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Abstract 

Stock e-exchange prices forecasting is an important financial problem that is receiving increasing attention. This 
study proposes a novel three-stage nonlinear ensemble model. In the proposed model, three different types of 
neural-network based models, i.e. Elman network, generalized regression neural network (GRNN) and wavelet 
neural network (WNN) are constructed by three non-overlapping training sets and are further optimized by 
improved particle swarm optimization (IPSO). Finally, a neural-network-based nonlinear meta-model is generated 
by learning three neural-network based models through support vector machines (SVM) neural network. The 
superiority of the proposed approach lies in its flexibility to account for potentially complex nonlinear relationships. 
Three daily stock indices time series are used for validating the forecasting model. Empirical results suggest the 
ensemble ANNs-PSO-GA approach can significantly improve the prediction performance over other individual 
models and linear combination models listed in this study. 

Keywords: artificial neural networks; ensemble forecasting; particle swarm optimization; genetic operator; stock e-
exchange prices  
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1. Introduction 

Stock market is a complex financial market with high 
volatility, noise non-stationary, unstructured nature, 
high degree of uncertainty, and hidden relationships. 
Due to its irregularity, stock e-exchange prices 
forecasting is regarded as a rather challenging task. The 
main purpose of forecasting is to reduce the risk in 
decision making that is important for financial 
organizations, firm and private investors. The methods 
of forecasting stock could be classified into two broad 

classes: fundamental analysis and technical analysis. 
The fundamental analysis depends upon exact 
knowledge of the various factors that influence the stock 
market such as micro-economics, macro-economics, 
political and even psychological factors. But the 
knowledge is usually not readily available. The 
technical analysis attempts to make predictions based on 
past patterns. However, these patterns are not always 
evident because of the noise. For traditional statistical 
methods, it is extremely difficult to capture the 
irregularity [1]. In these traditional models, we need to 
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assume a functional relationship between input and 
output and try to fit the data as per that relationship. 
This particularly hampers our efforts, since the 
predictors of stock form multidimensional input space 
and the relationship between input and output is 
essentially non-linear [2]. This has encouraged 
academic researchers and business practitioners to 
develop more predictable forecasting models [3]. As a 
result models using artificial intelligence such as 
artificial neural network (ANN) techniques have been 
recognized as more useful than conventional statistical 
forecasting models [4]. The neural networks can 
simultaneously handle the non-linear data of 
multidimensional input space. Furthermore, neural 
networks do not require an explicitly well defined 
relationship between input and output as they determine 
their own relationships based on input and output values 
[5]. With its proven generalization ability, the ANN is 
able to infer from historical patterns the characteristics 
of performing stocks. During the last few years, a 
number of neural network models and hybrid models 
have been proposed for obtaining accurate prediction 
results. 

Some researches are presented. Brownstone [6] 
predicts the daily Market close 5 days ahead, and 25 
days ahead of the Footsie by neural network. The results 
indicate that predictions can be produced to a high level 
of accuracy, in a readily understandable format. Quah [7] 
and Srinivasan uncover the intricate relationships 
between the performance of stocks and the related 
financial and technical variables by neural network. 
Experimental results obtained this far have been very 
encouraging. Kuo et al. [8] develop a genetic algorithm 
based fuzzy neural network (GFNN) to formulate the 
knowledge base of fuzzy inference rules which can 
measure the qualitative effect on the stock market. 
Plikynas et al. [9] use ANN for compound (technical 
and fundamental) analysis and prognosis' of LNSE, 
LITIN-A and LITIN-VVP. They employ initial pre-
processing (analysis for entropy and correlation) for 
filtering out model input variables. A wide spectrum of 
different results has shown a high sensitivity to ANN 
parameters. Ao [10] designs a simplified automated 
system to study the correlation between the US market 
and the Asian markets by employing the evolutionary 
computation to simulate the markets interactive 
dynamics. Slim [11] proposes a stochastic neural 

network (SNN) to the modelling and forecasting the 
time varying conditional volatility of the TUNINDEX 
returns. The empirical analysis shows that out-of-simple 
volatility forecasts of the SNN are superior to forecasts 
of traditional linear methods (GARCH) and also better 
than merely assuming a conditional Gaussian 
distribution. O'Connor and Madden [12] evaluate the 
effectiveness of using external indicators, such as 
commodity prices and currency exchange rates. In the 
experiments presented, basing trading decisions on a 
neural network trained on a range of external indicators 
result in a return on investment of 23.5% per annum, 
during a period when the DJIA index grew by 13.03% 
per annum. Thomaidis et al. [13] experiment with a 
"top-down" pruning technique as well as two "bottom-
up" strategies that start with simple models and 
gradually complicate the architecture if data indicate so. 
Liao et al. [14] propose an improved neural network - 
the stochastic time effective neural network model and 
test the forecasting performance of the model by using 
different volatility parameters. Guresen et al. [15] 
analyze multi-layer perceptron (MLP), dynamic 
artificial neural network (DAN2) and the hybrid neural 
networks which use generalized autoregressive 
conditional heteroscedasticity (GARCH) to extract new 
input variables. Jasemi et al. [16] propose the network 
that is not going to learn the candlestick lines alone or in 
combination, but is to present a kind of regression 
model whose independent variables are important clues 
and factors of the technical analysis patterns; and its 
dependent variable is the market trend in near future. 

The broad spectrum of applications to which neural 
networks have been applied, however, has revealed 
some of its drawbacks making researchers in particular 
suspicious as to their suitability in financial forecasting. 
As we all know, neural networks are a kind of unstable 
learning methods. Even for some simple problems, 
different architectures of neural networks (e.g., different 
number of hidden layers, different hidden nodes and 
different initial conditions) result in different patterns of 
network generalization. Researchers have devoted a 
great deal of effort during the last decade in order to 
find the optimal parameters of neural network  (e.g., 
number of units, number of hidden layers, type of 
neurons, learning rates for supervised and unsupervised 
training and initial weights, etc.) which can solve an 
actual problem based on performance evaluation criteria. 
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Evolutionary computation algorithms which are 
comprised of four major paradigms, genetic algorithms, 
evolutionary programming, evolution strategies, and 
genetic programming, have demonstrated to be suitable 
for optimization of different ANNs. As a popular 
evolutionary computation paradigm, namely, the 
particle swarm optimization (PSO), utilizes a 
“population” of candidate solutions to evolve toward an 
optimal or near optimal solution of an actual problem. 
Because of its simplicity, easy implementation, and 
quick convergence, PSO has attracted more and more 
attention and has been applied extensively in various 
fields. Despite of its success and popularity, Grimaldi et 
al. [17] have indicated that, although PSO may find 
solutions of reasonable quality much faster than other 
evolutionary computation algorithms, it can not improve 
the quality of the solutions as the number of iterations 
increases. Hence, a premature phenomenon may occur 
for the original PSO, especially when optimizing 
complex multi-objective functions. Therefore, many 
improved PSO algorithms have been proposed. For 
example, Alfi et al. [18] have presented a methodology 
for finding optimal system parameters and optimal 
control parameters by a novel adaptive particle swarm 
optimization (APSO) algorithm. Wang et al. [19] have 
presented a poly-hybrid PSO optimization method with 
intelligent parameter adjustment. 

