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Abstract

In 1981, J. Borsı́k and J. Doboš studied and solved the problem of how to merge, by means of a function, a
(not necessarily finite) collection of metrics in order to obtain a single one as output. Later on, in 2010, G.
Mayor and O. Valero proposed and solved the Borsı́k and Doboš problem in the context of quasi-metrics.
In this paper, we focus our attention on the aggregation problem for the case of extended quasi-metrics
and we give several connections between both problems, the problem of merging quasi-metrics and the
extended quasi-metric aggregation one.
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1. Introduction

In the last years there is a growing interest in the
mathematical theory of information aggregation be-
cause of its wide range of applications to practical
problems. In particular for many processes that arise
in applied sciences, as for instance in image process-
ing, decision making, control theory, medical diag-
nosis or biology, it is necessary to process incoming
data that comes from sources of a different nature in
order to obtain a conclusion. In such processes the
pieces of information are symbolized via some nu-
merical values. As a consequence the fusion meth-
ods that are based on numerical aggregation opera-
tors play a central role in the theory of information
aggregation. A wide class of techniques of aggrega-
tion impose a constraint in order to select the most
suitable aggregation operator for the problem to be
solved. In general this constraint consists of con-
sidering only those operators that provide the out-

put data with the same properties as the inputs. An
example of this type of situation is given when one
wants to merge metrics in order to obtain a new one.
Since the notion of metric plays a distinguished role
in applied research, J. Borsı́k and J. Doboš studied
the general problem of merging a collection of met-
rics (not necessarily finite) into a single one in 1. To
this end, they introduced the so-called metric aggre-
gation functions (metric preserving functions in 1)
and characterized such functions via the notion of
triangle triplets. In order to introduce the Borsı́k and
Doboš description of the metric aggregation func-
tions let us recall a few pertinent concepts.

We shall use the letters R, R+, N to denote the set
of real numbers, the set of nonnegative real numbers
and the set of positive integer numbers, respectively.

From now on, R+
I will denote the set of all non-

negative functions defined on a (nonempty) set I of
indexes. Given x ∈ R+

I we will write xi instead of
x(i). Moreover, we will denote by 0 the element of
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R+
I with 0i = 0 for all i ∈ I.

As usual, we will consider the set R+
I ordered by

the pointwise order relation �, i.e., x � y⇔ xi 6 yi
for all i ∈ I.

According to 1, given a,b,c ∈ R+
I , we will say

that the triplet (a,b,c) forms a triangle triplet when-
ever a � b+ c, b � a+ c and c � b+a, i.e., when-
ever ai 6 bi + ci, bi 6 ai + ci and ci 6 bi +ai for all
i ∈ I.

A function Φ : R+
I → R+ will be called mono-

tone provided that Φ(x) 6 Φ(y) for all x,y ∈ R+
I

with x � y. Furthermore, a function Φ : R+
I → R+

will be said to be subadditive if Φ(x+y) 6 Φ(x)+
Φ(y) for all x,y ∈ R+

I .
In the sequel we will denote by OI the set of all

functions Φ : R+
I →R+ satisfying: Φ(x) = 0⇔ x =

0.
Following 1, a function Φ : R+

I →R+ is a metric
aggregation function if the function Md,Φ : X×X →
R+ is a metric for every indexed family of metric
spaces {(Xi,di)}i∈I , where X = ∏i∈I Xi and

Md,Φ(x,y) = Φ((di(xi,yi))i∈I)

for all x,y ∈ X .

The aforementioned characterization of metric
aggregation functions can be enunciated as follows:

Theorem 1. Let Φ : R+
I → R+. Then the below as-

sertions are equivalent:

(1) Φ is a metric aggregation function.
(2) Φ holds the following properties:

(2.1) Φ ∈ OI.

(2.2) Let a,b,c ∈ R+
I . If (a,b,c) is a triangle

triplet, then so is (Φ(a),Φ(b),Φ(c)).

From Theorem 1 one can easily deduce that ev-
ery metric aggregation function is subadditive. In
addition to the preceding relationship between met-
ric aggregation functions and the subadditive ones,
Borsı́k and Doboš proved the below result.

Proposition 2. Let Φ ∈ OI . If Φ is monotone and
subadditive, then Φ is a metric aggregation func-
tion.

On account of the above proposition and theo-
rem, it seems natural to ask if every metric aggrega-
tion function is monotone. However, such a question
has a negative answer, i.e., there are metric aggrega-
tion functions which are not monotone such as the
following example shows:

Example 1. Let I = N. Consider the function
Φ : R+

N → R+ given by Φ(0) = 0 and

Φ(x) =
{

2 α(x) ∈]0,1[
1 α(x)> 1

,

where x 6= 0 and α(x) denotes the value of the first
component of x different from 0. Clearly Φ ∈ ON.
Furthermore, it is easily seen that Φ turns triangle
triplets into triangle triplets. Thus, by Theorem 1,
Φ is a metric aggregation function. However, Φ is
not a monotone function. Indeed take x,y∈R+

N with
xi =

1
2 , yi = 1 for all i∈N. Then x� y but Φ(x) = 2,

Φ(y) = 1.
Since Borsı́k and Doboš solved the problem of

merging a collection of metrics, several authors have
provided new advances in the study of the aggrega-
tion problem for several kinds of generalized met-
rics. Specifically E. Castiñeira, A. Pradera and
E. Trillas have solved the aggregation problem for
C-generalized metrics, S-generalized distances and
pseudometrics in 2, 3 and 4, and several general tech-
niques for merging a finite number of metrics into
another one have been explored by J. Casasnovas
and F. Rosselló in 5 and 6. In the two last references
some of the obtained results have been applied to the
comparison of biological sequences and to diagnosis
problems in medicine.

