

Ensemble ANNs-PSO-GA Approach for Day-ahead Stock E-exchange Prices Forecasting

Yi Xiao1,3, Jin Xiao2,3,*, Fengbin Lu3, Shouyang Wang3
1School of Information Management, Central China Normal University, No 152 Luoyu Road

Wuhan, 430079, China
E-mail: yxiao@mail.ccnu.edu.cn, xybill@amss.ac.cn

2Business School, Sichuan University, No 29 Wangjiang Road
Chengdu, 610064, China

E-mail: xjxiaojin@126.com

 3Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No 80 Zhongguancun East Road
Beijing, 100190, China

E-mail: fblu@amss.ac.cn, sywang@amss.ac.cn

Abstract

Stock e-exchange prices forecasting is an important financial problem that is receiving increasing attention. This
study proposes a novel three-stage nonlinear ensemble model. In the proposed model, three different types of
neural-network based models, i.e. Elman network, generalized regression neural network (GRNN) and wavelet
neural network (WNN) are constructed by three non-overlapping training sets and are further optimized by
improved particle swarm optimization (IPSO). Finally, a neural-network-based nonlinear meta-model is generated
by learning three neural-network based models through support vector machines (SVM) neural network. The
superiority of the proposed approach lies in its flexibility to account for potentially complex nonlinear relationships.
Three daily stock indices time series are used for validating the forecasting model. Empirical results suggest the
ensemble ANNs-PSO-GA approach can significantly improve the prediction performance over other individual
models and linear combination models listed in this study.

Keywords: artificial neural networks; ensemble forecasting; particle swarm optimization; genetic operator; stock e-
exchange prices

*Corresponding author: Jin Xiao, Business School, Sichuan University, Chengdu, 610064, China. E-mail: xjxiaojin@126.com.

1. Introduction

Stock market is a complex financial market with high
volatility, noise non-stationary, unstructured nature,
high degree of uncertainty, and hidden relationships.
Due to its irregularity, stock e-exchange prices
forecasting is regarded as a rather challenging task. The
main purpose of forecasting is to reduce the risk in
decision making that is important for financial
organizations, firm and private investors. The methods
of forecasting stock could be classified into two broad

classes: fundamental analysis and technical analysis.
The fundamental analysis depends upon exact
knowledge of the various factors that influence the stock
market such as micro-economics, macro-economics,
political and even psychological factors. But the
knowledge is usually not readily available. The
technical analysis attempts to make predictions based on
past patterns. However, these patterns are not always
evident because of the noise. For traditional statistical
methods, it is extremely difficult to capture the
irregularity [1]. In these traditional models, we need to

International Journal of Computational Intelligence Systems, Vol. 6, No. 1 (January, 2013), 96-114

Published by Atlantis Press
 Copyright: the authors
 96

Administrateur
Texte tapé à la machine
Received 23 November 2011

Administrateur
Texte tapé à la machine
Accepted 22 September 2012

Administrateur
Texte tapé à la machine

Y.Xiao et al.

assume a functional relationship between input and
output and try to fit the data as per that relationship.
This particularly hampers our efforts, since the
predictors of stock form multidimensional input space
and the relationship between input and output is
essentially non-linear [2]. This has encouraged
academic researchers and business practitioners to
develop more predictable forecasting models [3]. As a
result models using artificial intelligence such as
artificial neural network (ANN) techniques have been
recognized as more useful than conventional statistical
forecasting models [4]. The neural networks can
simultaneously handle the non-linear data of
multidimensional input space. Furthermore, neural
networks do not require an explicitly well defined
relationship between input and output as they determine
their own relationships based on input and output values
[5]. With its proven generalization ability, the ANN is
able to infer from historical patterns the characteristics
of performing stocks. During the last few years, a
number of neural network models and hybrid models
have been proposed for obtaining accurate prediction
results.

Some researches are presented. Brownstone [6]
predicts the daily Market close 5 days ahead, and 25
days ahead of the Footsie by neural network. The results
indicate that predictions can be produced to a high level
of accuracy, in a readily understandable format. Quah [7]
and Srinivasan uncover the intricate relationships
between the performance of stocks and the related
financial and technical variables by neural network.
Experimental results obtained this far have been very
encouraging. Kuo et al. [8] develop a genetic algorithm
based fuzzy neural network (GFNN) to formulate the
knowledge base of fuzzy inference rules which can
measure the qualitative effect on the stock market.
Plikynas et al. [9] use ANN for compound (technical
and fundamental) analysis and prognosis' of LNSE,
LITIN-A and LITIN-VVP. They employ initial pre-
processing (analysis for entropy and correlation) for
filtering out model input variables. A wide spectrum of
different results has shown a high sensitivity to ANN
parameters. Ao [10] designs a simplified automated
system to study the correlation between the US market
and the Asian markets by employing the evolutionary
computation to simulate the markets interactive
dynamics. Slim [11] proposes a stochastic neural

network (SNN) to the modelling and forecasting the
time varying conditional volatility of the TUNINDEX
returns. The empirical analysis shows that out-of-simple
volatility forecasts of the SNN are superior to forecasts
of traditional linear methods (GARCH) and also better
than merely assuming a conditional Gaussian
distribution. O'Connor and Madden [12] evaluate the
effectiveness of using external indicators, such as
commodity prices and currency exchange rates. In the
experiments presented, basing trading decisions on a
neural network trained on a range of external indicators
result in a return on investment of 23.5% per annum,
during a period when the DJIA index grew by 13.03%
per annum. Thomaidis et al. [13] experiment with a
"top-down" pruning technique as well as two "bottom-
up" strategies that start with simple models and
gradually complicate the architecture if data indicate so.
Liao et al. [14] propose an improved neural network -
the stochastic time effective neural network model and
test the forecasting performance of the model by using
different volatility parameters. Guresen et al. [15]
analyze multi-layer perceptron (MLP), dynamic
artificial neural network (DAN2) and the hybrid neural
networks which use generalized autoregressive
conditional heteroscedasticity (GARCH) to extract new
input variables. Jasemi et al. [16] propose the network
that is not going to learn the candlestick lines alone or in
combination, but is to present a kind of regression
model whose independent variables are important clues
and factors of the technical analysis patterns; and its
dependent variable is the market trend in near future.

The broad spectrum of applications to which neural
networks have been applied, however, has revealed
some of its drawbacks making researchers in particular
suspicious as to their suitability in financial forecasting.
As we all know, neural networks are a kind of unstable
learning methods. Even for some simple problems,
different architectures of neural networks (e.g., different
number of hidden layers, different hidden nodes and
different initial conditions) result in different patterns of
network generalization. Researchers have devoted a
great deal of effort during the last decade in order to
find the optimal parameters of neural network (e.g.,
number of units, number of hidden layers, type of
neurons, learning rates for supervised and unsupervised
training and initial weights, etc.) which can solve an
actual problem based on performance evaluation criteria.

Published by Atlantis Press
 Copyright: the authors
 97

 ANNs-PSO-GA Stock E-exchange Prices Forecasting

Evolutionary computation algorithms which are
comprised of four major paradigms, genetic algorithms,
evolutionary programming, evolution strategies, and
genetic programming, have demonstrated to be suitable
for optimization of different ANNs. As a popular
evolutionary computation paradigm, namely, the
particle swarm optimization (PSO), utilizes a
“population” of candidate solutions to evolve toward an
optimal or near optimal solution of an actual problem.
Because of its simplicity, easy implementation, and
quick convergence, PSO has attracted more and more
attention and has been applied extensively in various
fields. Despite of its success and popularity, Grimaldi et
al. [17] have indicated that, although PSO may find
solutions of reasonable quality much faster than other
evolutionary computation algorithms, it can not improve
the quality of the solutions as the number of iterations
increases. Hence, a premature phenomenon may occur
for the original PSO, especially when optimizing
complex multi-objective functions. Therefore, many
improved PSO algorithms have been proposed. For
example, Alfi et al. [18] have presented a methodology
for finding optimal system parameters and optimal
control parameters by a novel adaptive particle swarm
optimization (APSO) algorithm. Wang et al. [19] have
presented a poly-hybrid PSO optimization method with
intelligent parameter adjustment.

