | }A AA Dμ μ′ = − > ∈x Fy x Fy x Fy x Fy .  
Similarly, if T T( ) ( ) 1B Bμ υ+ =x Fy x Fy  then the IF-set 

goal B  for player II is reduces to the F-set goal 
T T T T{ , ( ),1 ( ) | }B BB Dμ μ′ = < − > ∈x Fy x Fy x Fy x Fy .  

The concept of the IF-set goal is a generalization of 
that introduced by  Sakawa and Nishizaki12, 13 and 
Bector et al.1, 2 in that the former adds an additional non-
membership function and hereby may describe the 
hesitancy of players’ judgment and estimation.  

The degree of membership T( )Aμ x Fy  for the player 
I’s IF-set goal A  can be interpreted as the degree of 
satisfaction for an expected payoff. The degree of non-
membership T( )Aυ x Fy  for the player I’s IF-set goal A  
can be interpreted as the degree of dissatisfaction for an 
expected payoff. Similarly, T( )Bμ x Fy  and T( )Bυ x Fy  can 
be interpreted as the satisfaction and dissatisfaction 
degrees of player II for an expected payoff.  

An IF-set goal is characterized by a pair of 
membership and non-membership functions, which map 
a domain of payoffs into the range of the degree of 
satisfaction and the range of the degree of 
dissatisfaction of attainment for the IF-set goal, 
respectively. Assume that player I may prefer the payoff 
possessing the higher membership degree and the lower 
non-membership degree. Namely, player I wants to 
maximize the degree of satisfaction of attainment of the 
IF-set goal and minimize the degree of dissatisfaction of 
attainment of the IF-set goal. Whereas player II will 
choose a strategy so as to minimize player I’s degree of 
satisfaction and maximize player I’s degree of 
dissatisfaction of attainment of the IF-set goal. Thus, the 
concept of a maximin-minimax solution for matrix 
games with IF-set goals is given as follows.  

 
Definition 3. Let T( )Aμ x Fy  and T( )Aυ x Fy  be the 
degrees of membership and non-membership of the IF-
set goal for player I when  I and II choose strategies x  
and y , respectively. Then, player I’s maximin-minimax 
value with respect to the attainment degree of the IF-set 
goal is defined as follows:  

T

T

max min{ ( )}

min max{ ( )}

A
YX

A
X Y

μ

υ
∈∈

∈ ∈

⎧
⎪
⎨
⎪⎩

yx

x y

x Fy

x Fy
                             (1) 

Such a strategy *x  is called the maximin-minimax 
solution of matrix games with the IF-set goals for I.  

Similarly, player II’s maximin-minimax value with 
respect to the attainment degree of the IF-set goal is 
defined as follows:  
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T

T

max min{ ( )}

min max{ ( )}

B
XY

B
Y X

μ

υ
∈∈

∈ ∈

⎧
⎪
⎨
⎪⎩

xy

y x

x Fy

x Fy
                            (2) 

Such a strategy *y  is called the maximin-minimax 
solution of matrix games with the IF-set goals for II.  

Obviously, the concept of the solution of matrix 
games with IF-set goals is different from that proposed 
by  Sakawa and Nishizaki12, 13 and Bector et al.1, 2 in that 
the former has the additional non-membership function 
and hereby needs to optimize both the membership 
function and the non-membership function 
simultaneously. Moreover, the concept of the solution 
of matrix games with the IF-set goals is different from 
that proposed by Li and Nan27 and Li28 in that the latter 
took into consideration the IF-set payoffs rather than the 
IF-set goals. 

In the sequent, optimization models are constructed 
for players I and II so as to obtain the maximin-minimax 
solutions of the matrix games with IF-set goals.  

The membership function Aμ  and non-membership 
function Aυ  of the IF-set goal for player I may be of 
different forms according to the real situations and 
needs. Here, we choose the linear functions of 
membership and non-membership as follows:  

T

T T T

T

0 if  
( ) 1 ( )/ if 

1 if 

a a

A a a a a a

a

v p
v p v p v

v
μ

< −⎧
⎪= − − − ≤ <⎨
⎪ ≥⎩

x Fy
x Fy x Fy x Fy

x Fy
    (3) 

and 
T

T T T

T

1 if 
( ) ( )/ if 

0 if 

r r

A r r r r r

r

v p
v p v p v

v
υ

⎧ < −
⎪= − − ≤ <⎨
⎪ ≥⎩

x Fy
x Fy x Fy x Fy

x Fy
            (4) 

respectively, depicted in Fig.1, where av  and ap  are the 
aspiration level and the corresponding tolerance error 
for player I, rv  and rp  are the rejection level and the 
corresponding tolerance error for player I, aω  and aq  
are the aspiration level and the corresponding tolerance 
error for player II, rω  and rq  are the rejection level and 
the corresponding tolerance error for player II, and 

r r a av p v p− ≤ −  and r av v≤ .  

T( )Aυ x Fy

r rv p− a av p−
rv av

T( )Aμ x Fy

 
Fig.1.  Player I’s IF-set goal T T,( ) ( )A Aμ υ< >x Fy x Fy  

The following conclusion is easily reached from Eqs. 
(3) and (4).  