Recently, quasi-metrics have been shown to be
an appropriate tool to model several processes that
arise in a natural way in Computer Science, Arti-
ficial Intelligence and Bioinformatics. In particu-
lar, an efficient framework, based on quasi-metrics,
to model the running time of computing in asymp-
totic complexity analysis of programs and algo-
rithms has been introduced and developed by L.M.
Garcı́a-Raffi, E.A. Sánchez-Pérez, S. Romaguera,
M. Schellekens and O. Valero in 7, 8, 9, 10 and
11. Moreover, quasi-metrics have been used suc-
cessfully to describe logic programming processes
by A.K. Seda in 12 and 13. In 14, 15, 16 and 17, a
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natural correspondence between similarity measures
on biological (nucleotide or protein) sequences and
quasi-metrics has been proved by V. Pestov, A. Sto-
jmirović and Y.-K. Yu, giving, in addition, practical
applications to search in DNA and protein datasets.

Inspired by the original work of Borsı́k and
Doboš and motivated by the utility of quasi-metrics
in the aforementioned fields of Artificial Intelligence
and Computer Science, G. Mayor and O. Valero
studied the aggregation problem in the quasi-metric
context. Thus, they introduced the notion of quasi-
metric aggregation function in 18 and gave character-
izations of such functions in the spirit of Theorem 1
in 18 and 19. With the aim of presenting such char-
acterizations let us recall some basic notions about
quasi-metrics.

Following 20, a quasi-metric on a (nonempty) set
X is a function d : X × X → R+ such that for all
x,y,z ∈ X :

(i) d(x,y) = d(y,x) = 0⇔ x = y.
(ii) d(x,z)6 d(x,y)+d(y,z).

Note that a metric on a set X is a quasi-metric d
on X satisfying, in addition, the following condition
for all x,y ∈ X :

(iii) d(x,y) = d(y,x).

A quasi-metric space is a pair (X ,d) such that X
is a (nonempty) set and d is a quasi-metric on X .

A well-known example of quasi-metric space is
given by the pair (R+,u) where u is defined by

u(x,y) = (y− x)∨0 (1)

for all x,y ∈ R+.
If d is a quasi-metric on X , then the function

d−1 : X×X → R+ defined for all x,y ∈ X by

d−1(x,y) = d(y,x)

is again a quasi-metric, called the conjugate of d.
Note that each quasi-metric d induces a metric ds on
X×X as follows:

ds(x,y) = d(x,y)∨d−1(x,y)

for all x,y ∈ X , where we denote by ∨ the maximum
operator.

According to 18 and 19, a function Φ : R+
I → R+

is a quasi-metric aggregation function if the func-
tion Qd,Φ : X ×X → R+ is a quasi-metric for every
indexed family of quasi-metric spaces {(Xi,di)}i∈I ,
where X = ∏i∈I Xi and

Qd,Φ(x,y) = Φ((di(xi,yi))i∈I)

for all x,y ∈ X .
The quasi-metric formulation of Theorem 1,

given in 19, can be stated in the following way:

Theorem 3. Let Φ : R+
I → R+. Then the below as-

sertions are equivalent:

(1) Φ is a quasi-metric aggregation function.
(2) Φ holds the following properties:

(2.1) Φ ∈ OI.

(2.2) Let a,b,c ∈ R+
I . If a � b+ c, then Φ(a) 6

Φ(b)+Φ(c).

Of course from the preceding result, and by The-
orem 1, one can deduce immediately that every
quasi-metric aggregation function is a metric aggre-
gation one. The converse is not true in general such
as Example 1 shows. Moreover, Theorem 3 yields
that every quasi-metric aggregation function is, sim-
ilarly to the metric case, subadditive. Furthermore,
notice that, contrary to the metric case, the preceding
characterization states that every quasi-metric ag-
gregation function is always a monotone function.
In fact, as a consequence of Theorem 3, we have
the next characterization of quasi-metric aggrega-
tion function which was obtained in 18.

Theorem 4. Let Φ : R+
I → R+. Then the below

assertions are equivalent:

(1) Φ is a quasi-metric aggregation function
(2) Φ is a subadditive and monotone function such

that Φ ∈ OI .

The fact that, from a given quasi-metric d, one
can always generate the conjugate quasi-metric d−1

induces to wonder what is the relationship between
the conjugate quasi-metric induced by the quasi-
metric obtained via the aggregation of an indexed
family of quasi-metrics and the quasi-metric gen-
erated by the aggregation of the conjugate quasi-
metrics associated to the aforesaid family. The next
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result, which was given in 19, provides the answer to
the formulated question.