Unfortunately, more and more researchers have
realized that only selecting a single neural-network
model with the best performance may lead to loss of
potentially valuable information contained by other
neural-network models that may have slightly weaker
performances. Therefore, some different learning
strategies such as combined/ensemble learning and
meta-learning have been presented. For example,
Abraham and AuYeung [20] present two ensemble
approaches: based on a direct error measure and based
on an evolutionary algorithm to search the optimal
linear combination. Experimental results reveal that the
ensemble techniques perform better than the individual
methods and the direct ensemble approach seems to
work well for the problem considered. Kwon and Moon
[21] propose a genetic ensemble of recurrent neural
networks for stock prediction model. It shows notable
improvement on the average over not only the buy-and-
hold strategy but also other traditional ensemble
approaches. Chun and Park [22] propose a new learning

technique which extracts new case vectors using
Dynamic Adaptive Ensemble CBR (DAE CBR). The
main idea of DAE CBR originates from finding
combinations of parameter and updating and applying
an optimal CBR model to application or domain area.
Chen et al. [23] propose a flexible neural tree (FNT)
ensemble technique. The structure and parameters of
FNT are optimized using genetic programming (GP)
like tree structure-based evolutionary algorithm and
particle swarm optimization (PSO) algorithms,
respectively. Experimental results show that the model
considered could represent the stock indices behavior
very accurately. Aladag et al. [24] propose a new
forecast combination approach based on artificial neural
networks. The forecasts obtain from different fuzzy time
series models are combined by utilizing artificial neural
networks. The proposed method is applied to index of
Istanbul stock exchange (IMKB) time series. It is seen
that the proposed combination approach produces better
forecasts than those produced by other combination
methods available in the literature. Hung [25] presents
the results of using a fuzzy system method to analyze
clustering in generalized autoregressive conditional
heteroskedasticity (GARCH) models. Although there
are many studies on ensemble forecasting, we find that
the ensemble model from different base models is often
combined in a linear way in the existing studies.
However, a linear weighted approach is not necessarily
appropriate for the financial time series. Moreover, how
to optimize the performance of the base models is a key
problem.

To solve the above two main problems, an ensemble
model from three different base models, Elman network,
generalized regression neural network (GRNN) and
wavelet neural network (WNN) combined by support
vector machines (SVM) neural network in a nonlinear
way is presented. The optimal architectures of the three
base models are obtained by the improved swarm
particle optimization algorithm (IPSO). The main
contributions of this study are summarized as follows:

(a) A three-stage neural-network-based nonlinear
weighted ensemble model for forecasting stock indices
time series is proposed. In the first stage, a certain data
sampling technique is used to generate three different
training sets for three base models, a validation set and a
testing set. Based on the different training sets, three
neural-network base models are optimized by IPSO

Published by Atlantis Press
 Copyright: the authors
 98

Y.Xiao et al.

algorithm in the second stage. Because the three neural-
network base models’ training processes do not affect
the overall efficiency of time series forecasting system,
they can be optimized and formulated in parallel. In the
final stage, a neural-network-based nonlinear weighted
meta-model is produced by learning the three neural-
network base models through SVM neural network.

(b) All parameters in the three base models are
adaptively adjusted by the improved particle swarm
optimization (IPSO) algorithm. To ameliorate the
performance of standard PSO, IPSO employs adaptive
nonlinear inertia weight updating with fitness values. At
the same time, acceleration parameters are controlled by
a declining arccosine function and an increasing
arccosine function. Further, the crossover operation and
mutation operation are introduced to improve the
performance of the candidate particles. We adopt two-
point crossover and design a crossover rate only
depending on generation and an adaptive mutation rate
depending on individual fitness. Finally, the optimal
structure and parameters of base models are adjusted by
a 2-level algorithm in the training process, i.e., binary
particle swarm optimization (BiPSO) and decimal
particle swarm optimization (DePSO). With IPSO the
deadly drawbacks of the base models, e.g., difficult to
select the parameters and frequent confinement to local
minima, have been significantly improved.

The rest of this study is organized as follows.
Section 2 describes the building process of the proposed
model in detail. For further illustration, three stock time
series are used for testing in Section 3. Then, Section 4
presents and discusses the results of forecasting and
compares the forecasting performance with other
methods in terms of all kinds of evaluation criteria.
Finally, some concluding remarks are drawn in Section
5.

2. The architecture of the nonlinear ensemble
model

The nonlinear ensemble model in this study adopts the
concept of metal-earning, which use some individual
learning algorithms to extract knowledge from several
different data subsets and then to construct a unified
body of knowledge, metamodel, that adequately
represents the entire dataset.

2.1. Meta-learning

As above mentioned, the performance of the ensemble
models from several different base models is superior to
a single neural-network model with the best
performance. The ensemble model is a kind of learning
from learned knowledge recently developed as an
emerging machine learning technique in order to
forecast financial time series using multiple training
datasets. Generally, learning involves extracting a
pattern f = fa from a training set, T, while ensemble
model does these from several training sets, (T1, T2, …,
Tn), each of which was used to train an associated base
model f = fa(i), (i = 1, 2, . . ., n). The symbol n
represents the number of the base models. The mode of
metamodel which learns form learned knowledge by the
base models may different from some or all of the base
models. In addition, the metamodel will be trained by a
new training set, TM, which is distinct from other
training sets, Tn, used by the base models, fa(i). At
present, many different meta-learning approaches have
developed such as stacked generalization, boosting,
dynamic bias selection, mining meta-knowledge, and
inductive transfer, etc.

Metamodel has usually two modeling methods:
based on different training sets or different learning
algorithms. The former is described as follows:

)(MTfy = (1)

))(),(),((2211 nn TfTfTff Lσ= (2)

nTTT L== 21 (3)

nfff L== 21 (4)
where y is the output of meta-model, f is the learning
algorithm of the meta-model, TM is the meta-training set,
n is the number of base models (i.e. the number of
training subset), Ti(i=1,2, …, n) is the ith training subset
used by the ith base model, σ is the learning operator
of f, |Ti|(i=1,2, …, n) is the dimension of the ith training
subset and fi(i=1,2, …, n) is the learning algorithm of
the ith base model. Note that the learning algorithm of
each base model based on different training sets is
identical.

The latter is described as follows:
)(MTfy = (5)

))(),(),((21 TfTfTff nLσ= (6)

Published by Atlantis Press
 Copyright: the authors
 99

 ANNs-PSO-GA Stock E-exchange Prices Forecasting

Note that the learning algorithm of each base model
based on identical training sets is different.

This study proposes a novel ensemble model
integrating the advantages of two different meta-
learning methods. The proposed model uses a hybrid
meta-learning strategy in terms of different learning
algorithms and different training subsets which include
the following three stages:

(a) An original data set D is divided into three parts:
training set T, validation set V and testing set S. Then

the different training subsets T1, T2, …, Tn are sampled
from T for the correspond base models.

(b) The optimal architecture of n base models fi
(i=1,2, …, n) are obtained by training subsets Ti
(i=1,2, …, n) and validation set V.

(c) Applying the trained m different base models to
validation set V, validation results from the m base
models can formulate a meta-training set (TM). Based on
the meta-training set, the metamodel is constructed.

Fig. 1. A flow diagram of the nonlinear ensemble forecast model

In this study, NN is used as both base learner and
metalearner. That is, the improved meta-learning
process utilizes the nonlinear weighted form to create a
novel metamodel different from the existing linear
weighted metamodeling. The improved three-stage
nonlinear meta-learning process is illustrated in Fig. 1.
There are three main problems to be solved: (a) create n
different training subsets from the original training set T
for n base models, (b) determine the optimal

architecture of each neural-network base model, and (c)
create a metamodel with different metadata produced by
the NN base models.

2.2. Data partition and sampling

In forecasting financial time series by neural network,
data partitions can have a significant impact on the final
results. Generally, the initial data set is only split into
training set and testing set. The former set is used for

Original
data set D

Validation
set V

Training
set T

Testing
set S

Training
subset T1

Ensemble forecasts

Elman
network

Training
subset T2

Training
subset T3

GRNN

Wavelet
network

Meta-model

Ensemble
model

D
ata partition

D
ata sam

pling

Training
Training

Training

Stage 1 Stage 2 Stage 3

IPSO

Optimizing

IPSO

Optimizing

IPSO

Optimizing

Output

M
etam

odel learning

Published by Atlantis Press
 Copyright: the authors
 100

Y.Xiao et al.

model construction and the latter one is used for model
testing. However, a third set from the original data set,
validation set, can effectively improve the robustness of
neural networks. Therefore, this study divides the
original data set into three different parts non-
overlapping: training set, validation set and testing set.
The partition ratios usually are no consensus and
selected subjectively. However, the appropriate ratios
will generate better forecasting accuracy such as 7:2:1
[26]. The partition ratios are not absolute according to
different problems.