 
Theorem 1. Let T( )Aμ x Fy  and T( )Aυ x Fy  be the 

degree of membership and the degree of non-
membership, which are defined by Eqs. (3) and (4), 
respectively. Then 

T T T T{ , ( ), ( ) | }A AA Dμ υ= < > ∈x Fy x Fy x Fy x Fy  is an IF-
set.  

 
Proof.  It is easily derived from Eqs. (3) and (4)  that 

T0 ( ) 1Aμ≤ ≤x Fy  
and 

T0 ( ) 1Aυ≤ ≤x Fy .  
(a) If T

a av p≤ −x Fy  then it is easily seen from Eqs. 
(3) and (4) that T T0 ( ) ( ) 1A Aμ υ≤ + ≤x Fy x Fy .  

(b) If T
rv≥x Fy  then it is easily seen from Eqs. (3) 

and (4) that T T0 ( ) ( ) 1A Aμ υ≤ + ≤x Fy x Fy .  
(c) If T

a a rv p v− ≤ ≤x yF  then it follows from Eqs. 
(3) and (4) that  

T T
T T

T T

( ) ( ) 1

                                .

a r
A A

a r

a a r

a r

v v
p p

p v v
p p

μ υ − −
+ = − +

− + −
= +

x Fy x Fyx Fy x Fy

x Fy x Fy
 

Hence,  
T T( ) ( ) 0A Aμ υ+ ≥x Fy x Fy                             (5) 

since T 0a ap v+ − ≥x Fy , T 0rv − ≥x Fy , 0ap ≥  and 
0rp ≥ .  

On the other hand, if T
a a rv p v− ≤ ≤x Fy  and 

0r ap p− <  then due to a a r rv p v p− + ≤ − + , we have 
T T

T T

T

( ) ( ) 1

( )               

a r
A A

a r

a r r a r a a r

a r

v v
p p

p p p p p v p v
p p

μ υ − −
+ = − +

+ − − +
=

x Fy x Fyx Fy x Fy

x Fy
 

( )( )

( ) ( ) 1

a r a a r a r a a r

a r

a a r r r r

r r

p p v p p p p v p v
p p

v p v v p v
p p

+ − − − +
≤

− + + − + +
= ≤ =

         (6) 

If T
a a rv p v− ≤ ≤x Fy  and 0r ap p− > , then  

T T

T T

T

( ) ( )

1

( )

A A

a r

a r

a r r a r a a r

a r

v v
p p

p p p p p v p v
p p

μ υ+
− −

= − +

+ − − +
=

x Fy x Fy
x Fy x Fy

x Fy
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( )

1

a r r r a r a a r

a r

a r r r r a r a a r

a r

a r a a a a

a a

p p v p p p v p v
p p

p p v p v p p v p v
p p

p v v p v v
p p

+ − − +
≤

+ − − +
=

+ − + −
≤ ≤ =

             (7) 

since r av v≤ .  
If T

a a rv p v− ≤ ≤x Fy  and 0r ap p− = , i.e., 

r ap p= , then due to r av v≤ , we have  
T T

T T

T

( ) ( ) 1

( )

1 1 1

a r
A A

a r

a r r a r a a r

a r

a r r a a r

a r

r a a r a r

a r a

v v
p p

p p p p p v p v
p p

p p p v p v
p p

p v p v v v
p p p

μ υ − −
+ = − +

+ − − +
=

− +
=

− −
= − = − ≤

x Fy x Fyx Fy x Fy

x Fy

  (8) 

Combining with Eqs. (5)-(8), we have: 
T T0 ( ) ( ) 1A Aμ υ≤ + ≤x Fy x Fy . Summarizing the cases (a)-

(c), we have proven  that A  is an IF-set.     
     

The IF-set goal A  means that player I is not satisfied 
with an expected payoff Tx Fy  being smaller than 

a av p− , whereas I may not completely reject if Tx Fy  is 
smaller than a av p− . Player I may designate r rv p−  as a 
rejection level, i.e., player I may think that Tx Fy  being 
smaller than r rv p−  cannot be accepted. The degree of 
satisfaction increases linearly as an expected payoff 

Tx Fy  becomes larger than a av p− . On the other hand, 
the degree of dissatisfaction decreases linearly as an 
expected payoff Tx Fy  becomes larger than r rv p−  and 

is zero till Tx Fy  is rv . But player I may not completely 

accept if Tx Fy  is larger than rv  and player I satisfies 
enough with an expected payoff Tx Fy  being larger than 

av . The gap between r rv p−  and av  needs to be 
determined, i.e., player I always has the degree of 
hesitation. The length of the uncertainty is a r rv v p− + .  