Proposition 5. Let Φ : R+
I → R+ be a quasi-metric

aggregation function and let {(Xi,di)}i∈I be a family
of quasi-metric spaces. Then

Q−1
d,Φ(x,y) = Qd−1,Φ(x,y)

for all x,y ∈ X = ∏i∈I Xi, where

Qd−1,Φ(x,y) = Φ((d−1
i (xi,yi))i∈I)

for all x,y ∈ X.
Since every quasi-metric d induces a metric ds

it also seems natural to wonder what is the relation-
ship between the metric induced by the quasi-metric
generated via the aggregation of an indexed family
of quasi-metrics and the metric generated through
the aggregation of the family of metrics associated
to each quasi-metric of the aforesaid family. The
answer to the posed question was given again in 19

and is provided by the below result.

Proposition 6. Let Φ : R+
I → R+ be a quasi-metric

aggregation function and let {(Xi,di)}i∈I be a family
of quasi-metric spaces. Then

Qs
d,Φ(x,y)6 Qds,Φ(x,y)6 2Qs

d,Φ(x,y)

for all x,y ∈ X = ∏i∈I Xi, where

Qds,Φ(x,y) = Φ((ds
i (xi,yi))i∈I)

for all x,y ∈ X.
Observe that in the statement of the preceding re-

sult the function Qds,Φ is a metric, since every quasi-
metric aggregation function is a metric aggregation
function.

Prompted by the work of Rosselló and Casas-
novas developed in 5, 6, Casasnovas and Valero,
and P. Tirado and Valero obtained several connec-
tions between the quasi-metric aggregation problem
and the asymptotic computational complexity the-
ory in 21 and 22, respectively. Moreover, some other
problems related to the quasi-metric aggregation one
have been tackle by S. Massanet and Valero in 23,
and by J. Martı́n, Mayor and Valero in 24 and 25.

Motivated, on the one hand, by the recent ad-
vances in the study of the quasi-metric aggregation
problem and, on the other hand, by the utility of the
so-called extended quasi-metrics in Computer Sci-
ence (see, for instance, 10, 26 and 27), in this paper
we focus our attention on the aggregation problem
for the case of the aforementioned extended quasi-
metrics. Thus, we introduce the notion of extended
quasi-metric aggregation function and we provide a
description of such functions. In addition, we con-
nect the problem of merging quasi-metrics with the
extended quasi-metric aggregation one.

2. The Extended Quasi-metric Aggregation
Problem

In the remainder of the paper we will denote by R+
∞

the set R+ ∪{∞}. Moreover, we will consider the
set R+

∞ endowed with the order relation 6∞ given by

x 6∞ y⇔ y = ∞ and x ∈R+
∞ or x,y ∈R+ with x 6 y.

Of course we will write x <∞ y⇔ x 6∞ y and x 6= y.
Let us recall that an extended quasi-metric on a

(nonempty) set X is a function d : X×X→R+
∞ such

that for all x,y,z ∈ X :

(i) d(x,y) = d(y,x) = 0⇔ x = y.
(ii) d(x,z)6∞ d(x,y)+d(y,z).

Note that an extended quasi-metric satisfies
the same axioms as the quasi-metrics except that
d(x,y) = ∞ is allowed. Moreover, every quasi-
metric is an extended quasi-metric.

Clearly an extended metric on a set X is an ex-
tended quasi-metric d on X satisfying for all x,y ∈
X :

(iii) d(x,y) = d(y,x).

Naturally, an extended quasi-metric space is a
pair (X ,d) such that X is a (nonempty) set and d
is an extended quasi-metric on X .

A well-known example of extended quasi-metric
space, which is not a quasi-metric space, is given by
the pair (R+,dS), where

dS(x,y) =
{

y− x if x 6 y
∞ if x > y

. (2)

Some results of Section 2 were announced without proofs in Proc. of the Workshop in Applied Topology-WiAT’12 (2012), pp. 115-124
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Similar to the case of quasi-metrics, when d is
an extended quasi-metric on X , then the function
d−1 : X×X → R+

∞ defined for all x,y ∈ X by

d−1(x,y) = d(y,x)

is again an extended quasi-metric, that we will call,
again, the conjugate of d. Moreover, each extended
quasi-metric d induces an extended metric ds on
X×X given, for all x,y ∈ X , by

ds(x,y) = d(x,y)∨∞ d−1(x,y),

where ∨∞ stands for the maximum operator with re-
spect to the order 6∞.

In order to tackle the aggregation problem for the
case of extended quasi-metrics we fix some termi-
nology as follows:

We will consider the set of all functions defined
from a (nonempty) set of indexes I into R+

∞ and we
will denote it by R+

I,∞. Of course, given x ∈ R+
I,∞ we

will write xi instead of x(i). Furthermore, we will
consider the set R+

I,∞ ordered by the pointwise order
relation �∞, i.e., x�∞ y⇔ xi 6∞ yi for all i ∈ I.

In the light of the preceding notions we are able
to introduce the concept of extended quasi-metric
aggregation function.