How to create n training subsets from the original
training set T is a problem after data partition? There are
three common sampling techniques to create training
subsets: direct replication, bagging and noise injection.
In direct replication method, training subsets is a sample
duplicate of original training set T.

Because of the feature of its random sampling with
replacement, Bagging [27] has become a widely used
data sampling method in machine learning. But there
are maybe many duplicates in some training subsets.
Noise injection can increase the independence between
different training subsets and further effectively reduce
variance between models by inserting noise to the
training dataset [28]. Unfortunately, the injected noise
may distort the characteristic of original data. To
overcome above three sampling techniques, an interval
sampling method is proposed as

))1(,,2,1(
),,,2,1()),1(()(

Njnij
nijniTjTi

≤−+=
=−+=

L

L
 (7)

where T1(j) is jth element of ith training subset, T the
original training set, n the number of training subsets,
and N is the size of T.

2.3. Neural-network base models

The performance of base model is the basis to construct
an effective ensemble model. The diversity of the base
models is crucial for improving the performance of the
ensemble model. The neural-network base models
usually can be formulated parallel by different ways
such as different initial weights, different architecture
(e.g., different numbers of layers or numbers of nodes in
each layer), different training algorithms (e.g., the
gradient descent or Levenberg–Marquardt algorithm,
etc). The neural-network base models utilize usually
identical technique with different parameters, however

it is proven that neural-network base models based on
different technique are much helpful to improve the
generalization ability and adaptability to actual
problems of an ensemble model. Therefore, three
different neural networks, Elman network, generalized
regression neural network (GRNN) and wavelet neural
network (WNN) are adopted because of their respective
advantages in financial time series forecasting in this
study.

2.3.1 Neural network

Neural networks (NNs), first introduced in 1943 [29],
are a set of systems derived through neuropsychology
models. The basic idea of NN is to emulate the
biological system of the human brain to learn and
identify patterns. The NN is widely used for time series
forecasting because its flexible nonlinear modeling
capability can capture the nonlinear characteristics of
time series well. When applying NN to time series
forecasting, the final output of the ANN-based
forecasting model can be represented as

),,,,,(1211 vyyyyy pttttt +−−−+ = Lϕ (8)

where v is a vector of all parameters, p nonlinear time
dependency of size (lag), and ϕ is a function
determined by the network structure and connection
weights. Thus, in some senses, the NN model is
equivalent to a nonlinear autoregressive model.

2.3.2 Elman network

Elman networks belong to the class of recurrent neural
networks (RNN) architecture. Elman network is a three
layers feedforward neural network with the addition of a
recurrent connection from the output of the hidden layer
to its input. The network is augmented at the input level
by additional units, called context units. The number of
context units is equal to the number of hidden units. The
augmented input units, including both the input units
and the context units activate the hidden units [30]. The
inputs to the context units are the outputs of the hidden
neurons forming the second or hidden layer. The
outputs of the context units and the external input
neurons are fed to the hidden neurons. The context unit
values at time step t+1 are exactly the same as the
hidden unit values at time step t. There current units
which transfer the previous state of the hidden units to
the input layer are recognized as a one-step time delay.

Published by Atlantis Press
 Copyright: the authors
 101

 ANNs-PSO-GA Stock E-exchange Prices Forecasting

Context units are also known as memory units as they
store the previous output of the hidden neurons.

During Elman networks operation, the activation
values of the input units are set to a desired input pattern.
The activation value of every hidden unit is computed
by multiplying each input and context activation value
by the value of the weight from the unit to the hidden
unit. These values are then summed, the bias of the
hidden unit is added, and the sum is passed through a
squashing function f. The resulting value then
constitutes the output value of the hidden unit. In the
Elman network, the squashing function used is the
logistic f. Then, the activations of output units are
calculated based on the hidden units in an analogous
manner. This represents one time step. Next, the
activation of each hidden unit is copied into a
corresponding context unit on a one-for-one basis with
fixed weights of 1, and then the next time step is
performed. This is equivalent to a recurrent connection
from every hidden unit to itself and is more restrictive
than the arbitrary recurrent connections allowed by
Minsky’s claim [31].

Suppose that n, l, m are number of the input units,
hidden units and output units. The primary input is
xi(i=1,2…,n), and the network output is yk(k=1,2,…,m).
wji(i=1,2,…,n; j=1,2,…l), wjr(r=1,2,…,l; j=1,2,…l),
wkj(j=1,2,…,l; k=1,2,…m) are the weights of the
connections between the input and hidden units,
between the recurrent and the hidden units, and between
the hidden and the output units, respectively. bj and bk
are biases of hidden units and output units, and f(·) and
g(·) are hidden and output functions, respectively. The
architecture of Elman network can be written
mathematically by

The output of the hidden unit:

⎟
⎠

⎞
⎜
⎝

⎛
+−+= ∑ ∑

= =

n

i

l

r
jrjrijij btywxwfty

1 1

'')1()((9)

The output of the output unit:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

l

j
kjkjk btywgty

1

')()((10)

2.3.3 Generalized regression neural network

The generalized regression neural network (GRNN) is
memory based feedforward network which was
introduced [32] as a generalization of both the radial

basis function network (RBFN) and probabilistic neural
network (PNN). The GRNN is a powerful tool for linear
or nonlinear regression based on kernel estimation
theory, which builds the sought function surface in a
nonparametric fashion through the available data set.
The GRNN can exhibit high accuracy and robustness to
sparse and noisy data and its estimate converges to the
conditional mean surface while introducing more data
samples. The flexible structure of GRNN makes it
amenable to adaptation for different environments.

At its standard form, it allows for a simple
implementation and a very fast training procedure due
to the single window bandwidth parameter σ (sigma)
that regulates the smoothness of the regression surface.
Moreover, unlike other networks, such as MLFNN or
Elman, it does not require an exact topology definition.

The GRNN architecture includes four layers,
namely, the input, hidden, summation and output layers.
Unlike the most popular backpropagation (BP)
algorithm that trains multilayer feedforward networks
iteratively, the GRNN training is a single pass
procedure. In addition, the GRNN formulation
comprises only one free parameter that can be optimized
fast. Consequently, the GRNN trains itself in a
significantly shorter time, as compared with the BP
algorithm.

The GRNN utilizes the Parzen Probability Density
Estimator [33] between the independent vector random
variable X with dimension m, and dependent scalar
random variable Y. Assume that x and y are the
measured values for X and Y variables, respectively. The
clustering version of the GRNN with multiple hyper-
spherical kernels is proposed as shown below:

∑ ∑

∑ ∑

= =

= =∧

⎥
⎦

⎤
⎢
⎣

⎡
−−

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
n

j
ij

m

j
ijj

n

j
ij

m

j
ijji

xx

xxy
xy

1

2

1

2

1

2

1

2

/)(exp

/)(exp
)(

σ

σ
(11)

where xi and yi are the ith training set data, xi the vector
form of variable x,)(xy

∧

 the predicted output, m the
dimension of input domain, and n is the number of
kernels. xij and ijσ denote the center and sigma of jth
variable for the ith pattern node, respectively.

Published by Atlantis Press
 Copyright: the authors
 102

Y.Xiao et al.

2.3.4 Wavelet neural network

Wavelet is a type of transformation that retains both
time and frequency information of the signal [34]. The
transformation process from time domain to time scale
domain is a WT, technically known as signal
decomposition because a given signal is decomposed
into several other signals with different levels of
resolution. From these decomposed signals, it is
possible to recover the original time domain signal
without losing any information. This reverse process is
called the inverse WT or signal reconstruction. In
Fourier transform, only the sine and cosine functions
can be chosen as the basis functions. However, wavelet
transformation (WT) has versatile basis functions to be
selected based on the type of the signal analyzed.
Wavelet transforms can be divided in two categories:
continuous wavelet transform (CWT) and discrete
wavelet transform (DWT).

The continuous wavelet transform),(bafx of
function)(tx with respect to a mother wavelet is
shown by

()∫
+∞ ∗=

0 ,)(),(dtttxbaf bax ψ (12)

0,,,1)(, >∈⎟
⎠
⎞

⎜
⎝
⎛ −

= aRba
a

bt
a

tba ψψ (13)

where the mother wavelet, ψ(x), is a single fixed
function such as Morlet function from which all basis
functions ψa,b(x) can be derived through Eq.13. The
dilation (scale) parameter a (a∈R and a>0) controls the
spread of the wavelet and translation (time-shift)
parameter b (b∈R) determines its central position and
the superscript * represents the complex conjugate (R
denotes real number).