Likewise, the membership function T( )Bμ x Fy  and the 
non-membership function T( )Bυ x Fy  of the IF-set goal 
for player II are chosen to be linear, i.e.,  

 
T

T T T

T

1 if 
( ) 1 ( ) / if 

0 if 

a

B a a a a a

a a

q q
q

ω
μ ω ω ω

ω

<⎧
⎪= − − ≤ < +⎨
⎪ ≥ +⎩

x Fy
x Fy x Fy x Fy

x Fy

(9) 

and  

 
T

T T T

T

0 if 
( ) ( ) / if 

1 if 

r

B r r r r r

r r

q q
q

ω
υ ω ω ω

ω

<⎧
⎪= − ≤ < +⎨
⎪ ≥ +⎩

x Fy
x Fy x Fy x Fy

x Fy

   (10) 

respectively, where a rω ω≤  and a a r rq qω ω+ ≤ + , 
depicted  in Fig. 2.  
 

aω a aqω + r rqω +

T( )Bμ x Fy T( )Bυ x Fy

rω

 
Fig. 2. Player II’s IF-set goal T T( ), ( )B Bμ υ< >x Fy x Fy  

 
Similarly, B  can be proven to be an IF-set.  
The IF-set goal B means that player II satisfies an 

expected payoff Tx Fy  being smaller than rω . But II 
may not completely accept if Tx Fy  is smaller than rω . 
Player II may satisfy enough an expected payoff Tx Fy  
being smaller than aω . Player II’s degree of satisfaction 
decreases linearly as the expected payoff Tx Fy  
becomes larger than aω  and is zero till Tx Fy  is 

a aqω + . But at the same time, II may not completely 
reject if Tx Fy  is larger than a aqω + . Player II may 
designate r rqω +  as rejection level, i.e., II may 
completely reject if the expected payoff Tx Fy  is larger 
than r rqω + . The degree of dissatisfaction decreases 
linearly as an expected payoff Tx Fy  becomes smaller 
than r rqω + . The gap between aω  and r rqω +  needs to 
be determined, i.e., II always has the degree of 
hesitation. The length of the uncertainty is r r aqω ω+ − .  

 
Theorem 2. Assume that Aμ  and Aυ  for player I’s IF-
set goal are the linear functions defined by Eqs. (3) and 
(4), respectively. Player I’s maximin-minimax solution 
of the matrix game with the IF-set goal can be obtained 
through solving the linear programming as follows:  

1

1

1 2

     max{ }

  ( 1, 2, )

  ( 1, 2, )
. . 1

0 1,0 1
1

0 ( 1, 2, , )

m

ij i a a a
i
m

ij i r r
i

m

i

a x p v p j n

a x v p j n
s t x x x

x i m

α β

α

β

α β
α β

=

=

−

⎧ + − ≥ =⎪
⎪
⎪ − ≥ − =⎪
⎪
⎨ + + + =⎪
⎪ ≤ ≤ ≤ ≤
⎪ + ≤⎪
⎪ ≥ =⎩

∑

∑     (11) 
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Proof.  According to Eqs. (3) and (4), Eq. (1) are 

calculated as follows:  
T

T

1 1

1 1 1

1 1

maxmin{ ( )} maxmin{1 }

1      maxmin{ }

1       maxmin{ ( )}

1      maxmin{ ( )

a
A

Y YX X a

m n

ij i j a a
YX i ja

m n n

ij i j j a a
YX i j ja

n m

ij i a a j
YX j ia

v
p

a x y p v
p

a x y y p v
p

a x p v y
p

μ
∈ ∈∈ ∈

∈∈ = =

∈∈ = = =

∈∈ = =

−
= −

= + −

= + −

= + −

∑∑

∑∑ ∑

∑ ∑

y yx x

yx

yx

yx

x Fyx Fy

1

}

1      maxmin{ }
m

ij i a a
j JX ia

a x p v
p ∈∈ =

= + −∑
x

              (12) 

and  
T

T

1 1

1 1 1

1 1

minmax{ ( )} minmax{ }

1     minmax{ }

1     minmax{ }

1    minmax{ ( )}

1   minmax

r
A

X XY Y r

m n

r ij i j
X Yr i j

n m n

r j ij i j
X Yr j i j

n m

j r ij i
X Yr j i

X jr

v
p

v a x y
p

v y a x y
p

y v a x
p

p

υ
∈ ∈∈ ∈

∈ ∈ = =

∈ ∈ = = =

∈ ∈ = =

∈

−
=

= −

= −

= −

=

∑∑

∑ ∑∑

∑ ∑

x xy y

x y

x y

x y

x

x Fyx Fy

1
{ },

m

r ij i
J i

v a x
∈ =

−∑

               (13) 

respectively. Namely, Eq. (1) is simply rewritten as 
follows:  

1

1

1 max min{ }

1 min max{ }

m

ij i a aj JX ia
m

r ij iX j J ir

a x p v
p

v a x
p

∈∈ =

∈ ∈ =

⎧ + −⎪
⎪
⎨
⎪ −⎪⎩

∑

∑

x

x

                  (14) 

Let  

1

1min{ ( )}
m

ij i a aj J ia

a x p v
p

α
∈

=

= + −∑  

and 

1

1max{ ( )}
m

r ij ij J ir

v a x
p

β
∈ =

= −∑ .  