Definition 1. A function Φ : R+
I,∞ → R+

∞ is an
extended quasi-metric aggregation function if the
function EQd,Φ : X×X → R+

∞ is an extended quasi-
metric for every indexed family of extended quasi-
metric spaces {(Xi,di)}i∈I , where X = ∏i∈I Xi and

EQd,Φ(x,y) = Φ((di(xi,yi))i∈I)

for all x,y ∈ X .
Now we focus our investigation on the study of

a characterization in the spirit of Theorems 3 and 4.
To this end, we will denote by O∞

I the set of all func-
tions Φ : R+

I,∞→ R+
∞ satisfying: Φ(x) = 0⇔ x = 0,

and we will say that a function Φ : R+
I,∞ → R+

∞

is monotone (subadditive) provided that Φ(x) 6∞

Φ(y) for all x,y ∈ R+
I,∞ with x �∞ y (Φ(x+ y) 6∞

Φ(x)+Φ(y) for all x,y∈R+
I,∞). Of course, we make

the convention that a+∞ = ∞ for all a ∈ R+
∞ .

The next result allows to provide examples of ex-
tended quasi-metric aggregation functions.

Proposition 7. Let Φ ∈ O∞
I . If Φ is monotone and

subadditive, then Φ is an extended quasi-metric pre-
serving function.

Proof. Given an indexed family of extended quasi-
metric spaces {(Xi,di)}i∈I we have to show that the
function EQd,Φ in Definition 1 is an extended quasi-
metric. With this aim, assume that

EQd,Φ(x,y) = EQd,Φ(y,x) = 0

for some x,y ∈ X = ∏i∈I Xi. Then we deduce that
di(xi,yi) = di(yi,xi) = 0 for all i ∈ I, since Φ ∈ O∞

I .
From the fact that every di is an extended quasi-
metric we obtain that xi = yi for all i ∈ I and, thus,
that x = y. It is clear that EQd,Φ(x,x) = 0 for all
x ∈ X .

Next we prove that EQd,Φ(x,y) 6∞

EQd,Φ(x,z)+EQd,Φ(z,y) for all x,y,z ∈ X .
Let x,y,z∈X . Since each di is an extended quasi-

metric we have that

di(xi,yi)6∞ di(xi,zi)+di(zi,yi)

for all i ∈ I.
On the one hand, the monotonicity of Φ provides

that

Φ((di(xi,yi))i∈I)6∞ Φ((di(xi,zi)+di(zi,yi))i∈I).

On the other hand, the fact that Φ is subadditive
gives that

Φ((di(xi,zi)+di(zi,yi))i∈I) 6∞ Φ((di(xi,zi)))i∈I)
+ Φ((di(zi,yi)))i∈I).

Combining the preceding inequalities we deduce
that

EQd,Φ(x,y) = Φ((di(xi,yi))i∈I)

6∞ Φ((di(xi,zi)))i∈I)+Φ((di(zi,yi)))i∈I)

= EQd,Φ(x,z)+EQd,Φ(z,y).

So we have proved that the function Φ is exactly
an extended quasi-metric aggregation function as
claimed.

Next we give an example of extended quasi-
metric aggregation function.
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Example 2. Set I = {1}. Consider the function
Φ : R+

I,∞→ R+
∞ defined by

Φ(x) =
{

∞ if x 6= 0
0 if x = 0

.

It is obvious that Φ∈O∞
I and that Φ is monotone

and subadditive. So, by Proposition 7, we have that
Φ is an extended quasi-metric aggregation function.

The following remark and lemma will allow us
to provide a description of the extended quasi-metric
aggregation functions.

Remark 1. Set (R+
∞)

2 = R+
∞ ×R+

∞ . Let u∞ : R+
∞ ×

R+
∞ → R+

∞ be the extended quasi-metric given by

u∞(x,y) =


∞ if x <∞ y and y = ∞

u(x,y) if x,y ∈ R+

0 if x = ∞ and y ∈ R+

for all x,y ∈ R+
∞ and u is the quasi-metric given in

Equation (1). Define the extended quasi-metric U∞

on (R+
∞)

2 by

U∞(x,y) = u∞(x1,y1)+u∞(x2,y2)

for all x = (x1,x2),y = (y1,y2) ∈ (R+
∞)

2. Then it is
easily seen that for every a,b ∈ R+

∞

U∞(xab,yab) = a and U−1
∞ (xab,yab) = b,

where xab = (0,b) and yab = (a,0). Observe that if
a = b, then

U∞(xa,ya) = a =U−1
∞ (xa,ya),

with xa = (0,a) and ya = (a,0).
In this lemma, we will use the extended quasi-

metric dS introduced in Equation (2).

Lemma 8. Let a,b ∈ R+
∞ . Then there always ex-

ist uab,vab,wab ∈ R+ such that dS(uab,vab) = a+b,
dS(uab,wab) = a and dS(wab,vab) = b.

Proof. Fix a,b ∈ R+
∞ . We distinguish four possible

cases.
Case 1. a + b < ∞. Then a,b < ∞ Put

uab = 0, vab = a + b and wab = a. It follows
that dS(uab,vab) = a+ b, dS(uab,wab) = a and that
dS(wab,vab) = b.