The WT transforms the function from original time
domain in to wavelet (a, b) domain. A function x(t)
having both smooth global variations and sharp local
variations can be effectively represented in wavelet
domain by corresponding wavelet function),(bafx .

The discrete wavelet transform is defined by

∫
∞+

∞−

∗
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= dtbttxbaf a

a

baax 2
2)(

2
1),(,2/ ψ (14)

where the asterisk denotes the complex conjugate, a and
b are scale and time-shift parameters, respectively, and
ψ(x) is a selected basis function (mother wavelet).

Both continuous and discrete wavelet transforms
have been used to implement wavelet neural networks.
Normally, the former can provide much excellent
performance in nonstationary signal analysis and
nonlinear function modeling.

The neural networks provide flexible mapping
between inputs and outputs. Hornik et al. [35] have
theoretically proved that a three-layer feedforward
neural network (MLFN) can approximate any
continuous function arbitrarily well given a sufficient
number of middle-layer nodes. However, MLFN with
using sigmoid function has some limitations such as
settle in local minima of the error surface and
convergence too slowly. Except the radial basis function
neural networks (RBF), WNNs are also an improvement
approach to MLFN. Wavelet function is the same as
radial basis function is a local function and influence the
networks output only in some local range. Although
RBF is also local function, but it does not have the
spatial-spectral zooming property of the wavelet
function, and therefore it cannot represent the local
spatial spectral characteristics of the function. WNN
shows surprising effectiveness in solving the
conventional problems of poor convergence or even
divergence encountered in other kinds of neural
networks [36].

In this study, a Morlet mother function (shown
Eq.15.) is used as node activation function for the
hidden layer of a three-layer MLFN. The dilation and
translation parameters, at and bt, of the Morlet function
for each node in the hidden layer are different and they
need to be optimized. In the WNN, the gradient descend
algorithm is employed and the error is minimized by
adjusting weight vector of the connections between
input units and hidden units and between hidden units
and output units, and at and bt.

2/2

)75.1cos(xexy −= (15)

2.4. Optimizing base models

2.4.1 Particle swarm optimization algorithm

Particle swarm optimization is a population-based
stochastic optimization algorithm which has been
proposed by Eberhart and Kennedy in 1995. The
concept is mainly from the natural flocking and
swarming behavior of birds and insects. It is considered

Published by Atlantis Press
 Copyright: the authors
 103

 ANNs-PSO-GA Stock E-exchange Prices Forecasting

to be able to optimize the performance of the ANN by
improve its disadvantages such as difficult to select the
parameters and easy to get stuck in a local minimum,
etc., because it does not require gradient and
differentiable information.

Suppose that the search space is h dimensional, the
particles of the swarm can be represented by an n
dimensional vector Xi = (xi1, xi2, …, xih)T. The fitness of
each particle can be evaluated according to the objective
function of the actual optimization problem. The
velocity of each particle can be represented by n
dimensional vector Vi = (vi1, vi2, …, vih)T. Let Pb = (pb1,
pb2, …, pbh)T be the last best position of the i-th particle,
which is noted as its individual best position. Further,
Gb = (gb1, gb2, …, gbh)T is the global best position. The
new velocity of particle will be assigned according to
the following equations:

)]([)]([

)()1(

2211 txgrctxprc

twvtv

ijbjijbj

ijij

−+−

+=+
 (16)

hjtvtxtx ijijij ,,2,1),1()()1(L=++=+ (17)

],[],,[maxminmaxmin xxxvvv ijij ∈∈ (18)

where c1 and c2 represent the acceleration parameters, w
represents the inertia weight, and r1 and r2 are random
numbers ranging from 0 to 1. The velocities of the
particles on each dimension are clamped to a maximum
velocity: vmax. The new position of each particle is
calculated by Eq. (16).

2.4.2 The improved particle swarm optimization
algorithm

Although the traditional PSO can usually find good
solutions rapidly, it may be trapped in local minimum
and fail to converge to the best position. In order to
reduce the opportunity of trapping in a local optimum,
expand the search scope of the algorithm and enhance
the algorithm's climbing ability, it is certainly critical to
always maintain the diversity of particles. The existing
algorithms such as chaos mechanism optimization [37],
hybrid simplex search PSO [38], comprehensive
learning PSO, dynamic random search technique [39]
are difficult to solve the two problems (global
optimization and premature convergence)
simultaneously. Therefore, we design an improved
particle swarm optimization (IPSO) with adaptive
nonlinear inertia weight and dynamic arccosine function

acceleration parameters. At the same time, the crossover
operation and mutation operation of GA are introduced
in IPSO in order to improve the performance of the
candidate particles.

2.4.2.1 Improved acceleration coefficients
In the particle swarm optimization algorithm,
acceleration coefficients c1 and c2 control the
“cognitive” part and the “social” part of the particle
velocity, respectively. In general, a large “cognitive” c1
and a small “social” c2 in the initial stages and a small
“cognitive” c1 and a large “social” c2 in the last stages
can balance the performance in the entire optimization
process [40]. Based on this idea, many methods have
been proposed such as linear adjustment strategy, fuzzy
control strategy, and random change strategy. However,
these methods are unstable. Therefore, we propose a
dynamic acceleration parameters adjustment strategy
based on arccosine function. c1 and c2 are controlled by
a declining arccosine function and an increasing
arccosine function. This strategy attempts to promote
particles to be placed in an unexplored area so that they
can contribute to the process of finding better solutions
in the early stages of optimization. The method is more
conducive to getting rid of the interference of local
minimum, obtaining the global optimal solution to avoid
premature convergence, and improving the convergence
speed and accuracy in the latter stages of optimization.
The strategy can be represented as

]/)12arccos(1[

)(

max

1111

π+
−

−

×−+=

Iter
Iter

cccc
startendstart

 (19)

112 ccc
start

−= (20)

where cstart represents the iteration initial value of
acceleration parameters, cend represents the iteration
final value of acceleration parameters, Iter is the current
iteration number, Itermax is the maximum iteration
number.

2.4.2.2 Improved inertia weight
The inertia weight w represents the contribution of past
velocity values to the current velocity of the particle. A
large inertia weight biases the search towards global
exploration, while a smaller inertia weight directs
towards fine-tuning the current solutions. Suitable

Published by Atlantis Press
 Copyright: the authors
 104

Y.Xiao et al.

selection of the inertia weight and acceleration
coefficients can provide a balance between the global
and the local search [41]. Based on this idea, many
methods have been proposed such as linear decreasing
inertia weight strategy, random inertia weight strategy
[42], inertia weight strategy based on concave function
and convex function [43], and fuzzy control strategy.
However, these methods are not adaptive. In this study,
we employ an adaptive nonlinear adjustment inertia
weight strategy depending on particle’s fitness value,
which will help balance the exploring and exploiting
capabilities at different stages during its search process.
The strategy can be represented as

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>

≤

−
−−

+

=

)(,

)(

,))((

max

min

minminmax
min

avg

avg

avg

fitnessfitnessw

fitnessfitness

fitnessfitness
fitnessfitnesswww

w

(21)
where wmin~wmax represent the range of inertia weight,
fitness represents the current fitness value of some
particle, fitnessmin and fitnessavg represent the minimum
fitness value and the average fitness value of all
particles respectively. It can be seen from Eq. (21) that,
the inertia weight will increase when the fitness values
of particles are consistent (become local optimum) and
will decrease when the fitness values of all particles are
scattered. Therefore, the inertia weights of the superior
particles whose fitness values are larger than the
average fitness value are smaller to protect their
properties. In contrast, the inertia weights of the poor
particles whose fitness values are smaller than the
average fitness value are larger so that they can search
better space.

2.4.2.3 Adaptive genetic operators
In PSO algorithm, when the individual optimum
solution Pbest has not been updated for a long time in the
latter part of the training, the particles will be close to
the global optimum solution Gbest. At this point the
particle update velocity mainly depends on wvij of the
first part of Eq. (16) because the inertia weight w <1, the
particle velocity will become increasingly smaller. The
particle swarm will “fly” toward a direction, which will
lead to its falling into local minimum position. In this

study, the adaptive genetic operators (crossover
operation and mutation operation) are introduced in
order to improve the performance of the candidate
particles. The particles can execute crossover operation
and mutation operation according to a certain
probability.