Hence, it is derived from Eq. (14) that 

1

1

1 2

m a x{ } ,  m in { }

  ( 1, 2 , )

  ( 1, 2 , )
. . 1

0 1, 0 1
1

0 ( 1, 2 , , )

m

ij i a a a
i
m

ij i r r
i

m

i

a x p v p j n

a x v p j n
s t x x x

x i m

α β

α

β

α β
α β

=

=

⎧
+ − ≥ =⎪

⎪
⎪

− ≥ − =⎪
⎪
⎨ + + + =⎪
⎪ ≤ ≤ ≤ ≤
⎪

+ ≤⎪
⎪ ≥ =⎩

∑

∑ (15) 

Obviously, Eq. (15) is a bi-objective linear 
programming model of 2m +  decision variables α , β  
and ix  ( 1,2, ,i m= ). Using the weighted average 
method, Eq. (15) may be transformed into Eq. (11).     

                                                                                         
Similarly, player II’s maximin-minimax solution of 

the matrix game with the IF-set goal can be solved.  
 

Theorem 3. Assume that Bμ  and Bυ   for player II’s IF-
set goal are the linear functions defined by Eqs. (9) and 
(10). Player II’s maximin-minimax solution of matrix 
games with IF-set goals can be obtained through 
solving the linear programming as follows:  

               

1

1

1 2

min{ }

  ( 1,2, )

  ( 1,2, )
  . .  

1
0 1,0 1

1
0 ( 1,2, , )

n

ij j a a a
j

n

ij j r r
j

n

j

a y q q i m

a y q i m
s t

y y y

y j n

η λ

ω λ

ω η

λ η
λ η

=

=

−

⎧ − − ≤ − =⎪
⎪
⎪

− ≤ =⎪
⎪
⎨ + + + =⎪
⎪ ≤ ≤ ≤ ≤
⎪

+ ≤⎪
⎪ ≥ =⎩

∑

∑     (16)   

                                 
Proof. According to Eqs. (9) and (10), Eq. (2) can be 
obtained as follows:  

            

T
T

T

1 1 1

1 1

max min{ ( )} max min{1 }

1 max min{ }

1 max min{ ( ) }

1 max min{ ( ) }

1 max min{

a
B

X XY Y a

a a
XYa

m n m

ij i j a a i
XY i j ia

m n

ij j a a i
XY i ja

ij j a
i IYa

q

q
q

a x y q x
q

a y q x
q

a y q
q

ωμ

ω

ω

ω

ω

∈ ∈∈ ∈

∈∈

∈∈ = = =

∈∈ = =

∈∈

−
= −

= − + +

= − + +

= − + +

= − + +

∑∑ ∑

∑ ∑

x xy y

xy

xy

xy

y

x Fyx Fy

x Fy

1
}

n

a
j=
∑

 (17) 

and 
 

T
T

1 1

1 1 1

1 1

1

min max{ ( )} min max{ }

1 min max{ }

1 min max{ }

1 min max{ ( ) }

1 min max{ }

r
B

Y YX X r

m n

ij i j r
Y X i jr

m n m

ij i j r i
Y X i j ir

m n

ij j r i
Y X i jr

n

ij j r
Y i I jr

q

a x y
q

a x y x
q

a y x
q

a y
q

ωυ

ω

ω

ω

ω

∈ ∈∈ ∈

∈ ∈ = =

∈ ∈ = = =

∈ ∈ = =

∈ ∈ =

−
=

= −

= −

= −

= −

∑∑

∑∑ ∑

∑ ∑

∑

y yx x

y x

y x

y x

y

x Fyx Fy

,

        (18) 
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respectively. Namely, Eq. (2) can be simply rewritten as 
follows:  

1

1

1 max min{ }

1 min max{ }

n

ij j a ai IY ja

n

ij j rY i I jr

a y q
q

a y
q

ω

ω

∈∈ =

∈ ∈ =

⎧ − + +⎪
⎪
⎨
⎪ −
⎪⎩

∑

∑

y

y

                   (19) 

Let  

1

1min{ ( )}
n

ij j a ai I ja

a y q
q

λ ω
∈

=

= − + +∑  

and 

1

1max{ ( )}
n

ij j ri I jr

a y
q

η ω
∈ =

= −∑ .  

Then, Eq. (19) can be transformed into the bi-objective 
programming model as follows:  

1

1

1 2

max{ },  min{ }

  ( 1,2, )

  ( 1,2, )
. .  

1
0 1,0 1

1
0 ( 1,2, , )

n

ij j a a a
j

n

ij j r r
j

n

j

a y q q i m

a y q i m
s t

y y y

y j n

λ η

ω λ

ω η

λ η
λ η

=

=

⎧
− − ≤− =⎪

⎪
⎪

− ≤ =⎪
⎪
⎨ + + + =⎪
⎪ ≤ ≤ ≤ ≤
⎪

+ ≤⎪
⎪ ≥ =⎩

∑

∑              (20) 

In a similar consideration to Eq. (15), Eq. (20) can be 
transformed into Eq. (16). Thus, we have proven 
Theorem 3.  

 
From the above discussions, we observe that solving 

the matrix games with IF-set goals can be transformed 
into solving Eqs. (11) and (16). Namely, if * * *( , , )α βx is 
an optimal solution to Eq. (11), then *x  is a maximin-
minimax strategy for player I , *α  and *β  are the least 
degree of satisfaction of attainment of the IF-set goal 
and the largest degree of dissatisfaction of attainment of 
the IF-set goal for player I, respectively. The degree of 
hesitation of attainment of the IF-set goal is equal to 

* *1 α β− − . Similarly, an optimal solution * * *( , , )λ ηy  to 
Eq. (16) can be interpreted.   