Unfortunately, more and more researchers have 
realized that only selecting a single neural-network 
model with the best performance may lead to loss of 
potentially valuable information contained by other 
neural-network models that may have slightly weaker 
performances. Therefore, some different learning 
strategies such as combined/ensemble learning and 
meta-learning have been presented. For example, 
Abraham and AuYeung [20] present two ensemble 
approaches: based on a direct error measure and based 
on an evolutionary algorithm to search the optimal 
linear combination. Experimental results reveal that the 
ensemble techniques perform better than the individual 
methods and the direct ensemble approach seems to 
work well for the problem considered. Kwon and Moon 
[21] propose a genetic ensemble of recurrent neural 
networks for stock prediction model. It shows notable 
improvement on the average over not only the buy-and-
hold strategy but also other traditional ensemble 
approaches. Chun and Park [22] propose a new learning 

technique which extracts new case vectors using 
Dynamic Adaptive Ensemble CBR (DAE CBR). The 
main idea of DAE CBR originates from finding 
combinations of parameter and updating and applying 
an optimal CBR model to application or domain area. 
Chen et al. [23] propose a flexible neural tree (FNT) 
ensemble technique. The structure and parameters of 
FNT are optimized using genetic programming (GP) 
like tree structure-based evolutionary algorithm and 
particle swarm optimization (PSO) algorithms, 
respectively. Experimental results show that the model 
considered could represent the stock indices behavior 
very accurately. Aladag et al. [24] propose a new 
forecast combination approach based on artificial neural 
networks. The forecasts obtain from different fuzzy time 
series models are combined by utilizing artificial neural 
networks. The proposed method is applied to index of 
Istanbul stock exchange (IMKB) time series. It is seen 
that the proposed combination approach produces better 
forecasts than those produced by other combination 
methods available in the literature. Hung [25] presents 
the results of using a fuzzy system method to analyze 
clustering in generalized autoregressive conditional 
heteroskedasticity (GARCH) models. Although there 
are many studies on ensemble forecasting, we find that 
the ensemble model from different base models is often 
combined in a linear way in the existing studies. 
However, a linear weighted approach is not necessarily 
appropriate for the financial time series. Moreover, how 
to optimize the performance of the base models is a key 
problem. 

To solve the above two main problems, an ensemble 
model from three different base models, Elman network, 
generalized regression neural network (GRNN) and 
wavelet neural network (WNN) combined by support 
vector machines (SVM) neural network in a nonlinear 
way is presented. The optimal architectures of the three 
base models are obtained by the improved swarm 
particle optimization algorithm (IPSO). The main 
contributions of this study are summarized as follows: 

(a) A three-stage neural-network-based nonlinear 
weighted ensemble model for forecasting stock indices 
time series is proposed. In the first stage, a certain data 
sampling technique is used to generate three different 
training sets for three base models, a validation set and a 
testing set. Based on the different training sets, three 
neural-network base models are optimized by IPSO 
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algorithm in the second stage. Because the three neural-
network base models’ training processes do not affect 
the overall efficiency of time series forecasting system, 
they can be optimized and formulated in parallel. In the 
final stage, a neural-network-based nonlinear weighted 
meta-model is produced by learning the three neural-
network base models through SVM neural network. 

(b) All parameters in the three base models are 
adaptively adjusted by the improved particle swarm 
optimization (IPSO) algorithm. To ameliorate the 
performance of standard PSO, IPSO employs adaptive 
nonlinear inertia weight updating with fitness values. At 
the same time, acceleration parameters are controlled by 
a declining arccosine function and an increasing 
arccosine function. Further, the crossover operation and 
mutation operation are introduced to improve the 
performance of the candidate particles. We adopt two-
point crossover and design a crossover rate only 
depending on generation and an adaptive mutation rate 
depending on individual fitness. Finally, the optimal 
structure and parameters of base models are adjusted by 
a 2-level algorithm in the training process, i.e., binary 
particle swarm optimization (BiPSO) and decimal 
particle swarm optimization (DePSO). With IPSO the 
deadly drawbacks of the base models, e.g., difficult to 
select the parameters and frequent confinement to local 
minima, have been significantly improved.  

The rest of this study is organized as follows. 
Section 2 describes the building process of the proposed 
model in detail. For further illustration, three stock time 
series are used for testing in Section 3. Then, Section 4 
presents and discusses the results of forecasting and 
compares the forecasting performance with other 
methods in terms of all kinds of evaluation criteria. 
Finally, some concluding remarks are drawn in Section 
5. 

2. The architecture of the nonlinear ensemble 
model 

The nonlinear ensemble model in this study adopts the 
concept of metal-earning, which use some individual 
learning algorithms to extract knowledge from several 
different data subsets and then to construct a unified 
body of knowledge, metamodel, that adequately 
represents the entire dataset. 

2.1. Meta-learning 

As above mentioned, the performance of the ensemble 
models from several different base models is superior to 
a single neural-network model with the best 
performance. The ensemble model is a kind of learning 
from learned knowledge recently developed as an 
emerging machine learning technique in order to 
forecast financial time series using multiple training 
datasets. Generally, learning involves extracting a 
pattern f = fa from a training set, T, while ensemble 
model does these from several training sets, (T1, T2, …, 
Tn), each of which was used to train an associated base 
model f = fa(i), (i = 1, 2, . . ., n). The symbol n 
represents the number of the base models. The mode of 
metamodel which learns form learned knowledge by the 
base models may different from some or all of the base 
models. In addition, the metamodel will be trained by a 
new training set, TM, which is distinct from other 
training sets, Tn, used by the base models, fa(i). At 
present, many different meta-learning approaches have 
developed such as stacked generalization, boosting, 
dynamic bias selection, mining meta-knowledge, and 
inductive transfer, etc.  

Metamodel has usually two modeling methods: 
based on different training sets or different learning 
algorithms. The former is described as follows: 

)( MTfy =    (1) 

))(),(),(( 2211 nn TfTfTff Lσ=  (2) 

nTTT L== 21   (3) 

nfff L== 21   (4) 
where y is the output of meta-model, f is the learning 
algorithm of the meta-model, TM is the meta-training set, 
n is the number of base models (i.e. the number of 
training subset), Ti(i=1,2, …, n) is the ith training subset 
used by the ith base model, σ  is the learning operator 
of f, |Ti|(i=1,2, …, n) is the dimension of the ith training 
subset and fi(i=1,2, …, n) is the learning algorithm of 
the ith base model. Note that the learning algorithm of 
each base model based on different training sets is 
identical. 

The latter is described as follows: 
)( MTfy =    (5) 

))(),(),(( 21 TfTfTff nLσ=  (6) 
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Note that the learning algorithm of each base model 
based on identical training sets is different. 