Crossover is the main search operator in GAs,
creating offsprings by randomly mixing sections of the
parental genome. In this study, we use two-point
crossover and design a crossover rate only depending on
iteration number and not associating with the individual
fitness. The crossover rate can be represented as

)10,2(,)/(
max, ∈×= − qqpp Tt

cct (22)

⎩
⎨
⎧

≤

>
=

min,min,

min,

,
,

)(
cctc

cctct
c ppp

ppp
tp (23)

)1,0(][max,min, ∈< cc pp (24)

where ctp is calculated variable, T is maximum iteration
number, t is current iteration number, q is the decreasing
coefficient of crossover probability, min,cp is minimum
crossover probability, max,cp is maximum crossover
probability,)(tpc is crossover probability of t-th
iteration.

A small fraction of the offsprings is randomly
selected to undergo genetic mutation. The mutation
operator randomly picks a location from a bit-string and
flips its contents. To avoid premature convergence, we
design an adaptive mutation rate depending on
individual fitness as follows,

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>

≤

−
−−

+

=

avgm

avg

avg

mm
m

m

ffp
ff

ff
ffpp

p

p
,

,
))((

max,

min

minmin,max,
min,

(25)

)1,0(][max,min, ∈< mm pp (26)

where maxf is maximum fitness value of current
population, avgf is average fitness value of each
iteration population, f is fitness value of current
mutation individual, min,mp is minimum mutation
probability, and max,mp is maximum mutation
probability.

In order to improve search efficiency, take
advantages of PSO’s training speed and GA’s global

Published by Atlantis Press
 Copyright: the authors
 105

 ANNs-PSO-GA Stock E-exchange Prices Forecasting

search, the genetic operator control function in this
study is defined as

,,2,1,
ln1
11 L=

+
−= k

k
GPk (27)

kGPrand <)1,0((28)
where k represents current iteration number. In the
process of each iteration, a random number will be
created ranging from 0 to 1. If the number is less than
GPk, the current particle will execute genetic operator.
As can be seen from Eq. (27), in the early iterations GPk
<< 1, genetic operator will be executed at a small
probability, in the later iterations GPk, it will be close to
be 1, so the particle will execute genetic operator at
greater probability. Genetic operator expands population
search space shrinking in the process of iteration, so that
particles can escape from the optimal value searched
previously to a larger search space. The particles
maintain the diversity of the population, thus it
increases the possibility of finding better solutions.

2.4.3 NN optimized by the improved PSO

The deadly drawbacks of the NN (frequent confinement
to local minima and parameters selection) are expected
to be improved with IPSO. The basic idea is to optimize
weights and bias of NN by decimal particle swarm
optimization (DePSO), and optimize the NN structure
by binary particle swarm optimization (BiPSO). A
particle in DePSO real-coded represents a set of NN
weight vector and bias weight vector.

Let the number of input layer nodes be R, the
number of hidden layer nodes Q, the output layer nodes
S, the weight and bias vector of NN can be represented
as

],

,,,,,,

,,

,,,,,,[

22
1

22
1

2
2

2
21

2
1

2
11

11
1

11
1

1
2

1
21

1
1

1
11

S

QSQSS

Q

RQRQQ

bb

wwwwww

bb

wwwwwwX

L

LLLL

L

LLLL=

(29)
)1()1(+++= SQQRh (30)

where),1;,1(1 QjRiwij LL == represents the
weight vector from the input layer to the hidden layer,

),1;,1(2 SjQiwij LL == represents the weight
vector from the hidden layer to the output layer,

),1(1 Qibi L= represents the hidden layer bias vector,
),1(2 Sibi L= represents the output layer bias vector,

and h is the dimension of vector X.
A particle binary-coded in BiPSO represents the

corresponding hidden layer node, that is, 1 represents
the corresponding hidden layer node existence and 0
represents inexistence. The particle velocity is updated
according to the Eq. (16). The particle position is
updated by the state transition probability depending on
the particle velocity. When the particle velocity is
greater than a certain value, the particle will be 1 at a
larger probability.

The number of hidden nodes is not generally less
than the number of input layer nodes and more than the
twice of the sum of input layer nodes and output layer
nodes. The BiPSO can be represented in the binary form
as

hj

tvsigt

tvsigt
tx

ijij

ijij
ij

,,2,1

,
))1(()1(,1

))1(()1(,0
)1(

L=

⎪⎩

⎪
⎨
⎧

+≤+

+>+
=+

ρ

ρ
(31)

)(2 QRh +×= (32)
where hjtij ,,2,1],1,0[)1(L=∈+ρ is a random
number ranging from 0 to 1, sig(·) is a sigmoid function
and))exp(1/(1)(xxsig −+= , and h is the
dimension of vector. If x = 1, the corresponding hidden
layer node exists, and the weight and bias vector of that
node in DePSO is valid. Otherwise, if x = 0, the
corresponding hidden layer node does not exist, and the
weight and bias vector of that node in DePSO is invalid.

2.5. Non-linear neural-network metamodel

After the three neural-network base models are trained,
next work is how to integrate or combine them by the
metamodel. The mode of integration or combination can
be defined as

)(
1

ii

n

i
i Tfwy ∑

=

= (33)

where y is aggregate output combined the outputs of
these base models, n the number of base models (i.e.,
the number of training subset), wi the assigned weight of
fi, fi(i=1,2, …, n) the learning algorithm of ith base
model, and Ti(i=1,2, …, n) ith training subset used by
ith base model.

Published by Atlantis Press
 Copyright: the authors
 106

Y.Xiao et al.

There are four common strategies to determine the
weights of base models wi: simple averaging, simple,
mean squares error (MSE), stacked regression, and
error-variance-based weighting [44]. Besides the
individual feature of different strategies, the existing
integrated technique is built on linear assumption.
However, linear strategies are not necessarily sufficient
for financial time series. A nonlinear integrated strategy
is proposed to construct a metamodel by using SVM
neural network, which is different from the base neural
networks in this study. In this nonlinear metamodeling
approach, outputs of base neural-network models
construct a meta-training set (TM). This metamodel,
SVM neural network, in the final stage can be trained
by TM and assessed by testing set S.

The nonlinear ensemble forecasting model can be
defined as

),,(21 nyyyfy L= (34)
where f(·) is a nonlinear ensemble function realized by
SVM neural network and yi is the forecast of ith base
model.

To validate the effect the proposed the nonlinear
ensemble model, an individual Elman network, an
individual GRNN, an individual WNN, the linear

combination models, and the proposed model to predict
stock indices so as to compare forecasting performance.

3. Empirical analysis

3.1. Data preparation

The stocks data used in this paper are daily
observations obtained from Wind database
(http://www.wind.com.cn). They consist of the
Shanghai composite index, Shenzhen component index
and Shanghai-Shenzhen 300 index studied in this paper.
The entire data set of each stock index covers the period
of five years. Each time series is split into three sets:
training set, validation set and testing set. The first set is
used to determine the specifications of the model and
parameters of the forecasting technique, the second set
is used to not only evaluate the good or bad
performance of the predictions of the base models based
on evaluation measurements but also construct a meta-
training set with outputs of base models, and the third
set is used for out-of-sample evaluation of the
forecasting model. In addition, the training data set is
divided into three training subsets by the interval
sampling algorithm. Table 1 shows the information
about the time series and size of subsets used.

3.2. Data Preprocessing

The data must be normalized before training, which can
be described as the following formula:

)min()max(
)min(),(),(

XX
Xjixjixn −

−
= (35)

where]1,0[),(∈jixn is the normalized data,),(jix is
the original data,)min(X and)max(X represent the
maximum and minimum of the original data.

Some common features from past stocks time series
of Shanghai composite index, Shenzhen component index
and Shanghai-Shenzhen 300 index are extracted for
training and testing purposes. Each set of data are
normalized by dividing each value by the maximum
value of each set such that each normalized value is less
than or equal to unity. Normalization of input data is
necessary for obtaining correct trigonometric expansion.

Table 1. Time series: training set, validation set and testing set.