The following Theorems show that if IF-set goals are 
reduced to F-set goals for players then  Eqs. (11) and 
(16) can be reduced to the models given by Bector et al2.  

 
Theorem 4. If the degree of membership T( )Aμ x Fy  and 
the degree of non-membership T( )Aυ x Fy  for player I’s 
IF-set goal defined by Eqs. (3) and (4) satisfy 

T T( ) ( ) 1A Aμ υ+ =x Fy x Fy , i.e., the IF-set goal is reduced 
to a F-set goal, then I’s maximin-minimax solution of 

the matrix game with the IF-set goal can be obtained 
through solving the linear programming as follows:  

1

1 2

max{ }

( 1)   ( 1,2, )

1. .
0 1

0 ( 1, 2, , )

m

ij i a a
i

m

i

u

a x v p u j n

x x xs t
u

x i m

=

⎧
− ≥ − =⎪

⎪⎪ + + + =⎨
⎪ ≤ ≤⎪

≥ =⎪⎩

∑
      (21) 

 
Proof.  According to Eq. (3) and 

T T( ) ( ) 1A Aμ υ+ =x Fy x Fy , the degree of non-membership 
T( )Aυ x Fy  for the player I’s IF-set goal can be obtained 

as follows: 
T

T( ) a
A

a

v
p

υ −
=

x Fyx Fy                             (22) 

Using Eqs. (3) and (22), Eq. (1) are calculated 
as follows:  

T
T

1 1

1 1 1

max min{ ( )} max min{1 }

1      max min{ }

1     max min{ ( )}

a
A

Y YX X a

m n

ij i j a a
YXa i j

m n n

ij i j j a a
YXa i j j

v
p

a x y p v
p

a x y y p v
p

μ
∈ ∈∈ ∈

∈∈ = =

∈∈ = = =

−
= −

= + −

= + −

∑∑

∑∑ ∑

y yx x

yx

yx

x Fyx Fy

1 1

1

1 max min{ ( ) }

1 max min{ }

n m

ij i a a j
YXa j i

m

ij i a a
j JXa i

a x p v y
p

a x p v
p

∈∈
= =

∈∈
=

= + −

= + −

∑ ∑

∑

yx

x

       (23) 

and  
T

T

1 1

1 1 1

1 1

minmax{ ( )} minmax{ }

1     minmax{ }

1    minmax{ }

1     minmax{ ( )}

1     minm

a
A

X XY Y a

m n

a ij i j
X Ya i j

n m n

a j ij i j
X Ya j i j

n m

j a ij i
X Ya j i

Xa

v
p

v a x y
p

v y a x y
p

y v a x
p

p

υ
∈ ∈∈ ∈

∈ ∈ = =

∈ ∈ = = =

∈ ∈ = =

∈

−
=

= −

= −

= −

=

∑∑

∑ ∑∑

∑ ∑

x xy y

x y

x y

x y

x

x Fyx Fy

1

ax{ }
m

a ij i
j J i

v a x
∈ =

−∑

             (24) 

respectively. Namely, Eq. (1) is simply rewritten as 
follows:  

1

1

1 max min{ }

1 min max{ }

m

ij i a aj JX ia
m

a ij iX j J ia

a x p v
p

v a x
p

∈∈ =

∈ ∈ =

⎧ + −⎪
⎪
⎨
⎪ −
⎪⎩

∑

∑

x

x

               (25) 

Let  
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1

1min{ ( )}
m

ij i a aj J ia

a x p v
p

α
∈

=

= + −∑  

and 

1

1max{ ( )}
m

a ij ij J ia

v a x
p

β
∈ =

= −∑ .  

Hence, it is derived from Eq. (25) that 

1

1

1 2

      max{ },  min{ }

( 1)  ( 1, 2, )

  ( 1, 2, )
    . . 1

0 1, 0 1
1

0 ( 1, 2, , )

m

ij i a a
i

m

ij i a a
i

m

i

a x v p j n

a x v p j n
s t x x x

x i m

α β

α

β

α β
α β

=

=

⎧ − ≥ − =⎪
⎪
⎪ − ≥ − =⎪⎪
⎨ + + + =⎪

≤ ≤ ≤ ≤⎪
⎪ + ≤⎪
⎪ ≥ =⎩

∑

∑ （26) 

It is easily seen that min{ }β  is equivalent to 
max{1 }β−  since 0 1β≤ ≤ .Thus, using the weighted 
average method, max{ }α  and min{ }β  in Eq. (26) may 
be written as follows: 

max{( 1 ) / 2}α β+ −                                (27) 
The constraint condition in Eq. (26) may be written 

as follows: 

1

1 2

[( 1 )/2 1]  ( 1,2, )

1
  . . 0 1,0 1

1
0( 1,2, , )

m

ij i a a
i

m

i

a x v p j n

x x x
st

x i m

α β

α β
α β

=

⎧ − ≥ + − − =⎪
⎪

+ + + =⎪
⎪ ≤ ≤ ≤ ≤⎨
⎪ + ≤⎪

≥ =⎪
⎪⎩

∑

   (28) 

Let   
1u α β= + −                                (29) 

Combining with Eqs. (27)-(29), the bi-objective 
programming model (i.e., Eq. (26)) can be transformed 
into Eq. (21).  

