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Abstract

There exists a large number of techniques for content-aware smoothing. Despite its simplicity, the Perona-
Malik Anisotropic Diffusion method is among the most employed ones. In this work we study this method
in detail and propose a generalization of its diffusion scheme using restricted dissimilarity functions to
measure the intensity differences between neighbouring pixels. This generalization permits a better adap-
tation of the diffusion process to the characteristics of the images.
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1. Introduction

Natural images usually contain a large number of
imperfections due to factors such as noise or bad il-
lumination of the scene. In order to minimize their
impact, most of the automated tasks in image pro-
cessing require some kind of image preprocessing.
In the specific case of edge detection, this prepro-
cessing generally intends to remove small imperfec-
tions or unimportant artifacts from the image, reduc-
ing the number of false positives 1.

The most basic (and employed) preprocess-
ing techniques for edge detection are the so-
called content-unaware smoothing (CUS) tech-
niques. These techniques perform spatial regular-
ization at every region in the image, regardless of

its content. A prominent CUS technique is Gaussian
linear filtering, which has excellent properties of sig-
nal conservation and computational efficiency 2,3.
CUS is effective in removing imperfections of the
image, as well as attenuating the visual impact of
high frequencies and textures, but also has undesir-
able effects. Since the smoothing is performed at
every region (including those having edges), the po-
sition of the edges might be altered, hindering their
accurate localization. Moreover, smoothing poten-
tially leads to excessively blurred images, on which
some edges are undetectable. This trade-off between
the regularization of non-meaningful regions of the
image and the overblurring of the edges has been
studied in the literature 4,5, but it has not yet been
solved. An important example of these efforts is the
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study of the Gaussian Scale-Space (GSS) 6, a frame-
work on which the changes undergone by an image
filtered with Gaussian filters can be studied (see 7,8).

Content-aware smoothing (CAS) techniques be-
have differently depending upon local features of
each region. In the case of edge detection, these
techniques aim to combine the regularization of non-
meaningful image variations with the preservation
of regions containing edges. One of the pioneering
CAS techniques is Anisotropic Diffusion (AD), pro-
posed by Perona and Malik 9. AD methods consider
an image to be a grid of bodies, each of them hav-
ing a heat level equal to the intensity of the corre-
sponding pixel. These methods simulate the process
of heat diffusion in the image, inhibiting heat trans-
fer at those positions of the image where the local
intensity differences are large. In this way, AD com-
bines the regularization inside the objects (where the
local intensity differences are expected to be small)
with the preservation of the true edges (across which
these differences are large). Perona and Malik pro-
pose a very simplistic, yet effective, scheme for dif-
fusion, avoiding most of the implicit problems in
discrete spatio-temporal models. We refer to this
method as the Perona-Malik AD method (PMAD).
Many other AD methods have been presented there-
after, aiming at either edge preservation 10,11, struc-
tural reinforcement 12 or noise removal 13,14. In this
work, we focus on PMAD and propose a general-
ization which tackles the way in which the local in-
tensity differences are computed and provides more
flexibility when performing the heat transfer inhibi-
tion.

The results obtained by CAS techniques heav-
ily depend upon the adequate measurement of lo-
cal features, since they comprise all the information
used to determine the local behaviour. In the case
of PMAD, the heat transfer at each pixel is deter-
mined by the difference between its intensity (heat
level) and that of its neighbours. However, propos-
als other than the difference have been suggested in
the literature to express the dissimilarity of two val-
ues. In this work, we focus on Restricted Dissimi-
larity Functions (RDFs) 15. Initially created to ex-
press the dissimilarity (distance) between two mem-
bership degrees, they can also be used to express the

dissimilarity between the intensity of two pixels. In-
deed, they have been successfully applied to image
processing 15,16. We generalize PMAD using RDFs
to measure the dissimilarity between neighbouring
pixels. In this way we introduce a new framework
where the diffusion process varies depending upon
the RDF used to measure the local intensity differ-
ences, so that we can adapt their interpretation to the
characteristics of the image.

The remainder of this paper is organized as fol-
lows. In Section 2 we recall the concept of an RDF.
In Section 3, we recall PMAD and present our gen-
eralization using RDFs. Section 4 reports on the
experiments comparing the performance of PMAD
with that of several variants of the proposed gen-
eralization. To conclude, conclusions are drawn in
Section 5.

2. Restricted dissimilarity functions

RDFs attempt to quantify the dissimilarity be-
tween two membership degrees (i.e., two values in
[0,1]) 17.
Definition 2.1 15 A restricted dissimilarity function
is a mapping r : [0,1]2→ [0,1] satisfying

(1) r(x,y) = r(y,x) for all x,y ∈ [0,1];
(2) r(x,y) = 1 if and only if x = 0 and y = 1 or x = 1

and y = 0;
(3) r(x,y) = 0 if and only if x = y;
(4) For all x,y,z ∈ [0,1], if x 6 y 6 z, then r(x,y) 6

r(x,z) and r(y,z)6 r(x,z).