Stock indices Training Set validation set Testing set
 Start End Obser-

vations
Start End Obser-

vations
Start End Obser-

vations
Shanghai composite
index

2004.7.1 2008.6.30 972 2008.7.1 2009.6.30 244 2009.7.1 2010.6.30 244

Shenzhen component
index

2005.1.1 2008.12.31 971 2009.1.1 2009.12.31 244 2010.1.1 2010.12.31 242

Shanghai-Shenzhen
300 index

2005.7.1 2009.6.30 973 2009.7.1 2010.6.30 244 2010.7.1 2011.6.30 243

Published by Atlantis Press
 Copyright: the authors
 107

Y.Xiao et al.

3.3. Performance measures

To assess the ensemble prediction model, the forecasts
are compared with the true realizations. Following
performance measures are used.

Mean absolute error, MAE

∑
=

−=
N

i
ii TT

N
MAE

1

' ||1 (36)

Mean Absolute Percentage Error, MAPE

∑
=

−
=

N

i i

ii

T
TT

N
MAPE

1

'1
 (37)

Root Mean Squared Error, RMSE

∑
=

−=
N

i
ii TT

N
RMSE

1

2')(1
 (38)

The symbol N is the total number of data patterns. Ti
and Ti

’ represent the actual value and prediction at time i.
MAE, MAPE and RMSE are the metrics used to estimate
the error of prediction. MAE, MAPE and RMSE are
widely used statistical metrics that estimate the error of
prediction by measuring the deviation between actual and
forecasted value returned in this case. Smaller values of
these metrics indicate higher accuracy in forecasting.

Of course accuracy is one of the most important
indicators for forecasting models—the others being the
cost savings and profit earnings generated from better
decisions. From the business, the latter is usually more
important because for the business practitioners, the aim
of forecasting is to support or improve decisions so as to
make more profit. Thus profits or returns are more
important than conventional fit measurements. In stock
indices forecasting, improved decisions often depend on
correct forecasting directions or turning points between
the actual and predicted values (Ti and Ti

’). The ability to
forecast movement direction or turning points can be
measured by a statistic of directional change (DC), which
can be expressed in percentage as

%100
1

0))((1

1

'
11 ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

≥−−
= ∑

−

=

++
N

i

iiii

N
TTTTDC (39)

where Ti is the actual value at time t, T’
i+1 is the

prediction at time t+1. (Ti+1 - Ti)(T’
i+1 - Ti)≥0 is a logical

expression.
However, the real aim of forecasting is to obtain

profits based on prediction results. To provide a more
complete evaluation of the models, our comparison is

based on not only the performance statistics but also the
trading returns. Here the return rate is introduced as an
important evaluation indicator, which is calculated
according to the simple principle ignoring the friction
costs.

() %100×⎟
⎠
⎞

⎜
⎝
⎛ −=

N
PIRARMR (40)

where MR is the P periods excess return rate relative to
the tested stock indices, AR the amount of the return rate
obtained on the entire period of testing set, IR the return
rate of the tested stock indices on the entire period of
testing set, and N is the number of the testing periods. For
convenient computing, we assume that stock can only be
bought in a given lot size. It is worth noting that
computation of MR is based on the trading strategy, as in
the following:

If (T’
i+1- Ti)>0, then “ buy”, else “ sell”.

The difference between the predicted value and the
actual value will guide trading. Because the MAE, MAPE
and RMSE measure predictions only in terms of levels, it
is better to choose DC and every period return rate (MR)
as the measurements for forecast evaluation. Of course,
MAE, MAPE and RMSE are also taken into
consideration for comparison of levels.

3.4. Set parameters for the ensemble model

The architectures and parameters of base models are
optimized by IPSO. The parameters of metamodel, SVM,
are determined by k-fold cross-validate (CV). The initial
parameters of IPSO-NN model are defined as: the
population size of particle swarm is 30, the maximum
iteration number is 150, the training times of NN are
1500; in DePSO the initial particle positions are random
numbers ranging from -15 to 15 and the initial particle
velocity randomly varies between -8 and 8, c1start=2.95,
c1end=1.05, wmin=0.2, wmax=0.8; in BiPSO, the initial
particle positions are random numbers ranging from -1 to
1 and the initial particle velocity is randomly chosen from
the range between -0.6 and 0.6, c1=c2=1.14, w=1; in
genetic algorithm Pc,min=0.5, Pc,max=0.9, Pm,min=0.02, and
Pm,max=0.6.

3.5. Time dependency

The daily data of the stock indices possess the time
dependency, therefore, the lag order of the time series

Published by Atlantis Press
 Copyright: the authors
 108

 ANNs-PSO-GA Stock E-exchange Prices Forecasting

need be determined before prediction. A non-linear time
dependency of size (lag) p is increased from 1 to 36 in
step from 1 lag. For each test, the networks are trained on
the training sets until a MSE from 2×10-5 or less is
reached. The best performing IPSO-NN on MSE for the
lag order is 3 by testing the different performance of the
lag orders between 1 to 36. The process is modeled with
lag 3, and the realization at t+1 is dependent on the
realizations of the last 3 trading days.

4. Simulation and prediction

The daily stock indices data of Shanghai composite index,
Shenzhen component index and Shanghai-Shenzhen 300
index are pre-processed between 0 and 1 and passed to
the ensemble model as non-stationary data. Fig. 2-4
illustrate respectively the prediction of the daily stocks
data of Shanghai composite index, Shenzhen component
index and Shanghai-Shenzhen 300 index using three
single base models (i.e., Elman network, GRNN and
WNN), four linear ensemble methods (i.e., simple
averaging, simple MAE, simple MAPE and simple
RMSE), and the proposed non-linear ensemble model on
out-of-sample data, showing the best result achieved.
Tables 2–6 show respectively the simulation results for
the average performance of the three single base models
(i.e., Elman network, GRNN and WNN), four linear
ensemble methods (i.e., simple averaging, simple MAE,
simple MAPE and simple RMSE), and the proposed non-
linear ensemble model when executed 20 times from
different perspectives. From the graphs and tables, we
can generally see that the forecasting results are very
promising for three stock indices under study either
where the measurement of forecasting performance is
goodness of fit such as MAE, MAPE and RMSE (refer to
Table 2-4) or where the forecasting performance criterion
are DC (refer to Table 5) and MR (refer to Table 6).

Subsequently, the forecasting performance
comparisons of three single base models (i.e., Elman
network, GRNN and WNN), four linear ensemble
methods (i.e., simple averaging, simple MAE, simple
MAPE and simple RMSE), and the proposed non-linear
ensemble model for the three stock indices via MAE,
MAPE, RMSE, DC and MR are reported in Tables 2–6,
respectively.

Table 2-4 shows that: (a) the prediction performance
of single base models is unstable to different data set. For

 Fig. 2. The prediction of the daily stock index data of
Shanghai composite index using three single base models,
four linear ensemble methods, and the proposed non-linear

ensemble model.

Fig. 3. The prediction of the daily stock index data of
Shenzhen component index using three single base models,
four linear ensemble methods, and the proposed non-linear

ensemble model.

Fig. 4. The prediction of the daily stock index data of
Shanghai-Shenzhen 300 index using three single base

models, four linear ensemble methods, and the
proposed non-linear ensemble model.

Published by Atlantis Press
 Copyright: the authors
 109

Y.Xiao et al.

Table 2. Comparison of performance statistics averaging each model over 20 runs in Shanghai composite index.

Model type Model Shanghai composite index
 MAE Rank MAPE(%) Rank RMSE Rank

Single Model Elman 43.6381 7 1.4786 7 56.9343 7
 GRNN 73.0838 8 2.5516 8 91.6373 8
 WNN 73.8327 4 2.5048 6 93.1843 6
Ensemble Model Simple averaging 54.6768 6 1.8642 5 68.8027 5
 Simple MAE 50.8187 3 1.7268 3 64.0136 2
 Simple MAPE 50.7134 5 1.723 4 63.8881 4
 Simple RMSE 51.074 2 1.736 2 64.3298 3
 SVM 47.3801 1 1.5853 1 60.7362 1
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error.

example, the best base model in Shanghai composite
index, WNN, but is worst in Shenzhen component index;
(b) the prediction performance of the linear ensemble
models is usually better and more stable than three single
base models in all cases, which confirms the ensemble
approach to forecasting can effectively reduce errors and
provide better performance than single model. Among
four linear ensemble models, none can consistently
outperform other linear models. For example, although
simple MAPE is the best in Shanghai-Shenzhen 300
index, it is worse than simple MAE and simple RMSE in

the Shanghai composite index testing case. The main
reason is that every linear ensemble model has its own
advantages and disadvantages; (c) from the rank of MAE,
MAPE and RMSE indicators, the prediction performance
of the proposed nonlinear ensemble model is mostly best
(except MAPE in Shenzhen component index test case),
which indicates the proposed nonlinear ensemble model
can improve the performance. The main reason is that the
proposed nonlinear ensemble model can capture some
nonlinear patterns hidden in financial time series, while
linear weighted models cannot.