 
Obviously, Eq. (21) is just the model (i.e., (FLP)) 

given by Bector et al. 2 
 

Theorem 5. If the degree of membership T( )Bμ x Fy  and 
the degree of non-membership T( )Bυ x Fy  for player Ⅱ’s 
IF-set goal defined by Eqs. (9) and (10) satisfy 

T T( ) ( ) 1B Bμ υ+ =x Fy x Fy , i.e., the IF-set goal is reduced 
to a F-set goal, then player II’s maximin-minimax 
solution of the matrix game with the IF-set goal can be 
obtained through solving the linear programming as 
follows:  

1

1 2

   max{ }

(1 )  ( 1, 2, )

1. .
0 1

0 ( 1,2, , )

n

ij j a a
j

n

j

v

a y v p v i m

y y ys t
v

y j n

=

⎧
− ≥ − =⎪

⎪⎪ + + + =⎨
⎪ ≤ ≤⎪

≥ =⎪⎩

∑
         (30) 

 
Proof.  According to Eq. (9) and 

T T( ) ( ) 1B Bμ υ+ =x Fy x Fy , the degree of non-
membership T( )Aυ x Fy  for player II’s IF-set goal can 
be obtained as follows: 

T T( ) ( ) /B a aqυ ω= −x Fy x Fy                       (31) 
Using Eqs. (9) and (31), Eq. (2) can be obtained as 
follows:  

T
T

T

1 1 1

1 1

max min{ ( )} max min{1 }

1 max min{ }

1 max min{ ( ) }

1 max min{ ( ) }
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XYa
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q
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q

ωμ

ω

ω

ω

∈ ∈∈ ∈

∈∈

∈∈ = = =

∈∈ = =

−
= −

= − + +

= − + +

= − + +

∑∑ ∑

∑ ∑

x xy y
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x Fyx Fy

x Fy
      

            
1

1 max min{ }
n

ij j a a
i IY ja

a y q
q

ω
∈∈ =

= − + +∑
y

              (32) 

and 
T

T

1 1

1 1 1

1 1

1

min max{ ( )} min max{ }

1 min max{ }

1 min max{ }

1 min max{ ( ) }

1 min max{ }

a
B

Y YX X a

m n

ij i j a
Y Xa i j

m n m
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q

a x y x
q

a y x
q
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q
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ω

ω

ω

ω

∈ ∈∈ ∈

∈ ∈
= =

∈ ∈
= = =

∈ ∈ = =

∈ ∈
=

−
=

= −

= −

= −

= −

∑∑

∑∑ ∑

∑ ∑

∑

y yx x

y x

y x

y x

y

x Fyx Fy

,

      (33) 

respectively. Namely, Eq. (2) can be simply rewritten as 
follows:  

1

1

1 max min{ }

1 min max{ }

n

ij j a ai IY ja

n

ij j aY i I ja

a y q
q

a y
q

ω

ω

∈∈ =

∈ ∈ =

⎧ − + +⎪
⎪
⎨
⎪ −
⎪⎩

∑

∑

y

y

                   (34) 

Let  

1

1min{ ( )}
n

ij j a ai I ja

a y q
q

λ ω
∈

=

= − + +∑  

and 
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1

1max{ ( )}
n

ij j ai I ja

a y
q

η ω
∈ =

= −∑ .  

Then, Eq. (34) can be transformed into the bi-objective 
programming model as follows:  

1

1

1 2

max{ },  min{ }

    . .  
1

0 1,0 1
1

0 ( 1,2, , )

n

ij j a a a
j

n

ij j a a
j

n

j

a y q q

a y q
s t

y y y

y j n

λ η

ω λ

ω η

λ η
λ η

=

=

⎧ − − ≤ −⎪
⎪
⎪

− ≤⎪
⎪
⎨ + + + =⎪
⎪ ≤ ≤ ≤ ≤
⎪

+ ≤⎪
⎪ ≥ =⎩

∑

∑                        (35) 

It is easily seen that min{ }η  is equivalent to 
max{1 }η−  since 0 1η≤ ≤ . Thus, using the weighted 
average method, max{ }λ  and min{ }η  in Eq. (35) may 
be written as follows: 

max{( 1 ) / 2}λ η+ −                                (36) 
The constraint condition in Eq. (35) may be written 

as follows: 

1

1 2

[(1 ) / 2]   ( 1,2, )

1
. . 0 1,0 1

1
0 ( 1,2, , )

n

ij j a a
j

n

j

a y v p i m

y y y
s t

y j n

λ η

λ η
λ η

=

⎧
− ≥ − + =⎪

⎪
⎪ + + + =
⎪

≤ ≤ ≤ ≤⎨
⎪ + ≤⎪

≥ =⎪
⎪
⎩

∑

    (37) 

Due to the fact (1 ) / 2 1 ( 1 ) / 2λ η λ η− + = − + − , Eq. 
(37) can be further rewritten as follows: 

1

1 2

[1 ( 1 )/2]  ( 1,2, )

1
. . 0 1,0 1

1
0( 1,2, , )

n

ij j a a
j

n

j

a y v p i m

y y y
st

y j n

λ η

λ η
λ η

=

⎧ − ≥ − + − =⎪
⎪
⎪ + + + =
⎪
≤ ≤ ≤ ≤⎨

⎪ + ≤⎪
≥ =⎪

⎪
⎩

∑

    (38) 

Let   
( 1 ) / 2v λ η= + −                                (39) 

Combining with Eqs. (36), (38) and (39), the bi-
objective programming model (i.e., Eq. (35)) can be 
transformed into Eq. (30).  