This study proposes a novel ensemble model 
integrating the advantages of two different meta-
learning methods. The proposed model uses a hybrid 
meta-learning strategy in terms of different learning 
algorithms and different training subsets which include 
the following three stages: 

(a) An original data set D is divided into three parts: 
training set T, validation set V and testing set S. Then 

the different training subsets T1, T2, …, Tn are sampled 
from T for the correspond base models. 

(b) The optimal architecture of n base models fi 
(i=1,2, …, n) are obtained by training subsets Ti 
(i=1,2, …, n) and validation set V. 

(c) Applying the trained m different base models to 
validation set V, validation results from the m base 
models can formulate a meta-training set (TM). Based on 
the meta-training set, the metamodel is constructed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. A flow diagram of the nonlinear ensemble forecast model 

In this study, NN is used as both base learner and 
metalearner. That is, the improved meta-learning 
process utilizes the nonlinear weighted form to create a 
novel metamodel different from the existing linear 
weighted metamodeling. The improved three-stage 
nonlinear meta-learning process is illustrated in Fig. 1. 
There are three main problems to be solved: (a) create n 
different training subsets from the original training set T 
for n base models, (b) determine the optimal 

architecture of each neural-network base model, and (c) 
create a metamodel with different metadata produced by 
the NN base models. 

2.2. Data partition and sampling 

In forecasting financial time series by neural network, 
data partitions can have a significant impact on the final 
results. Generally, the initial data set is only split into 
training set and testing set. The former set is used for 
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model construction and the latter one is used for model 
testing. However, a third set from the original data set, 
validation set, can effectively improve the robustness of 
neural networks. Therefore, this study divides the 
original data set into three different parts non-
overlapping: training set, validation set and testing set. 
The partition ratios usually are no consensus and 
selected subjectively. However, the appropriate ratios 
will generate better forecasting accuracy such as 7:2:1 
[26]. The partition ratios are not absolute according to 
different problems. 

How to create n training subsets from the original 
training set T is a problem after data partition? There are 
three common sampling techniques to create training 
subsets: direct replication, bagging and noise injection. 
In direct replication method, training subsets is a sample 
duplicate of original training set T. 

Because of the feature of its random sampling with 
replacement, Bagging [27] has become a widely used 
data sampling method in machine learning. But there 
are maybe many duplicates in some training subsets. 
Noise injection can increase the independence between 
different training subsets and further effectively reduce 
variance between models by inserting noise to the 
training dataset [28]. Unfortunately, the injected noise 
may distort the characteristic of original data. To 
overcome above three sampling techniques, an interval 
sampling method is proposed as 

))1(,,2,1(
),,,2,1()),1(()(

Njnij
nijniTjTi

≤−+=
=−+=

L

L
 (7) 

where T1(j) is jth element of ith training subset, T the 
original training set, n the number of training subsets, 
and N is the size of T. 

2.3. Neural-network base models 

The performance of base model is the basis to construct 
an effective ensemble model. The diversity of the base 
models is crucial for improving the performance of the 
ensemble model. The neural-network base models 
usually can be formulated parallel by different ways 
such as different initial weights, different architecture 
(e.g., different numbers of layers or numbers of nodes in 
each layer), different training algorithms (e.g., the 
gradient descent or Levenberg–Marquardt algorithm, 
etc). The neural-network base models utilize usually 
identical technique with different parameters, however 

it is proven that neural-network base models based on 
different technique are much helpful to improve the 
generalization ability and adaptability to actual 
problems of an ensemble model. Therefore, three 
different neural networks, Elman network, generalized 
regression neural network (GRNN) and wavelet neural 
network (WNN) are adopted because of their respective 
advantages in financial time series forecasting in this 
study. 

2.3.1 Neural network 

Neural networks (NNs), first introduced in 1943 [29], 
are a set of systems derived through neuropsychology 
models. The basic idea of NN is to emulate the 
biological system of the human brain to learn and 
identify patterns. The NN is widely used for time series 
forecasting because its flexible nonlinear modeling 
capability can capture the nonlinear characteristics of 
time series well. When applying NN to time series 
forecasting, the final output of the ANN-based 
forecasting model can be represented as 

),,,,,( 1211 vyyyyy pttttt +−−−+ = Lϕ  (8) 

where v is a vector of all parameters, p nonlinear time 
dependency of size (lag), and ϕ  is a function 
determined by the network structure and connection 
weights. Thus, in some senses, the NN model is 
equivalent to a nonlinear autoregressive model. 

2.3.2 Elman network 

Elman networks belong to the class of recurrent neural 
networks (RNN) architecture. Elman network is a three 
layers feedforward neural network with the addition of a 
recurrent connection from the output of the hidden layer 
to its input. The network is augmented at the input level 
by additional units, called context units. The number of 
context units is equal to the number of hidden units. The 
augmented input units, including both the input units 
and the context units activate the hidden units [30]. The 
inputs to the context units are the outputs of the hidden 
neurons forming the second or hidden layer. The 
outputs of the context units and the external input 
neurons are fed to the hidden neurons. The context unit 
values at time step t+1 are exactly the same as the 
hidden unit values at time step t. There current units 
which transfer the previous state of the hidden units to 
the input layer are recognized as a one-step time delay. 

Published by Atlantis Press 
      Copyright: the authors 
                   101



 ANNs-PSO-GA Stock E-exchange Prices Forecasting 
 

 

Context units are also known as memory units as they 
store the previous output of the hidden neurons. 

During Elman networks operation, the activation 
values of the input units are set to a desired input pattern. 
The activation value of every hidden unit is computed 
by multiplying each input and context activation value 
by the value of the weight from the unit to the hidden 
unit. These values are then summed, the bias of the 
hidden unit is added, and the sum is passed through a 
squashing function f. The resulting value then 
constitutes the output value of the hidden unit. In the 
Elman network, the squashing function used is the 
logistic f. Then, the activations of output units are 
calculated based on the hidden units in an analogous 
manner. This represents one time step. Next, the 
activation of each hidden unit is copied into a 
corresponding context unit on a one-for-one basis with 
fixed weights of 1, and then the next time step is 
performed. This is equivalent to a recurrent connection 
from every hidden unit to itself and is more restrictive 
than the arbitrary recurrent connections allowed by 
Minsky’s claim [31].  

Suppose that n, l, m are number of the input units, 
hidden units and output units. The primary input is 
xi(i=1,2…,n), and the network output is yk(k=1,2,…,m). 
wji(i=1,2,…,n; j=1,2,…l), wjr(r=1,2,…,l; j=1,2,…l), 
wkj(j=1,2,…,l; k=1,2,…m) are the weights of the 
connections between the input and hidden units, 
between the recurrent and the hidden units, and between 
the hidden and the output units, respectively. bj and bk 
are biases of hidden units and output units, and f(·) and 
g(·) are hidden and output functions, respectively. The 
architecture of Elman network can be written 
mathematically by 

The output of the hidden unit: 

⎟
⎠
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The output of the output unit: 
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2.3.3 Generalized regression neural network 

The generalized regression neural network (GRNN) is 
memory based feedforward network which was 
introduced [32] as a generalization of both the radial 

basis function network (RBFN) and probabilistic neural 
network (PNN). The GRNN is a powerful tool for linear 
or nonlinear regression based on kernel estimation 
theory, which builds the sought function surface in a 
nonparametric fashion through the available data set. 
The GRNN can exhibit high accuracy and robustness to 
sparse and noisy data and its estimate converges to the 
conditional mean surface while introducing more data 
samples. The flexible structure of GRNN makes it 
amenable to adaptation for different environments.  