Case 2. a + b = ∞ with a = ∞ and b < ∞.
Put uab = b + 1, vab = b and wab = 0. It fol-
lows that dS(uab,vab) = ∞, dS(uab,wab) = ∞ and
dS(wab,vab) = b.

Case 3. a + b = ∞ with a < ∞ and b = ∞.
Put uab = a + 1, vab = a+1

2 and wab = 2a + 1. It
follows that dS(uab,vab) = ∞, dS(uab,wab) = a and
dS(wab,vab) = ∞.

Case 4. a+b = ∞ with a = b = ∞. Put uab = 2,
vab = 0 and wab = 1. It follows that dS(uab,vab) =
dS(uab,wab) = dS(wab,vab) = ∞.

In the next results we describe extended quasi-
metric aggregation functions.

Theorem 9. Let Φ : R+
I,∞→ R+

∞ . Then, among the
below assertions, (1)→ (2):

(1) Φ is an extended quasi-metric aggregation func-
tion.

(2) Φ ∈ O∞
I and Φ is subadditive.

Proof. First we prove that Φ ∈ O∞
I . Indeed, let

x ∈ R+
I,∞ such that Φ(x) = 0. Take the indexed fam-

ily of extended quasi-metric spaces {(Xi,di)}i∈I with
Xi = (R+

∞)
2 and di =U∞ for all i ∈ I. Since xi ∈ R+

∞

for all i∈ I, we have, by Remark 1 that U∞(xxi ,yxi) =
U−1

∞ (xxi ,yxi) = xi for all i ∈ I, where xxi = (0,xi) and
yxi = (xi,0) for all i ∈ I. Take x,y ∈∏i∈I (R+

∞)
2 such

that xi = xxi and yi = yxi . Hence

EQd,Φ(x,y) = Φ((U∞(xxi ,yxi)i∈I) = Φ(x) = 0

and

EQd,Φ(y,x) = Φ((U∞(yxi ,xxi)i∈I) = Φ(x) = 0.

The fact that Φ is an extended quasi-metric ag-
gregation function yields that EQd,Φ is an extended
quasi-metric and, thus, that x = y. Whence we de-
duce that x = 0 and, thus that Φ ∈ O∞

I .
Next we show that Φ is subadditive. To this end,

let a,b ∈ R+
I,∞.

By Lemma 8 there exists uaibi ,vaibi ,waibi ∈ R+

such that dS(uaibi ,vaibi) = ai+bi, dS(uaibi ,waibi) = ai
and dS(waibi ,vaibi) = bi for all i ∈ I.
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Set uab,vab,wab the elements of R+
I,∞ such that

uabi = uaibi , vabi = vaibi and wabi = waibi for all i ∈ I.
Consider the indexed family of extended quasi-

metric spaces {(Xi,di)}i∈I with Xi =R+ and di = dS
for all i ∈ I. Since Φ is an extended quasi-metric
aggregation function we have that

Φ(a+b) = Φ((dS(uaibi ,vaibi)i∈I)

= EQd,Φ(uab,vab)

6∞ EQd,Φ(uab,wab)+EQd,Φ(wab,vab)

= Φ((dS(uaibi ,waibi)i∈I)

+ Φ((dS(waibi ,vaibi)i∈I)

= Φ(a)+Φ(b).

Remark 2. Let us recall that a (n extended) quasi-
metric d on a nonempty set X is called T1 if given
x,y ∈ X with d(x,y) = 0⇒ x = y. On account of
the proof of Theorem 9, it is clear that EQd,Φ is a
T1 extended quasi-metric on X = ∏i∈I Xi whenever
the extended quasi-metric aggregation function op-
erates on a family of extended quasi-metric spaces
{(Xi,di)}i∈I such that di is T1 for all i ∈ I.

In the light of Theorem 4 , it seems natural to dis-
cuss if, similar to the quasi-metric case, the extended
quasi-metric aggregation functions are exactly those
that satisfy all requirements in statement (2) in The-
orem 9 and, in addition, the monotonicity. Never-
theless, the below example shows that there are ex-
tended quasi-metric aggregation functions which are
not monotone.

Example 3. Let I = {1,2}. Consider the function
Φ : R+

I,∞→ R+
∞ defined by

Φ(x) =


∞ x1 > 0
2 x1 = 0,x2 ∈]0,1[
1 x1 = 0,x2 > 1
0 x1 = x2 = 0

for all x = (x1,x2) ∈ R+
I,∞.

It is evident that Φ ∈ O∞
I . It is a simple matter

to check that Φ is subadditive. Moreover, it is clear
that (0, 1

2)�∞ (0,1) but Φ(0, 1
2) = 2 and Φ(0,1) = 1.

So Φ is not monotone. Howeover, Φ is an extended
quasi-metric aggregation function.

Although the preceding example shows that a
version of Theorem 4 does not hold in the extended
quasi-metric context, we have the following result.

Theorem 10. Let Φ : R+
I,∞→ R+

∞ . Then, among the
below assertions, (2)→ (1):

(1) Φ is an extended quasi-metric aggregation func-
tion.

(2) Φ holds the following properties:

(2.1) Φ ∈ O∞
I .