 
Obviously, Eq. (30) is just the model (i.e., (FLD)) 

given  by Bector et al.2 

Theorems 4 and 5 show that the proposed models in 
this paper are the generalization of those given by 
Bector et al.2 It is easily seen that using Eqs. (11) and 
(16), the least degrees of satisfaction of attainment of 
the IF-set goals and the largest degrees of dissatisfaction 
of attainment of the IF-set goals for players are obtained, 
as well as the degrees of hesitation of attainment of the 
IF-set goals for players. However, according to the 
models (i.e., Eqs. (21) and (30)) given by Bector et al.2, 
only the least degrees of satisfaction of attainment of the 
F-set goals are obtained and the degrees of 
dissatisfaction of attainment of the F-set goals are 
automatically equal to the compliments to 1, i.e., the 
degrees of hesitation of attainment of the F-set goals for 
players are always equal to zero.   

4. An application to the market share problem 

Suppose that there are two companies 1C  and 2C  
aiming to enhance the sales amount and market share of 
a product in a targeted market. 1C  has two pure 
strategies 1δ  and 2δ . 2C  has three pure strategies 1σ , 

2σ  and 3σ . Under these strategies, the payoff matrix F  
is given as follows:  

1 2 3

1

2

4 2 1
.

2 0 1

σ σ σ
δ
δ

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

F
  

The aspiration level and the corresponding tolerance 
error of 1C  are designated as 3av =  and 4ap = , 
respectively. The rejection level and the corresponding 
tolerance error of 1C  are designated as 2rv =  and 

6rp = , respectively. The aspiration level and the 
corresponding tolerance error of 2C  are 2aω = −  
and 5aq = , respectively. The rejection level and the 
corresponding tolerance error of 2C  are 0rω =  and 

4rq = , respectively.  
According to Eq. (11), the linear programming is 

constructed as follows:   

1 2

1

1 2

1 2

1

1 2

1 2

1 2

max{ }
4 2 2 4
2 2 4

2 4
4 2 2 6
2 2 6

. .
2 6

1
0 1, 0 1

1
0, 0

x x
x

x x
x x
x

s t
x x

x x

x x

α β
α

α
α
β

β
β

α β
α β

−

− + ≥⎧
⎪ + ≥⎪
⎪ − + + ≥
⎪

− − ≥ −⎪
⎪ − ≥ −⎪
⎨
− + − ≥ −⎪

⎪ + =
⎪

≤ ≤ ≤ ≤⎪
⎪ + ≤⎪
⎪ ≥ ≥⎩

                             (40) 
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Solving Eq. (40) using the Simplex method for the 

linear programming, an optimal solution * * *( , , )α βx  can 
be obtained, where * T(0.375,0.625)=x , * 0 .563α =  and 

* 0.292β = , respectively.  
The maximin-minimax strategy of 1C  is 

* T(0.375,0.625)=x , i.e., 
1 0.375x =  and 

2 0.625x = . In this 
case, the least degree of satisfaction of attainment of the 
IF-set goal and the largest degree of dissatisfaction of 
attainment of the IF-set goal for 1C  are 0 .563  and 
0.292 , respectively. The degree of hesitation of 
attainment of the IF-set goal is 0 .145 . 

Similarly, according to Eq. (16), the linear 
programming model is constructed as follows:   

1 2 3

1 3

1 2 3

1 3

1 2 3

1 2 3

min{ }
4 2 3 5

2 3 5
4 2 4

2 4
. .

1
0 1, 0 1

1
0, 0, 0

y y y
y y

y y y
y y

s t
y y y

y y y

η λ
λ

λ
η

η

λ η
λ η

−

+ − − ≤ −⎧
⎪− + − ≤ −⎪
⎪ + − ≤
⎪
− + ≤⎪

⎨
+ + =⎪

⎪ ≤ ≤ ≤ ≤
⎪

+ ≤⎪
⎪ ≥ ≥ ≥⎩

              (41) 

 
The optimal solution * * *( , , )η λy  can be obtained, 

where * T(0.25,0,0.75)=y , * 0.550λ =  and * 0.063η = , 
respectively.  Thus, the maximin-minimax strategy of 

2C  is * T(0.25,0,0.75)=y , i.e., 1 0.25y = ,  2 0y = ,   

3 0.75y = .  The least degree of satisfaction of attainment 
of the IF-set goal and the largest degree of 
dissatisfaction of attainment of the IF-set goal for 2C  
are 0.550  and 0.063 , respectively. The degree of 
hesitation of attainment of the IF-set goal is 0.387 . 