At its standard form, it allows for a simple 
implementation and a very fast training procedure due 
to the single window bandwidth parameter σ  (sigma) 
that regulates the smoothness of the regression surface. 
Moreover, unlike other networks, such as MLFNN or 
Elman, it does not require an exact topology definition. 

The GRNN architecture includes four layers, 
namely, the input, hidden, summation and output layers. 
Unlike the most popular backpropagation (BP) 
algorithm that trains multilayer feedforward networks 
iteratively, the GRNN training is a single pass 
procedure. In addition, the GRNN formulation 
comprises only one free parameter that can be optimized 
fast. Consequently, the GRNN trains itself in a 
significantly shorter time, as compared with the BP 
algorithm. 

The GRNN utilizes the Parzen Probability Density 
Estimator [33] between the independent vector random 
variable X with dimension m, and dependent scalar 
random variable Y. Assume that x and y are the 
measured values for X and Y variables, respectively. The 
clustering version of the GRNN with multiple hyper-
spherical kernels is proposed as shown below: 

∑ ∑

∑ ∑

= =

= =∧

⎥
⎦

⎤
⎢
⎣

⎡
−−

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
n

j
ij

m

j
ijj

n

j
ij

m

j
ijji

xx

xxy
xy

1

2

1

2

1

2

1

2

/)(exp

/)(exp
)(

σ

σ
(11) 

where xi and yi are the ith training set data, xi the vector 
form of variable x, )(xy

∧

 the predicted output,  m the 
dimension of input domain, and n is the number of 
kernels. xij and ijσ  denote the center and sigma of jth 
variable for the ith pattern node, respectively. 
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2.3.4 Wavelet neural network 

Wavelet is a type of transformation that retains both 
time and frequency information of the signal [34]. The 
transformation process from time domain to time scale 
domain is a WT, technically known as signal 
decomposition because a given signal is decomposed 
into several other signals with different levels of 
resolution. From these decomposed signals, it is 
possible to recover the original time domain signal 
without losing any information. This reverse process is 
called the inverse WT or signal reconstruction. In 
Fourier transform, only the sine and cosine functions 
can be chosen as the basis functions. However, wavelet 
transformation (WT) has versatile basis functions to be 
selected based on the type of the signal analyzed. 
Wavelet transforms can be divided in two categories: 
continuous wavelet transform (CWT) and discrete 
wavelet transform (DWT). 

The continuous wavelet transform ),( bafx  of 
function )(tx  with respect to a mother wavelet is 
shown by 

( )∫
+∞ ∗=

0 ,)(),( dtttxbaf bax ψ   (12) 

0,,,1)(, >∈⎟
⎠
⎞

⎜
⎝
⎛ −

= aRba
a

bt
a

tba ψψ  (13) 

where the mother wavelet, ψ(x), is a single fixed 
function such as Morlet function from which all basis 
functions ψa,b(x) can be derived through Eq.13. The 
dilation (scale) parameter a (a∈R and a>0) controls the 
spread of the wavelet and translation (time-shift) 
parameter b (b∈R) determines its central position and 
the superscript * represents the complex conjugate (R 
denotes real number). 

The WT transforms the function from original time 
domain in to wavelet (a, b) domain. A function x(t) 
having both smooth global variations and sharp local 
variations can be effectively represented in wavelet 
domain by corresponding wavelet function ),( bafx . 

The discrete wavelet transform is defined by 
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where the asterisk denotes the complex conjugate, a and 
b are scale and time-shift parameters, respectively, and 
ψ(x) is a selected basis function (mother wavelet). 

Both continuous and discrete wavelet transforms 
have been used to implement wavelet neural networks. 
Normally, the former can provide much excellent 
performance in nonstationary signal analysis and 
nonlinear function modeling. 

The neural networks provide flexible mapping 
between inputs and outputs. Hornik et al. [35] have 
theoretically proved that a three-layer feedforward 
neural network (MLFN) can approximate any 
continuous function arbitrarily well given a sufficient 
number of middle-layer nodes. However, MLFN with 
using sigmoid function has some limitations such as 
settle in local minima of the error surface and 
convergence too slowly. Except the radial basis function 
neural networks (RBF), WNNs are also an improvement 
approach to MLFN. Wavelet function is the same as 
radial basis function is a local function and influence the 
networks output only in some local range. Although 
RBF is also local function, but it does not have the 
spatial-spectral zooming property of the wavelet 
function, and therefore it cannot represent the local 
spatial spectral characteristics of the function. WNN 
shows surprising effectiveness in solving the 
conventional problems of poor convergence or even 
divergence encountered in other kinds of neural 
networks [36].  

In this study, a Morlet mother function (shown 
Eq.15.) is used as node activation function for the 
hidden layer of a three-layer MLFN. The dilation and 
translation parameters, at and bt, of the Morlet function 
for each node in the hidden layer are different and they 
need to be optimized. In the WNN, the gradient descend 
algorithm is employed and the error is minimized by 
adjusting weight vector of the connections between 
input units and hidden units and between hidden units 
and output units, and at and bt. 

2/2

)75.1cos( xexy −=   (15) 

2.4. Optimizing base models 

2.4.1 Particle swarm optimization algorithm 

Particle swarm optimization is a population-based 
stochastic optimization algorithm which has been 
proposed by Eberhart and Kennedy in 1995. The 
concept is mainly from the natural flocking and 
swarming behavior of birds and insects. It is considered 
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to be able to optimize the performance of the ANN by 
improve its disadvantages such as difficult to select the 
parameters and easy to get stuck in a local minimum, 
etc., because it does not require gradient and 
differentiable information.  

Suppose that the search space is h dimensional, the 
particles of the swarm can be represented by an n 
dimensional vector Xi = (xi1, xi2, …, xih)T. The fitness of 
each particle can be evaluated according to the objective 
function of the actual optimization problem. The 
velocity of each particle can be represented by n 
dimensional vector Vi = (vi1, vi2, …, vih)T. Let Pb = (pb1, 
pb2, …, pbh)T be the last best position of the i-th particle, 
which is noted as its individual best position. Further, 
Gb = (gb1, gb2, …, gbh)T is the global best position. The 
new velocity of particle will be assigned according to 
the following equations: 

)]([)]([

)()1(

2211 txgrctxprc

twvtv

ijbjijbj

ijij
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+=+
 (16) 
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],[],,[ maxminmaxmin xxxvvv ijij ∈∈  (18) 

where c1 and c2 represent the acceleration parameters, w 
represents the inertia weight, and r1 and r2 are random 
numbers ranging from 0 to 1. The velocities of the 
particles on each dimension are clamped to a maximum 
velocity: vmax. The new position of each particle is 
calculated by Eq. (16). 