(2.2) Let a,b,c∈R+
I,∞. If a�∞ b+c, then Φ(a)6∞

Φ(b)+Φ(c).

Proof. It is clear, from condition (2.2), that Φ is
subadditive since a+b�∞ a+b for all a,b ∈ R+

I,∞.

Let a,b ∈ R+
I,∞ be such that a �∞ b. Then tak-

ing c = 0 in condition (2.2) we have that Φ(a) 6∞

Φ(b)+Φ(0). Since condition (2.1) guarantees that
Φ(0) = 0 we deduce that Φ(a)6∞ Φ(b) and, hence,
that Φ is monotone. Therefore, by Proposition 7, we
conclude that Φ is an extended quasi-metric aggre-
gation function.

Observe that Example 3 shows that, in the pre-
ceding theorem, (1) → (2) does not hold in gen-
eral because every extended quasi-metric aggrega-
tion function satisfying condition (2.2) in statement
(2) in Theorem 10 is monotone.

Next we provide a characterization of the ex-
tended quasi-metric aggregation functions which
satisfy condition (2.2) in statement of Theorem 10.

Theorem 11. Let Φ : R+
I,∞ → R+

∞ be an extended
quasi-metric aggregation function. Then the follow-
ing assertions are equivalent:

(1) Φ holds condition (2.2) in statement of Theorem
10.

(2) Φ is monotone.

Proof. (1)→ (2). Taking c = 0 we obtain that
Φ(a) 6∞ Φ(b) + Φ(0) whenever a �∞ b + 0. By
statement (2) in Theorem 9 we deduce that Φ(0) = 0
and, thus, that Φ(a)6∞ Φ(b).

(2)→ (1). Let a,b,c ∈ R+
I,∞ such that a �∞

b+c. Then Φ(a)6∞ Φ(b+c), since Φ is monotone.
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Moreover, Theorem 9 guarantees that Φ is subaddi-
tive. Whence we deduce that Φ(a)6∞ Φ(b)+Φ(c).

The next result is a version of Proposition 5 in
the framework of extended quasi-metric aggrega-
tion functions. We include its proof for the sake of
completeness although it runs following exactly the
same argument to those given in the proof of Propo-
sition 5 in 19.

Proposition 12. Let Φ : R+
I,∞ → R+

∞ be an ex-
tended quasi-metric aggregation function and let
{(Xi,di)}i∈I be an indexed family of extended quasi-
metric spaces. Then

EQ−1
d,Φ(x,y) = EQd−1,Φ(x,y)

for all x,y ∈ X = ∏i∈I Xi, where

EQd−1,Φ(x,y) = Φ((d−1
i (xi,yi))i∈I)

for all x,y ∈ X.

Proof. Let x,y ∈ X = ∏i∈I Xi. On the one hand,

EQ−1
d,Φ(x,y) = EQd,Φ(y,x) = Φ((di(yi,xi))i∈I).

On the other hand,

EQd−1,Φ(x,y)=Φ((d−1
i (xi,yi))i∈I)=Φ((di(yi,xi))i∈I).

Therefore we have that

EQ−1
d,Φ(x,y) = EQd−1,Φ(x,y)

for all x,y ∈ X = ∏i∈I Xi.

In order to obtain a version of Proposition 6,
given a,b ∈ R+

I,∞, we will denote by at b the ele-
ment of R+

I,∞ defined by (at b)i = ai ∨∞ bi for all
i ∈ I.

Proposition 13. Let Φ : R+
I,∞ → R+

∞ be an ex-
tended quasi-metric aggregation function and let
{(Xi,di)}i∈I be an indexed family of extended quasi-
metric spaces. Then the following assertions are
equivalent:

(1) The below inequalities are satisfied for all x,y ∈
X = ∏i∈I Xi:

EQs
d,Φ(x,y)6∞ EQds,Φ(x,y)6∞ 2EQs

d,Φ(x,y),

where

EQds,Φ(x,y) = Φ((ds
i (xi,yi))i∈I)

for all x,y ∈ X.
(2) Φ is monotone.

Proof. (1)→ (2). Let a,b ∈ R+
I,∞ such that a �∞ b.

Take the indexed family of extended quasi-metric
spaces {(Xi,di)}i∈I with Xi = (R+

∞)
2 and di =U∞ for

all i ∈ I. On the one hand, by Remark 1, we have
guaranteed the existence of xab,yab ∈ X such that

U∞(xabi ,yabi) = ai and U−1
∞ (xabi ,yabi) = bi

for all i ∈ I. Hence

Φ(a) = Φ((U∞ (xabi ,yabi))i∈I) = EQd,Φ(xab,yab)

and

Φ(b) = Φ((U−1
∞ (xabi ,yabi))i∈I) = EQ−1

d,Φ(xab,yab).

On the other hand, we have that

EQs
d,Φ(xab,yab) = EQd,Φ(xab,yab)∨∞ EQ−1

d,Φ(xab,yab)

= Φ(a)∨∞ Φ(b).

and that

EQds,Φ(xab,yab)=Φ((U s
∞ (xabi ,yabi))i∈I)=Φ(atb).