However, the less MAE, MAPE and/or RMSE don’t

affirmatively represent a high hit rate of forecasting
direction for stock indices movement direction prediction.
Therefore, the comparison of the directional change
statistic (DC) is significantly. From Table 5, we can see

the proposed nonlinear ensemble model also performs
much better than the other models by the rank.
Furthermore, DC is more important than MAE, MAPE
and/or RMSE because the former is more useful for the
business practitioners’ decision. Focusing on Table 5, the

Table 3. Comparison of performance statistics averaging each model over 20 runs in Shenzhen component
index.

Model type Model Shenzhen component index
 MAE Rank MAPE(%) Rank RMSE Rank

Single Model Elman 193.1589 6 1.7119 6 266.1093 6
 GRNN 237.0859 7 2.0761 7 292.9053 7
 WNN 259.0489 8 2.2568 8 325.9413 8
Ensemble Model Simple averaging 187.9364 5 1.6357 5 239.2687 4
 Simple MAE 184.4873 2 1.6069 2 234.388 2
 Simple MAPE 186.4845 4 1.5928 1 238.3945 3
 Simple RMSE 184.9471 3 1.6159 4 244.7991 5
 SVM 170.8462 1 1.6107 3 225.8467 1
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error.

Published by Atlantis Press
 Copyright: the authors
 110

Y.Xiao et al.

disparities between the eight models are very obvious.
For example, in the Shanghai composite index case, the
DC for the best single base model, Elman network, is
only 58.38%, and for the best linear ensemble model,
simple MAPE, DC is 64.54%; while for the proposed
nonlinear ensemble model, DC reaches 70.44%. To

summarize, the linear ensemble model can model stock
indices time series well which contain high noise and
nonlinearity, further, the proposed nonlinear ensemble
model possesses better performance than the traditional
linear ensemble model.

Table 5. Comparison of performance of DC averaging each model over 20 runs.

Model type Model Stock indices
 Shanghai

composite index
Shenzhen
component index

Shanghai-
Shenzhen 300 index

 DC(%) Rank DC(%) Rank DC(%) Rank
Single Model Elman 58.38 6 57.30 8 47.47 7
 GRNN 56.62 7 60.20 6 46.11 8
 WNN 53.50 8 60.28 5 49.79 6
Ensemble Model Simple averaging 61.67 5 59.37 7 51.35 5
 Simple MAE 63.50 4 62.52 3 52.17 4
 Simple MAPE 64.54 2 60.79 4 52.67 3
 Simple RMSE 63.78 3 62.98 2 54.78 2
 SVM 70.44 1 69.72 1 63.47 1
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error.

Table 6. Comparison of performance of MR averaging each model over 20 runs.

Model type Model Stock indices
 Shanghai

composite index
Shenzhen
component index

Shanghai-
Shenzhen 300 index

 MR(%) Rank MR(%) Rank MR(%) Rank
Single Model Elman 5.55 7 -1.36 8 -1.05 6
 GRNN 4.84 8 2.61 6 -4.09 8
 WNN 5.94 6 1.85 7 -2.63 7
Ensemble Model Simple averaging 6.35 5 5.23 5 1.67 4
 Simple MAE 7.82 4 6.89 4 2.64 3
 Simple MAPE 9.04 2 7.51 3 3.29 2
 Simple RMSE 8.28 3 7.72 2 1.47 5
 SVM 12.83 1 10.6 1 6.52 1
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error.

Table 4. Comparison of performance statistics averaging each model over 20 runs in Shanghai-Shenzhen 300
index.

Model type Model Shanghai-Shenzhen 300 index
 MAE Rank MAPE(%) Rank RMSE Rank

Single Model Elman 39.3153 5 1.425 6 51.0497 5
 GRNN 45.1459 8 1.5078 7 56.7412 7
 WNN 42.6522 7 1.5403 8 59.3881 8
Ensemble Model Simple averaging 39.9869 6 1.3127 5 51.6785 6
 Simple MAE 38.1156 3 1.3042 4 48.8829 3
 Simple MAPE 37.6186 2 1.2843 3 46.887 2
 Simple RMSE 38.7889 4 1.2333 2 49.8461 4
 SVM 33.0141 1 1.0865 1 41.6505 1
GRNN: generalized regression neural network; WNN: wavelet neural network; SVM: support vector machines; MAE: mean
absolute error; MAPE: mean absolute percentage error; RMSE: root mean squared error.

Published by Atlantis Press
 Copyright: the authors
 111

Considering return rate, the empirical results show
that the proposed nonlinear ensemble model could be
well forecast future variation of stock indices. Compared
with the other models such as three single base models
and four linear ensemble models, the proposed nonlinear
ensemble model belongs to the best forecasting effect.
Interestingly, you can see that the rank of Table 6 is the
similar to that of Table 5 because the right forecasting to
direction often leads to high return rates. As shown in
Table 6, for the Shenzhen component index case, the
return rate for the best single base model, GRNN, is
2.61%, and the return rate for the best linear ensemble
model, simple RMSE, is also 7.72%; however the return
rate for the proposed nonlinear ensemble model reaches
10.6%.

From the experiments presented in this study we can
draw the following conclusions: (i) The experimental
results show that the proposed nonlinear ensemble
forecasting model is superior to four linear ensemble
models which are superior to three single base models for
the test cases of three stock indices in terms of the
measurement of annual return rate (MR), as can be seen
from Tables 6. Likewise, the proposed nonlinear
ensemble model also outperforms other models in terms
of goodness-of-fit or MAE, MAPE and RMSE (refer to
Figs. 2-4 and Table 2-4). (ii) MAE, MAPE and RMSE
are the metrics used to estimate the error of prediction,
however, it don’t affirmatively represent a high return
rate for stock indices forecasting. For example, in the
Shenzhen component index test case, the simple MAPE
model is the best in terms of the MAPE (refer to Tables
3), but it is worse than the proposed nonlinear ensemble
model in the return rate (refer to Tables 6). Similarly, the
indicator DC and MR have a strong positive relationship
which isn’t absolute. For example, in the Shanghai-
Shenzhen 300 index test case, in all linear ensemble
models the simple RMSE model is the best, concerning
DC (refer to Tables 5), but is the worst in the return rate
(refer to Tables 6). (iii) The proposed nonlinear ensemble
model can be used as an alternative tool for stock indices
forecasting to obtain greater forecasting accuracy and
improve the prediction quality further in view of
empirical results.

5. Conclusions

In this study we hope to design a model that can provide
the most accurate prediction of stock indices. In order to

overcome the drawbacks of the traditional NN, a three-
stage neural-network-based nonlinear weighted ensemble
model is proposed. In this model, three neural-network
base models, i.e., Elman, GRNN and WNN are generated
by three different training sets, further, they are optimized
by improved particle swarm optimization (IPSO) with
adaptive nonlinear inertia weight, dynamic arccosine
function acceleration parameters and the crossover and
mutation operation of GA. Finally, a neural-network-
based nonlinear weighted meta-model be produced by
learning three neural-network base models through SVM
neural network. By applying daily data to these models
and comparing the prediction results based on MAE,
MAPE, RMSE, DC and MR, we find that in general the
annual return rate of the proposed nonlinear ensemble
model is better than single base models and the linear
ensemble models for forecasting stock indices with high
volatility and noise. The result of this paper may be
helpful for day-ahead price forecasting of electricity
markets. It would be interesting to investigate the
optimization of the proposed model e.g., by inclusion of
more efficient NNs and effective stochastic search
techniques but this will be left for future research.

6. Acknowledgments

This research was supported by the Humanities and
Social Sciences Youth Foundation of the Ministry of
Education in China under Grant No.11YJC870028, the
Special Fund for Basic Scientific Research of Central
Colleges under Grant No.CCNU10A01031, the Natural
Science Foundation of China under Grant No. 71101100
and 71001096, New Teachers' Fund for Doctor Stations,
Ministry of Education under Grant No. 20110181120047,
China Postdoctoral Science Foundation under Grant No.
2011M500418 and 2012T50148, Research Start-up
Project of Sichuan University under Grant No.
2010SCU11012 and the Center for Forecasting Science
of the Chinese Academy of Sciences and the National
Center for Mathematics and Interdisciplinary Sciences in
China.