2.4.2 The improved particle swarm optimization 
algorithm 

Although the traditional PSO can usually find good 
solutions rapidly, it may be trapped in local minimum 
and fail to converge to the best position. In order to 
reduce the opportunity of trapping in a local optimum, 
expand the search scope of the algorithm and enhance 
the algorithm's climbing ability, it is certainly critical to 
always maintain the diversity of particles. The existing 
algorithms such as chaos mechanism optimization [37], 
hybrid simplex search PSO [38], comprehensive 
learning PSO, dynamic random search technique [39] 
are difficult to solve the two problems (global 
optimization and premature convergence) 
simultaneously. Therefore, we design an improved 
particle swarm optimization (IPSO) with adaptive 
nonlinear inertia weight and dynamic arccosine function 

acceleration parameters. At the same time, the crossover 
operation and mutation operation of GA are introduced 
in IPSO in order to improve the performance of the 
candidate particles. 

2.4.2.1 Improved acceleration coefficients  
In the particle swarm optimization algorithm, 
acceleration coefficients c1 and c2 control the 
“cognitive” part and the “social” part of the particle 
velocity, respectively. In general, a large “cognitive” c1 
and a small “social” c2 in the initial stages and a small 
“cognitive” c1 and a large “social” c2 in the last stages 
can balance the performance in the entire optimization 
process [40]. Based on this idea, many methods have 
been proposed such as linear adjustment strategy, fuzzy 
control strategy, and random change strategy. However, 
these methods are unstable. Therefore, we propose a 
dynamic acceleration parameters adjustment strategy 
based on arccosine function. c1 and c2 are controlled by 
a declining arccosine function and an increasing 
arccosine function. This strategy attempts to promote 
particles to be placed in an unexplored area so that they 
can contribute to the process of finding better solutions 
in the early stages of optimization. The method is more 
conducive to getting rid of the interference of local 
minimum, obtaining the global optimal solution to avoid 
premature convergence, and improving the convergence 
speed and accuracy in the latter stages of optimization. 
The strategy can be represented as 
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where cstart represents the iteration initial value of 
acceleration parameters, cend represents the iteration 
final value of acceleration parameters, Iter is the current 
iteration number, Itermax is the maximum iteration 
number. 

2.4.2.2 Improved inertia weight  
The inertia weight w represents the contribution of past 
velocity values to the current velocity of the particle. A 
large inertia weight biases the search towards global 
exploration, while a smaller inertia weight directs 
towards fine-tuning the current solutions. Suitable 
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selection of the inertia weight and acceleration 
coefficients can provide a balance between the global 
and the local search [41]. Based on this idea, many 
methods have been proposed such as linear decreasing 
inertia weight strategy, random inertia weight strategy 
[42], inertia weight strategy based on concave function 
and convex function [43], and fuzzy control strategy. 
However, these methods are not adaptive. In this study, 
we employ an adaptive nonlinear adjustment inertia 
weight strategy depending on particle’s fitness value, 
which will help balance the exploring and exploiting 
capabilities at different stages during its search process. 
The strategy can be represented as 
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(21) 
where wmin~wmax represent the range of inertia weight, 
fitness represents the current fitness value of some 
particle, fitnessmin and fitnessavg represent the minimum 
fitness value and the average fitness value of all 
particles respectively. It can be seen from Eq. (21) that, 
the inertia weight will increase when the fitness values 
of particles are consistent (become local optimum) and 
will decrease when the fitness values of all particles are 
scattered. Therefore, the inertia weights of the superior 
particles whose fitness values are larger than the 
average fitness value are smaller to protect their 
properties. In contrast, the inertia weights of the poor 
particles whose fitness values are smaller than the 
average fitness value are larger so that they can search 
better space. 

2.4.2.3 Adaptive genetic operators 
In PSO algorithm, when the individual optimum 
solution Pbest has not been updated for a long time in the 
latter part of the training, the particles will be close to 
the global optimum solution Gbest. At this point the 
particle update velocity mainly depends on wvij of the 
first part of Eq. (16) because the inertia weight w <1, the 
particle velocity will become increasingly smaller. The 
particle swarm will “fly” toward a direction, which will 
lead to its falling into local minimum position. In this 

study, the adaptive genetic operators (crossover 
operation and mutation operation) are introduced in 
order to improve the performance of the candidate 
particles. The particles can execute crossover operation 
and mutation operation according to a certain 
probability. 

Crossover is the main search operator in GAs, 
creating offsprings by randomly mixing sections of the 
parental genome. In this study, we use two-point 
crossover and design a crossover rate only depending on 
iteration number and not associating with the individual 
fitness. The crossover rate can be represented as 
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where ctp is calculated variable, T is maximum iteration 
number, t is current iteration number, q is the decreasing 
coefficient of crossover probability, min,cp is minimum 
crossover probability, max,cp is maximum crossover 
probability, )(tpc is crossover probability of t-th 
iteration. 

A small fraction of the offsprings is randomly 
selected to undergo genetic mutation. The mutation 
operator randomly picks a location from a bit-string and 
flips its contents. To avoid premature convergence, we 
design an adaptive mutation rate depending on 
individual fitness as follows, 
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where maxf is maximum fitness value of current 
population, avgf is average fitness value of each 
iteration population, f is fitness value of current 
mutation individual, min,mp is minimum mutation 
probability, and max,mp is maximum mutation 
probability. 

In order to improve search efficiency, take 
advantages of PSO’s training speed and GA’s global 
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search, the genetic operator control function in this 
study is defined as 

,,2,1,
ln1
11 L=

+
−= k

k
GPk  (27) 

kGPrand <)1,0(    (28) 
where k represents current iteration number. In the 
process of each iteration, a random number will be 
created ranging from 0 to 1. If the number is less than 
GPk, the current particle will execute genetic operator. 
As can be seen from Eq. (27), in the early iterations GPk 
<< 1, genetic operator will be executed at a small 
probability, in the later iterations GPk, it will be close to 
be 1, so the particle will execute genetic operator at 
greater probability. Genetic operator expands population 
search space shrinking in the process of iteration, so that 
particles can escape from the optimal value searched 
previously to a larger search space. The particles 
maintain the diversity of the population, thus it 
increases the possibility of finding better solutions. 

2.4.3 NN optimized by the improved PSO 

The deadly drawbacks of the NN (frequent confinement 
to local minima and parameters selection) are expected 
to be improved with IPSO. The basic idea is to optimize 
weights and bias of NN by decimal particle swarm 
optimization (DePSO), and optimize the NN structure 
by binary particle swarm optimization (BiPSO). A 
particle in DePSO real-coded represents a set of NN 
weight vector and bias weight vector. 