If the expected goal of the company 1C  is expressed 
with the F-set rather than the IF-set, i.e., the company 

1C  has a F-set goal, then according to Eq. (21), the 
linear programming model can be constructed as 
follows:  

1 2

1

1 2

1 2

1 2

max { }
4 2 2 4
2 2 4

2 4
. .

1
0 1

0, 0

u
x x u
x u

x x u
s t

x x
u

x x

− + ≥⎧
⎪ + ≥⎪
⎪ − + + ≥⎪
⎨ + =⎪
⎪ ≤ ≤
⎪

≥ ≥⎪⎩

                                 (42) 

 

Solving Eq. (42), an optimal solution * *( , )ux  can be 
obtained, where * T(0.375,0.625)=x  and * 0.563u = . 
Thus, the maximin strategy of 1C  is * T(0.375,0.625)=x , 
i.e., 

1 0.375x =  and 
2 0.625x = . The least degree of 

satisfaction of attainment of the fuzzy goal for 1C  is 
0 .563 .  

Similarly, if the company 2C  has a F-set goal, then 
according to Eq. (30), the linear programming model is 
constructed as follows:  

1 2 3

1 3

1 2 3

1 2 3

max{ }
4 2 3 5

2 3 5
. . 1

0 1
0, 0, 0

v
y y y v

y y v
s t y y y

v
y y y

+ − − ≤ −⎧
⎪− + − ≤ −⎪⎪ + + =⎨
⎪ ≤ ≤⎪
⎪ ≥ ≥ ≥⎩

           (43) 

 
Solving Eq. (43), an optimal solution * *( , )vy  can be 

obtained, where * T(0.25,0,0.75)=y  and * 0.550v = . 
Thus, the maximin strategy of 2C  is * T(0.25,0,0.75)=y , 
i.e., 1 0.25y = , 2 0y =  and 3 0.75y = . The least degree of 
satisfaction of attainment of the fuzzy goal for 2C  is 
0.550 .  

By comparison analysis, it is not difficult to see that 
using the proposed models in this paper and the models 
(i.e., Eqs. (21) and (30)) given by Bector et al 2, we can 
obtain the strategies and the least degrees of satisfaction 
of attainment of the IF-set (or F-set) goals for the 
companies 1C  and 2C . However, using the proposed 
models in this paper, we can also obtain the largest 
degrees of dissatisfaction and the degrees of hesitation 
of attainment of the IF-set goals for the companies 1C  
and 2C , which are of importance for 1C  and 2C . For 
example, using Eq. (43), the least degree of satisfaction 
of attainment of the F-set goal for 2C  is 0.550 , whereas 
the degree of dissatisfaction of attainment of the F-set 
goal for 2C  is automatically equal to 1 0.55− , i.e., 0.45  
according to the Definition of the F-set. In this case, 
intuitively the company 2C  may not be sure whether the 
strategy * T(0.25,0,0.75)=y  is optimal or not in that the 
degree of satisfaction and the degree of dissatisfaction 
of attainment of the F-set goal are approximately equal, 
especially when they are both equal to 0.5 . However, 
using the proposed models in this paper, the largest 
degree of dissatisfaction of attainment of the IF-set goal 
for 2C  is only 0.063 , which may make 2C  believe that 
the strategy * T(0.25,0,0.75)=y  is reasonable and 
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reliable. The results show that the proposed models in 
this paper are reasonable and may provide more 
abundant information for players to make decision. 

 5. Conclusions 

In this paper, we formulate the matrix games with IF-set 
goals and hereby develop the linear programming 
method, which is different from those proposed by Li 
and Nan27 and Li28. On the one hand, the discussed 
matrix games are remarkably different. The matrix 
games discussed in this paper are ones in which 
uncertainty only appears in goals of players, i.e., the 
goals of players are expressed with the IF-sets whereas 
payoffs of players are real numbers rather than the IF-
sets. The matrix games discussed in Li and Nan27 and 
Li28 are ones in which uncertainty only appears in 
payoffs of players, i.e., the payoffs of players are 
expressed with the IF-sets whereas goals of players are 
not taken into consideration. On the other hand, the 
constructed bi-objective programming models and 
hereby the derived auxiliary non-linear/linear 
programming models are remarkably different. The 
main reason is that in this paper both the membership 
and non-membership functions of IF-set goals for 
players are optimized simultaneously whereas in Li and 
Nan27 and Li28 the expected payoff of player Ⅰ  is 
optimized according to the inclusion relation on the IF-
sets16,17. Moreover, the proposed models in this paper 
are a natural generalization of those developed by 
Bector et al 2. It is easily seen that the proposed models 
in this paper may provide more information than those 2. 
Namely, the proposed models in this paper provide not 
only the least degree of satisfaction of attainment of the 
IF-set goals but also the largest degree of dissatisfaction 
and the degree of hesitation of attainment of the IF-set 
goals. The results show that the IF-set may express 
information more abundant and flexible than the F-set 
when it is used to deal with uncertainty in game theory. 
Naturally, in many cases both goals and payoffs of 
players may be the IF-sets. Such a kind of matrix games 
will be investigated in the future. 
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