References

1. Y. Xiao, J. Xiao and S. Y. Wang, A hybrid forecasting
model for non-stationary time series: an application to
container throughput prediction, International Journal of
Knowledge and Systems Science. 3(2) (2012) 67–82.

Published by Atlantis Press
 Copyright: the authors
 112

Y.Xiao et al.

2. Y. Xiao, J. Xiao and S. Y. Wang, A hybrid model for time
series forecasting, Human Systems Management. 31(2)
(2012) 133–143.

3. Y. Xiao, J. Xiao, K. K. Lai and S. Y. Wang, A nonlinear
neural networks ensemble model for nonstationary
financial market trend mining, IEEE Transactions on
Neural Networks & Learning Systems. (2012),
Forthcoming.

4. Y. Xiao, M. Xiao and F. Z. Zhao, Improving financial
returns using neural networks and adaptive particle swarm
optimization, in: Proc.5th Int. Conf. Business Intelligence
and Financial Engineering, (Lanzhou, China, 2012),
Forthcoming.

5. Y. Xiao, J. Xiao and S. Y. Wang, A multiscale modeling
approach incorporating ARIMA and ANNs for financial
market volatility forecasting, in: Proc. Int. Conf.
Forecasting Economic and Financial Systems, (Beijing,
China, 2012), Forthcoming.

6. D. Brownstone, Using percentage accuracy to measure
neural network predictions in Stock Market movements,
Neurocomputing. 10 (1996) 237–250.

7. T. S. Quah and B. Srinivasan, Improving returns on stock
investment through neural network selection, Expert
Systems with Applications. 17 (1999) 295–301.

8. R. J. Kuo, C. H. Chen and Y. C. Hwang, An intelligent
stock trading decision support system through integration
of genetic algorithm based fuzzy neural network and
artificial neural network, Fuzzy Sets Systems. 118 (2001)
21–45.

9. D. Plikynas, L. Simanauskas and S. Buda, Research of
neural network methods for compound stock exchange
indices analysis, Informatica-Lithuan. 13 (2002) 465–484.

10. S. I. Ao, Automating stock prediction with neural network
and evolutionary computation, Lecture Notes in Computer
Science. 2690 (2003) 203–210.

11. C. Slim, Forecasting the volatility of stock index returns: A
Stochastic neural network approach, Lecture Notes in
Computer Science. 3045 (2004) 935–944.

12. N. O'Connor and M. G. Madden, A neural network
approach to predicting stock exchange movements using
external factors, Knowledge-Based Systems. 19 (2006)
371–378.

13. N. S. Thomaidis, V. S. Tzastoudis and G. D. Dounias, A
comparison of neural network model selection strategies
for the pricing of S&P 500 stock index options, Int. J. on
Artificial Intelligence Tools. 16 (2007) 1093–1113.

14. Z. Liao and J. Wang Forecasting model of global stock
index by stochastic time effective neural network, Expert
Systems with Applications. 37 (2010) 834–841.

15. E. Guresen, G. Kayakutlu and T. U. Daim, Using artificial
neural network models in stock market index prediction,
Expert Systems with Applications. 38 (2011) 10389–10397.

16. M. Jasemi, A. M. Kimiagari and A. Memariani, A modern
neural network model to do stock market timing on the
basis of the ancient investment technique of Japanese

Candlestick, Expert Systems with Applications. 38 (2011)
3884–3890.

17. E. Grimaldi, A. F. Grimaccia, M. Mussetta and R.E. Zich,
PSO as an effective learning algorithm for neural network
applications, in: Proc.3rd Int. Conf. Computational
Electromagnetics and Its Applications, (Beijing, China,
2004), pp. 557–560.

18. A. Alfi and H. Modares, System identification and control
using adaptive particle swarm optimization, Applied
Mathematical Modelling. 35 (2011), 1210–1221.

19. P. C. Wang and T. E. Shoup, A poly-hybrid PSO
optimization method with intelligent parameter adjustment,
Advances in Engineering Software. 42 (2011), 555–565.

20. A. Abraham and A. AuYeung, Integrating ensemble of
intelligent systems for modeling stock indices, Lecture
Notes in Computer Science. 2687 (2003),774-781

21. Y. K. Kwon and B. R. Moon, Evolutionary ensemble for
stock prediction, Lecture Notes in Computer Science. 3103
(2004),1102-1113

22. S. H. Chun and Y. J. Park, Dynamic adaptive ensemble
case-based reasoning: application to stock market
prediction, Expert Systems with Applications. 28(3) (2005),
435-443

23. Y. H. Chen, B. Yang and A. Abraham, Flexible neural
trees ensemble for stock index modeling, Neurocomputing.
70(4-6) (2007),697-703

24. C. H. Aladag, E. Egrioglu and U. Yolcu, Forecast
Combination by Using Artificial Neural Networks, Neural
Processing Letters. 32(3) (2010), 269-276

25. J. C. Hung, Applying a combined fuzzy systems and
GARCH model to adaptively forecast stock market
volatility, Applied Soft Computing. 11(5) (2011), 3938-
3945

26. J. T. Yao and C. L. Tan, A case study on using neural
networks to perform technical forecasting of forex,
Neurocomputing. 34 (2000), 79–98.

27. L. Breiman, Bagging predictors, Machine Learning. 26
(1996), 123–140.

28. Y. Raviv and N. Intrator, Bootstrapping with noise: an
effective regularization technique, Connection Science. 8
(1996), 355–372.

29. W. S. McCulloch and W. Pitts, A logical calculus of the
ideas imminent in nervous activity, Bulletin and
Mathematical Biophysics. 5 (1943), 115–133.

30. J. L. Elman, Finding Structure in Time, Cognitive Science.
14 (1990), 179-211.

31. D. T. Pham and X. Liu, Dynamic system identification
using partially recurrent neural networks, Journal of
Systems Engineering. 2(2) (1992), 90–97.

32. D. F. Specht, A general regression neural network, IEEE
Transactions on Neural Networks. 2 (1991), 568–576.

33. E. Parzen, On estimation of a probability density function
and mode, Annals of Mathematical Statistics. 33 (1962),
1065–1076.

Published by Atlantis Press
 Copyright: the authors
 113

 ANNs-PSO-GA Stock E-exchange Prices Forecasting

34. I. Daubechies, Ten Lectures on Wavelet. (SIAM,
Philadelphia, 1992).

35. K. Hornik, M. Stinchocombe and H. White, Multilayer
feedforward networks are universal approximators, Neural
Networks. 2 (1989), 359–366.

36. X. Zhang, J. Qi, R. Zhang, et al. Prediction of
programmed-temperature retention values of naphthas by
wavelet neural network, Journal of Computational
Chemistry. 25 (2001), 125.

37. C. W. Jiang and B. Etorre, A hybrid method of chaotic
particle swarm optimization and linear interior for reactive
power optimization, Mathematics and Computers in
Simulation. 68(1) (2005), 57–65.

38. S. F. Fan and E. Zahara, Hybrid simplex search and
particle swarm optimization for unconstratined
optimization problems, European Journal of Operational
Research. 181(2) (2007), 527–548.

39. C. Hamzacebi and F. Kutay, Continuous functions
minimization by dynamic random search technique,
Applied Mathematical Modelling. 31(10) (2007), 189–198.

40. A. Ratnawecra and S. Halgamuge, Self-organizing
hierarchical particle swarm optimizer with time-varying
acceleration coefficients, Evolutionary Computation. 8(3)
(2004), 240–255.

41. AP. Engelbrecht, Fundamentals of computational swarm
intelligence. (Wiley, Hoboken, 2005).

42. X. Huang, J. Zhang and Z. H. Zhan, Faster particle swarm
optimization with random inertia weight, Computer
Engineering and Design. 30(3) (2009), 647–650.

43. G. M.Chen, J. Y. Jia and Q. Han, Study on the strategy of
decreasing inertia weight in particle swarm optimization
algorithm, Journal of Xi’an Jiaotong University. 40(1)
(2006), 53–56.

44. J. A. Benediktsson, J. R. Sveinsson, O.K. Ersoy and P.H.
Swain, Parallel consensual neural networks, IEEE
Transactions on Neural Networks. 8 (1997) 54–64.

Published by Atlantis Press
 Copyright: the authors
 114