Let the number of input layer nodes be R, the 
number of hidden layer nodes Q, the output layer nodes 
S, the weight and bias vector of NN can be represented 
as 
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where ),1;,1(1 QjRiwij LL ==  represents the 
weight vector from the input layer to the hidden layer, 

),1;,1(2 SjQiwij LL ==  represents the weight 
vector from the hidden layer to the output layer, 

),1(1 Qibi L=  represents the hidden layer bias vector, 
),1(2 Sibi L=  represents the output layer bias vector, 

and h is the dimension of vector X. 
A particle binary-coded in BiPSO represents the 

corresponding hidden layer node, that is, 1 represents 
the corresponding hidden layer node existence and 0 
represents inexistence. The particle velocity is updated 
according to the Eq. (16). The particle position is 
updated by the state transition probability depending on 
the particle velocity. When the particle velocity is 
greater than a certain value, the particle will be 1 at a 
larger probability. 

The number of hidden nodes is not generally less 
than the number of input layer nodes and more than the 
twice of the sum of input layer nodes and output layer 
nodes. The BiPSO can be represented in the binary form 
as 
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where hjtij ,,2,1],1,0[)1( L=∈+ρ  is a random 
number ranging from 0 to 1, sig(·) is a sigmoid function 
and ))exp(1/(1)( xxsig −+= , and h is the 
dimension of vector. If x = 1, the corresponding hidden 
layer node exists, and the weight and bias vector of that 
node in DePSO is valid. Otherwise, if x = 0, the 
corresponding hidden layer node does not exist, and the 
weight and bias vector of that node in DePSO is invalid.  

2.5. Non-linear neural-network metamodel 

After the three neural-network base models are trained, 
next work is how to integrate or combine them by the 
metamodel. The mode of integration or combination can 
be defined as 
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where y is aggregate output combined the outputs of 
these base models, n the number of base models (i.e., 
the number of training subset), wi the assigned weight of 
fi, fi(i=1,2, …, n) the learning algorithm of ith base 
model, and Ti(i=1,2, …, n) ith training subset used by 
ith base model.  
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There are four common strategies to determine the 
weights of base models wi: simple averaging, simple, 
mean squares error (MSE), stacked regression, and 
error-variance-based weighting [44]. Besides the 
individual feature of different strategies, the existing 
integrated technique is built on linear assumption. 
However, linear strategies are not necessarily sufficient 
for financial time series. A nonlinear integrated strategy 
is proposed to construct a metamodel by using SVM 
neural network, which is different from the base neural 
networks in this study. In this nonlinear metamodeling 
approach, outputs of base neural-network models 
construct a meta-training set (TM). This metamodel, 
SVM neural network, in the final stage can be trained 
by TM and assessed by testing set S. 

The nonlinear ensemble forecasting model can be 
defined as 

),,( 21 nyyyfy L=   (34) 
where f(·) is a nonlinear ensemble function realized by 
SVM neural network and yi is the forecast of ith base 
model.  

To validate the effect the proposed the nonlinear 
ensemble model, an individual Elman network, an 
individual GRNN, an individual WNN, the linear 

combination models, and the proposed model to predict 
stock indices so as to compare forecasting performance. 

3. Empirical analysis 

3.1. Data preparation 

The stocks data used in this paper are daily 
observations obtained from Wind database 
(http://www.wind.com.cn). They consist of the 
Shanghai composite index, Shenzhen component index 
and Shanghai-Shenzhen 300 index studied in this paper. 
The entire data set of each stock index covers the period 
of five years. Each time series is split into three sets: 
training set, validation set and testing set. The first set is 
used to determine the specifications of the model and 
parameters of the forecasting technique, the second set 
is used to not only evaluate the good or bad 
performance of the predictions of the base models based 
on evaluation measurements but also construct a meta-
training set with outputs of base models, and the third 
set is used for out-of-sample evaluation of the 
forecasting model. In addition, the training data set is 
divided into three training subsets by the interval 
sampling algorithm. Table 1 shows the information 
about the time series and size of subsets used. 

 

 

3.2. Data Preprocessing 

The data must be normalized before training, which can 
be described as the following formula: 
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where ]1,0[),( ∈jixn  is the normalized data, ),( jix  is 
the original data, )min( X  and )max( X  represent the 
maximum and minimum of the original data.  

Some common features from past stocks time series 
of Shanghai composite index, Shenzhen component index 
and Shanghai-Shenzhen 300 index are extracted for 
training and testing purposes. Each set of data are 
normalized by dividing each value by the maximum 
value of each set such that each normalized value is less 
than or equal to unity. Normalization of input data is 
necessary for obtaining correct trigonometric expansion. 

Table 1.  Time series: training set, validation set and testing set. 

Stock indices Training Set validation set Testing set 
 Start End Obser-

vations
Start End Obser-

vations
Start End Obser-

vations
Shanghai composite 
index 

2004.7.1 2008.6.30 972 2008.7.1 2009.6.30 244 2009.7.1 2010.6.30 244 

Shenzhen component 
index 

2005.1.1 2008.12.31 971 2009.1.1 2009.12.31 244 2010.1.1 2010.12.31 242 

Shanghai-Shenzhen 
300 index 

2005.7.1 2009.6.30 973 2009.7.1 2010.6.30 244 2010.7.1 2011.6.30 243 
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3.3. Performance measures 

To assess the ensemble prediction model, the forecasts 
are compared with the true realizations. Following 
performance measures are used. 

Mean absolute error, MAE 

∑
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Mean Absolute Percentage Error, MAPE 
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Root Mean Squared Error, RMSE 
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The symbol N is the total number of data patterns. Ti 
and Ti

’ represent the actual value and prediction at time i. 
MAE, MAPE and RMSE are the metrics used to estimate 
the error of prediction. MAE, MAPE and RMSE are 
widely used statistical metrics that estimate the error of 
prediction by measuring the deviation between actual and 
forecasted value returned in this case. Smaller values of 
these metrics indicate higher accuracy in forecasting. 

Of course accuracy is one of the most important 
indicators for forecasting models—the others being the 
cost savings and profit earnings generated from better 
decisions. From the business, the latter is usually more 
important because for the business practitioners, the aim 
of forecasting is to support or improve decisions so as to 
make more profit. Thus profits or returns are more 
important than conventional fit measurements. In stock 
indices forecasting, improved decisions often depend on 
correct forecasting directions or turning points between 
the actual and predicted values (Ti and Ti

’). The ability to 
forecast movement direction or turning points can be 
measured by a statistic of directional change (DC), which 
can be expressed in percentage as 
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where Ti is the actual value at time t, T’
i+1 is the 

prediction at time t+1. (Ti+1 - Ti)(T’
i+1 - Ti)≥0 is a logical 

expression. 
However, the real aim of forecasting is to obtain 

profits based on prediction results. To provide a more 
complete evaluation of the models, our comparison is 

based on not only the performance statistics but also the 
trading returns. Here the return rate is introduced as an 
important evaluation indicator, which is calculated 
according to the simple principle ignoring the friction 
costs.  
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where MR is the P periods excess return rate relative to 
the tested stock indices, AR the amount of the return rate 
obtained on the entire period of testing set, IR the return 
rate of the tested stock indices on the entire period of 
testing set, and N is the number of the testing periods. For 
convenient computing, we assume that stock can only be 
bought in a given lot size. It is worth noting that 
computation of MR is based on the trading strategy, as in 
the following: 

If ( T’
i+1- Ti )>0, then “ buy”, else “ sell”. 