Since EQs
d,Φ(xab,yab) 6∞ EQds,Φ(xab,yab) we

deduce that

Φ(a)6∞ Φ(a)∨∞ Φ(b)6∞ Φ(atb) = Φ(b).

So Φ is monotone.

(2)→ (1). Let x,y ∈ X . We have that

EQs
d,Φ(x,y) = EQd,Φ(x,y)∨∞ EQ−1

d,Φ(x,y)

= Φ((di(xi,yi))i∈I)∨∞ Φ((di(yi,xi))i∈I).
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Moreover,

EQds,Φ(x,y) = Φ((ds
i (xi,yi))i∈I)

= Φ((di(xi,yi))i∈I ∨∞ (di(yi,xi))i∈I).

Since Φ is monotone we deduce that

Φ((di(xi,yi))i∈I)6∞ EQds,Φ(x,y)

and
Φ((di(yi,xi))i∈I)6∞ EQds,Φ(x,y).

Consequently EQs
d,Φ(x,y)6∞ EQds,Φ(x,y).

By statement (1) in Theorem 11 we have that

EQds,Φ(x,y)6∞ Φ((di(xi,yi))i∈I)+Φ((di(yi,xi))i∈I)

= EQd,Φ(x,y)+EQd−1,Φ(x,y)

6∞ 2EQs
d,Φ(x,y),

since ds
i (xi,yi)6∞ di(xi,yi)+di(yi,xi) for all i ∈ I.

Combining both inequalities we conclude that

EQs
d,Φ(x,y)6∞ EQds,Φ(x,y)6∞ 2EQs

d,Φ(x,y).

Since the preceding inequalities hold for all x,y ∈ X
we obtain the desired conclusion.

3. Extended Quasi-metric Aggregation
Functions and Quasi-metric Aggregation
Functions: the Relationship

A natural question that one can wonder is which
is the relationship between extended quasi-metric
aggregation functions and quasi-metric aggregation
functions. We end the paper discussing which
are the the extended quasi-metric aggregation func-
tions that are simultaneously quasi-metric aggrega-
tion functions.

The next example shows that there exist extended
quasi-metric aggregation functions which are not
quasi-metric aggregation functions.

Example 4. Let I = {1} and consider the func-
tion Φ introduced in Example 2. It is clear that
Φ(u(0,1)) =Φ(1) =∞ and, thus, that EQu,Φ is not a
quasi-metric. It follows that Φ is not a quasi-metric
aggregation function.

Motivated by the preceding example we intro-
duce a new class of extended quasi-metric aggre-
gation functions which merge quasi-metrics into
quasi-metrics and provide as output extended quasi-
metrics strictly in the case of the indexed family to
merge is formed by some extended quasi-metrics
that are not quasi-metrics.

Definition 2. A function Φ : R+
I,∞ → R+

∞ is a strict
extended quasi-metric aggregation function if the
function EQd,Φ : X × X → R+

∞ is a (n extended)
quasi-metric for every indexed family of (extended)
quasi-metric spaces {(Xi,di)}i∈I , where X = ∏i∈I Xi
and

EQd,Φ(x,y) = Φ((di(xi,yi))i∈I)

for all x,y ∈ X .
The below result characterizes the extended

quasi-metric aggregation functions which are also
quasi-metric aggregation functions.

The next remark will be useful in the announced
characterization.

Remark 3. Let dR2 : R2×R2 → R+ be the quasi-
metric given by

dR2(x,y) = [(y1− x1)∨0]+ [(y2− x2)∨0]

for all x = (x1,x2),y = (y1,y2) ∈ R2. It is a sim-
ple matter to check that given a,b,c ∈ R+ with
a 6 b + c, there exist xabc,yabc,zabc ∈ R2 such
that dR2(xabc,yabc) = a, dR2(xabc,zabc) = b and
dR2(zabc,yabc) = c. Concretely xabc,yabc,zabc ∈ R2

are given as follows:

If a 6 b, then x = (−a
2 ,b + c), y = (a

2 ,c) and
z = (−a

2 +b,0).

If b < a, then x = (−a
2 ,0), y = (a

2 ,0) and z =
(−a

2 +b,a−b− c).

Theorem 14. Let Φ : R+
I,∞ → R+

∞ be an extended
quasi-metric aggregation function. Then the follow-
ing statements are equivalent:

(1) Φ is a strict extended quasi-metric aggregation
function.

(2) Φ(a) = ∞⇔ ai = ∞ for some i ∈ I.
(3) Φ is monotone and Im(Φ|R+

I
)⊆ R+.
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Proof. (1)→ (2). For the purpose of contradic-
tion we suppose that there exists x ∈ R+

I,∞ such that
Φ(a) = ∞ and ai < ∞ for all i ∈ I. Since ai < ∞ we
obtain that u(0,ai) = ai for all i ∈ I.

Next consider the indexed family of quasi-metric
spaces {(Xi,di)}i∈I with Xi = R+ and di = u for
all i ∈ I. Then the function Qd,Φ given, for all
x,y ∈ X = ∏i∈I Xi, by

Qd,Φ(x,y) = Φ((di(xi,yi))i∈I)

is a quasi-metric. Whence we deduce that
Qd,Φ(x,y) 6= ∞ for all x,y ∈ X . However, taking
x ∈ X with xi = ai, we have that

∞ = Φ(a) = Φ((u(0,ai))i∈I) = Qd,Φ(0,x) 6= ∞,

which is a contradiction.