The difference between the predicted value and the 
actual value will guide trading. Because the MAE, MAPE 
and RMSE measure predictions only in terms of levels, it 
is better to choose DC and every period return rate (MR) 
as the measurements for forecast evaluation. Of course, 
MAE, MAPE and RMSE are also taken into 
consideration for comparison of levels. 

3.4. Set parameters for the ensemble model 

The architectures and parameters of base models are 
optimized by IPSO. The parameters of metamodel, SVM, 
are determined by k-fold cross-validate (CV). The initial 
parameters of IPSO-NN model are defined as: the 
population size of particle swarm is 30, the maximum 
iteration number is 150, the training times of NN are 
1500; in DePSO the initial particle positions are random 
numbers ranging from -15 to 15 and the initial particle 
velocity randomly varies between -8 and 8, c1start=2.95, 
c1end=1.05, wmin=0.2, wmax=0.8; in BiPSO, the initial 
particle positions are random numbers ranging from -1 to 
1 and the initial particle velocity is randomly chosen from 
the range between -0.6 and 0.6, c1=c2=1.14, w=1; in 
genetic algorithm Pc,min=0.5, Pc,max=0.9, Pm,min=0.02, and 
Pm,max=0.6. 

3.5. Time dependency 

The daily data of the stock indices possess the time 
dependency, therefore, the lag order of the time series 
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need be determined before prediction. A non-linear time 
dependency of size (lag) p is increased from 1 to 36 in 
step from 1 lag. For each test, the networks are trained on 
the training sets until a MSE from 2×10-5 or less is 
reached. The best performing IPSO-NN on MSE for the 
lag order is 3 by testing the different performance of the 
lag orders between 1 to 36. The process is modeled with 
lag 3, and the realization at t+1 is dependent on the 
realizations of the last 3 trading days. 

4. Simulation and prediction 

The daily stock indices data of Shanghai composite index, 
Shenzhen component index and Shanghai-Shenzhen 300 
index are pre-processed between 0 and 1 and passed to 
the ensemble model as non-stationary data. Fig. 2-4 
illustrate respectively the prediction of the daily stocks 
data of Shanghai composite index, Shenzhen component 
index and Shanghai-Shenzhen 300 index using three 
single base models (i.e., Elman network, GRNN and 
WNN), four linear ensemble methods (i.e., simple 
averaging, simple MAE, simple MAPE and simple 
RMSE), and the proposed non-linear ensemble model on 
out-of-sample data, showing the best result achieved. 
Tables 2–6 show respectively the simulation results for 
the average performance of the three single base models 
(i.e., Elman network, GRNN and WNN), four linear 
ensemble methods (i.e., simple averaging, simple MAE, 
simple MAPE and simple RMSE), and the proposed non-
linear ensemble model when executed 20 times from 
different perspectives. From the graphs and tables, we 
can generally see that the forecasting results are very 
promising for three stock indices under study either 
where the measurement of forecasting performance is 
goodness of fit such as MAE, MAPE and RMSE (refer to 
Table 2-4) or where the forecasting performance criterion 
are DC (refer to Table 5) and MR (refer to Table 6). 

Subsequently, the forecasting performance 
comparisons of three single base models (i.e., Elman 
network, GRNN and WNN), four linear ensemble 
methods (i.e., simple averaging, simple MAE, simple 
MAPE and simple RMSE), and the proposed non-linear 
ensemble model for the three stock indices via MAE, 
MAPE, RMSE, DC and MR are reported in Tables 2–6, 
respectively. 

Table 2-4 shows that: (a) the prediction performance 
of single base models is unstable to different data set. For 

 

 Fig. 2.  The prediction of the daily stock index data of 
Shanghai composite index using three single base models, 
four linear ensemble methods, and the proposed non-linear 

ensemble model. 

 

Fig. 3.  The prediction of the daily stock index data of 
Shenzhen component index using three single base models, 
four linear ensemble methods, and the proposed non-linear 

ensemble model. 

 

Fig. 4.  The prediction of the daily stock index data of 
Shanghai-Shenzhen 300 index using three single base 

models, four linear ensemble methods, and the 
proposed non-linear ensemble model. 
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Table 2.  Comparison of performance statistics averaging each model over 20 runs in Shanghai composite index. 

Model type Model Shanghai composite index  
  MAE Rank MAPE(%) Rank RMSE Rank 

Single Model Elman 43.6381 7 1.4786 7 56.9343 7 
 GRNN 73.0838 8 2.5516 8 91.6373 8 
 WNN 73.8327 4 2.5048 6 93.1843 6 
Ensemble Model Simple averaging 54.6768 6 1.8642 5 68.8027 5 
 Simple MAE 50.8187 3 1.7268 3 64.0136 2 
 Simple MAPE 50.7134 5 1.723 4 63.8881 4 
 Simple RMSE 51.074 2 1.736 2 64.3298 3 
 SVM 47.3801 1 1.5853 1 60.7362 1 
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean 
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error. 

example, the best base model in Shanghai composite 
index, WNN, but is worst in Shenzhen component index; 
(b) the prediction performance of the linear ensemble 
models is usually better and more stable than three single 
base models in all cases, which confirms the ensemble 
approach to forecasting can effectively reduce errors and 
provide better performance than single model. Among 
four linear ensemble models, none can consistently 
outperform other linear models. For example, although 
simple MAPE is the best in Shanghai-Shenzhen 300 
index, it is worse than simple MAE and simple RMSE in 

the Shanghai composite index testing case. The main 
reason is that every linear ensemble model has its own 
advantages and disadvantages; (c) from the rank of MAE, 
MAPE and RMSE indicators, the prediction performance 
of the proposed nonlinear ensemble model is mostly best 
(except MAPE in Shenzhen component index test case), 
which indicates the proposed nonlinear ensemble model 
can improve the performance. The main reason is that the 
proposed nonlinear ensemble model can capture some 
nonlinear patterns hidden in financial time series, while 
linear weighted models cannot. 

 
 

 

 
 
However, the less MAE, MAPE and/or RMSE don’t 

affirmatively represent a high hit rate of forecasting 
direction for stock indices movement direction prediction. 
Therefore, the comparison of the directional change 
statistic (DC) is significantly. From Table 5, we can see 

the proposed nonlinear ensemble model also performs 
much better than the other models by the rank. 
Furthermore, DC is more important than MAE, MAPE 
and/or RMSE because the former is more useful for the 
business practitioners’ decision. Focusing on Table 5, the 

Table 3.  Comparison of performance statistics averaging each model over 20 runs in Shenzhen component 
index. 

Model type Model Shenzhen component index  
  MAE Rank MAPE(%) Rank RMSE Rank 

Single Model Elman 193.1589 6 1.7119 6 266.1093 6 
 GRNN 237.0859 7 2.0761 7 292.9053 7 
 WNN 259.0489 8 2.2568 8 325.9413 8 
Ensemble Model Simple averaging 187.9364 5 1.6357 5 239.2687 4 
 Simple MAE 184.4873 2 1.6069 2 234.388 2 
 Simple MAPE 186.4845 4 1.5928 1 238.3945 3 
 Simple RMSE 184.9471 3 1.6159 4 244.7991 5 
 SVM 170.8462 1 1.6107 3 225.8467 1 
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean 
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error. 
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disparities between the eight models are very obvious. 
For example, in the Shanghai composite index case, the 
DC for the best single base model, Elman network, is 
only 58.38%, and for the best linear ensemble model, 
simple MAPE, DC is 64.54%; while for the proposed 
nonlinear ensemble model, DC reaches 70.44%. To 

summarize, the linear ensemble model can model stock 
indices time series well which contain high noise and 
nonlinearity, further, the proposed nonlinear ensemble 
model possesses better performance than the traditional 
linear ensemble model. 

 
 

 

 

Table 5. Comparison of performance of DC averaging each model over 20 runs. 

Model type Model Stock indices     
  Shanghai 

composite index 
Shenzhen 
component index 

Shanghai- 
Shenzhen 300 index 

  DC(%) Rank DC(%) Rank DC(%) Rank 
Single Model Elman 58.38 6 57.30 8 47.47 7 
 GRNN 56.62 7 60.20 6 46.11 8 
 WNN 53.50 8 60.28 5 49.79 6 
Ensemble Model Simple averaging 61.67 5 59.37 7 51.35 5 
 Simple MAE 63.50 4 62.52 3 52.17 4 
 Simple MAPE 64.54 2 60.79 4 52.67 3 
 Simple RMSE 63.78 3 62.98 2 54.78 2 
 SVM 70.44 1 69.72 1 63.47 1 
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean 
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error. 

Table 6. Comparison of performance of MR averaging each model over 20 runs. 

Model type Model Stock indices     
  Shanghai 

composite index 
Shenzhen 
component index 

Shanghai- 
Shenzhen 300 index 

  MR(%) Rank MR(%) Rank MR(%) Rank 
Single Model Elman 5.55 7 -1.36 8 -1.05 6 
 GRNN 4.84 8 2.61 6 -4.09 8 
 WNN 5.94 6 1.85 7 -2.63 7 
Ensemble Model Simple averaging 6.35 5 5.23 5 1.67 4 
 Simple MAE 7.82 4 6.89 4 2.64 3 
 Simple MAPE 9.04 2 7.51 3 3.29 2 
 Simple RMSE 8.28 3 7.72 2 1.47 5 
 SVM 12.83 1 10.6 1 6.52 1 
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean 
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error. 

Table 4.  Comparison of performance statistics averaging each model over 20 runs in Shanghai-Shenzhen 300 
index. 

Model type Model Shanghai-Shenzhen 300 index 
  MAE Rank MAPE(%) Rank RMSE Rank 

Single Model Elman 39.3153 5 1.425 6 51.0497 5 
 GRNN 45.1459 8 1.5078 7 56.7412 7 
 WNN 42.6522 7 1.5403 8 59.3881 8 
Ensemble Model Simple averaging 39.9869 6 1.3127 5 51.6785 6 
 Simple MAE 38.1156 3 1.3042 4 48.8829 3 
 Simple MAPE 37.6186 2 1.2843 3 46.887 2 
 Simple RMSE 38.7889 4 1.2333 2 49.8461 4 
 SVM 33.0141 1 1.0865 1 41.6505 1 
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean 
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error. 
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Considering return rate, the empirical results show 
that the proposed nonlinear ensemble model could be 
well forecast future variation of stock indices. Compared 
with the other models such as three single base models 
and four linear ensemble models, the proposed nonlinear 
ensemble model belongs to the best forecasting effect. 
Interestingly, you can see that the rank of Table 6 is the 
similar to that of Table 5 because the right forecasting to 
direction often leads to high return rates. As shown in 
Table 6, for the Shenzhen component index case, the 
return rate for the best single base model, GRNN, is 
2.61%, and the return rate for the best linear ensemble 
model, simple RMSE, is also 7.72%; however the return 
rate for the proposed nonlinear ensemble model reaches 
10.6%.  

From the experiments presented in this study we can 
draw the following conclusions: (i) The experimental 
results show that the proposed nonlinear ensemble 
forecasting model is superior to four linear ensemble 
models which are superior to three single base models for 
the test cases of three stock indices in terms of the 
measurement of annual return rate (MR), as can be seen 
from Tables 6. Likewise, the proposed nonlinear 
ensemble model also outperforms other models in terms 
of goodness-of-fit or MAE, MAPE and RMSE (refer to 
Figs. 2-4 and Table 2-4). (ii) MAE, MAPE and RMSE 
are the metrics used to estimate the error of prediction, 
however, it don’t affirmatively represent a high return 
rate for stock indices forecasting. For example, in the 
Shenzhen component index test case, the simple MAPE 
model is the best in terms of the MAPE (refer to Tables 
3), but it is worse than the proposed nonlinear ensemble 
model in the return rate (refer to Tables 6). Similarly, the 
indicator DC and MR have a strong positive relationship 
which isn’t absolute. For example, in the Shanghai-
Shenzhen 300 index test case, in all linear ensemble 
models the simple RMSE model is the best, concerning 
DC (refer to Tables 5), but is the worst in the return rate 
(refer to Tables 6). (iii) The proposed nonlinear ensemble 
model can be used as an alternative tool for stock indices 
forecasting to obtain greater forecasting accuracy and 
improve the prediction quality further in view of 
empirical results. 

5. Conclusions 

In this study we hope to design a model that can provide 
the most accurate prediction of stock indices. In order to 

overcome the drawbacks of the traditional NN, a three-
stage neural-network-based nonlinear weighted ensemble 
model is proposed. In this model, three neural-network 
base models, i.e., Elman, GRNN and WNN are generated 
by three different training sets, further, they are optimized 
by improved particle swarm optimization (IPSO) with 
adaptive nonlinear inertia weight, dynamic arccosine 
function acceleration parameters and the crossover and 
mutation operation of GA. Finally, a neural-network-
based nonlinear weighted meta-model be produced by 
learning three neural-network base models through SVM 
neural network. By applying daily data to these models 
and comparing the prediction results based on MAE, 
MAPE, RMSE, DC and MR, we find that in general the 
annual return rate of the proposed nonlinear ensemble 
model is better than single base models and the linear 
ensemble models for forecasting stock indices with high 
volatility and noise. The result of this paper may be 
helpful for day-ahead price forecasting of electricity 
markets. It would be interesting to investigate the 
optimization of the proposed model e.g., by inclusion of 
more efficient NNs and effective stochastic search 
techniques but this will be left for future research.  
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