(2)→ (3). Obviously Im(Φ|R+
I
)⊆R+. It remains

to prove that Φ is monotone. To this end, consider
a,b ∈ R+

I,∞ with a�∞ b. We distinguish two cases:

Case 1. ai0 = ∞ for some i0 ∈ I. Then bi0 = ∞,
since ai 6∞ bi for all i ∈ I. Consequently Φ(a) =
∞ = Φ(b).

Case 2. ai < ∞ for all i ∈ I. Then we assume
that bi < ∞ for all i ∈ I because otherwise we ob-
tain immediately that Φ(a)< ∞ = Φ(b). Hence, by
Remark 3, there exist xaibici ,yaibici ,zaibici ∈ R2 such
that dR2(xaibici ,yaibici) = ai, dR2(xaibici ,zaibici) = bi
and dR2(zaibici ,yaibici) = 0.

Consider the indexed family of extended quasi-
metric spaces {(Xi,di)}i∈I with Xi = R2 and di =
dR2 for all i ∈ I. Since Φ is an extended quasi-
metric preserving function, by statement (2), we
have that EQd,Φ is a quasi-metric on X = ∏i∈I Xi.
Set xabc,yabc,zabc the elements of X such that xabci =
xaibici , yabci = yaibici and zabci = zaibici for all i ∈ I.
Then we obtain that

Φ(a) = Φ((dR2(xaibici ,yaibici))i∈I)
= EQd,Φ(xabc,yabc)
6 EQd,Φ(xabc,zabc)+EQd,Φ(zabc,yabc)
= Φ((dR2(xaibici ,zaibici))i∈I)
+ Φ((dR2(zaibici ,yaibici))i∈I)
= Φ(b)+Φ(0) = Φ(b).

Therefore Φ is monotone.

(3)→ (1). By Theorem 4, we have that the re-
striction of Φ to R+

I is a quasi-metric aggregation
function and, thus, that Φ is a strict extended quasi-
metric aggregation function.

The next example shows that the new class of
extended quasi-metric aggregation functions is not
empty.

Example 5. Set I = {1,2, . . . ,n}. Fix
w1,w2, . . . ,wn ∈ R+ and let Φ : R+

I,∞ → R+
∞ be the

function given by Φ(x) = ∑
n
i=1 wixi for all x ∈ R+

I,∞.
It is not hard to check that Φ is an extended quasi-
metric aggregation function. Moreover, condition
(2) in statement of Theorem 14 gives, in addition,
that Φ is a strict quasi-metric aggregation function.

Examples 2 and 3 provide two instances of ex-
tended quasi-metric aggregation functions that are
not strict extended quasi-metric aggregations func-
tions.

As a consequence of Theorems 11 and 14 we ob-
tain the below result.

Corollary 15. Let Φ : R+
I,∞ → R+

∞ be an extended
quasi-metric aggregation function. Then the follow-
ing statements are equivalent:

(1) Φ is a strict extended quasi-metric aggregation
function.

(2) Φ(x) = ∞⇔ xi = ∞ for some i ∈ I.
(3) Φ is monotone and Im(Φ|R+

I
)⊆ R+.

(4) Im(Φ|R+
I
) ⊆ R+ and Φ(a) 6∞ Φ(b) +Φ(c) for

all a,b,c ∈ R+
I,∞ with a�∞ b+ c.

Remark 4. Note that, by Proposition 13, each
strict extended quasi-metric aggregation function
Φ : R+

I,∞→ R+
∞ satisfies for every indexed family of

extended quasi-metric spaces {(Xi,di)}i∈I and for all
x,y ∈ X = ∏i∈I Xi the below inequalities:

EQs
d,Φ(x,y)6∞ EQds,Φ(x,y)6∞ 2EQs

d,Φ(x,y).
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4. Conclusion

In this paper we have continued the research line be-
gun by J. Borsı́k, J. Doboš in 1. Concretely, we have
studied the problem of how to merge a (not nec-
essary finite) collection of extended quasi-metrics
in order to obtain a single one as output. Hence
we have introduced the notion of extended quasi-
metric aggregation function, which extends the orig-
inal notion given by Borsı́k and Doboš, and we have
provided a description of such functions. More-
over, we have discussed what is the relationship be-
tween the problem of merging quasi-metrics, stud-
ied and solved by G. Mayor and O. Valero in 18

and 19, and the extended quasi-metric aggregation
one. Since extended quasi-metrics have been used
in asymptotic complexity analysis of programs and
algorithms (10, 26 and 27) it seems natural to wonder
if the aggregation theory exposed in the paper can
be also applied to the aforesaid field. So, as further
work, it seems interesting to focus our investigation
on the possible utility of our proved results in the
theory of computational complexity.
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5. J. Casasnovas, F. Roselló, Averaging fuzzy biopoly-
mers, Fuzzy Set. Syst. 152 (2005), 139-158.

6. J. Casasnovas, F. Roselló, Midpoints as average rep-
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