Proposition 2.1 If ϕ1, ϕ2 are two automorphisms of
the unit interval, then the mapping r : [0,1]2→ [0,1]
defined by

r(x,y) = ϕ1(|ϕ2(x)−ϕ2(y)|) (1)

is a restricted dissimilarity function.

Example 1. Consider the automorphisms ϕ1(x) =
x2 and ϕ2(x) = x for all x ∈ [0,1]. Proposition 2.1
yields r(x,y) = |x− y|2.
Corollary 2.1 Let r be an RDF constructed as in
Prop. 2.1, and let n be a strong negation con-
structed as n(x) = ϕ

−1
2 (1−ϕ2(x)). Then, r(x,y) =

r(n(x),n(y)) holds for all x,y ∈ [0,1].
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The latter property is of special interest for im-
age processing, since it implies that the dissimilarity
between the intensity of any two pixels in a given
image is the same as in the negative image obtained
using n(x) = ϕ

−1
2 (1−ϕ2(x)).

Automorphisms can be generated using the ex-
pression ϕ(x) = xα , with α ∈ ]0,∞[. In this work
we consider different pairs of automorphisms for the
construction of RDFs (Prop. 2.1). In Table 1 we list
the RDFs used in this work, whose graphical repre-
sentation is included in Fig. 1. Note that, although
RDFs have common features due to the properties in
Def. 2.1, they can produce very divergent interpreta-
tions of the dissimilarity of certain pairs (x,y).

3. Anisotropic diffusion

3.1. The Perona-Malik anisotropic diffusion
method

AD stems from the application of the heat diffusion
paradigm to image processing. Initially, if no inhi-
bition were imposed to the heat transfer, the whole
image would reach a stable state with homogeneous
heat (intensity value) at each pixel. AD consists of
inhibiting heat transfer at the edges of the objects in
the image, so that the regularization process within
each object is independent from that in the rest of
the image. Ideally, each object should reach a sta-
ble state (i.e., each pixel within each object should
have the same intensity), but the edges should still
be recognizable, since each object is likely to reach
a different heat level.

Heat diffusion in an image I is a flux φ modelled
by Fick’s equation:

φ =−D∇I , (2)

where D is a symmetric, positive definite matrix and
∇I represents the local conductivity of I. Assuming
I is a heat loss-free scenario, at time t we have

δtI =−divφ , (3)

where div is the divergence operator. From (2) and
(3), we have

δtI = div(D∇I). (4)

Perona and Malik approximate the evolution of the
image with

δtI = div(g(|∇I|2)∇I) , (5)

where g is a decreasing function modulating the
amount of heat transfer depending upon the magni-
tude of the gradient 9.

Vectorial expressions (such as Eq. (5)) are prone
to generate problems in discrete environments such
as digital images. Even the computation of the gra-
dient ∇I is an ill-posed problem 18. In order to
avoid these problems (which affect both the calcu-
lation of ∇I and the subsequent application of the
flux δtI), Perona and Malik develop a simple, scalar
approximation. In PMAD the implementation of
Eq. (5) consists of calculating the heat transfer be-
tween each pixel and its four direct neighbours (see
Fig. 2). The rest of the pixels in the neighbourhood
is assumed to be unconnected to the central one.
From this diagram, the authors propose to calculate
4 values:

ΨNIi, j = Ii−1, j− Ii, j

ΨW Ii, j = Ii, j−1− Ii, j

ΨEIi, j = Ii, j+1− Ii, j

ΨSIi, j = Ii+1, j− Ii, j

(6)

where N, W , E and S indicate the direction in which
the difference is computed.

Any diffusion problem is driven by an initial
state and a diffusion scheme. In the case of PMAD,
the initial state (I[0]) is the original image. Then,
the image evolves iteratively so that the value of the
pixel at the position (i, j) at time t +1 is given by:

I[t+1]
i, j = I[t]i, j +λ

(
zN ·ΨNI[t]i, j + zW ·ΨW I[t]i, j +

zE ·ΨEI[t]i, j + zS ·ΨSI[t]i, j

) (7)

where λ ∈ ]0,0.25] is required for the numerical
scheme to be stable. Smaller values of λ lead to
more stable (and slower) diffusion. The conductivity
coefficients z represent the amount of diffusion that
takes place between the pixel at the position (i, j)
and its neighbours. The authors propose to use

zγ = g(|Ψγ Ii, j|) (8)
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Table 1: List of RDFs used in this work.
Name Automorphisms Expression

r1 ϕ1(x) = x, ϕ2(x) =
√

x r1(x,y) = |
√

x−√y|

r2 ϕ1(x) = x, ϕ2(x) = x r2(x,y) = |x− y|

r3 ϕ1(x) = x, ϕ2(x) = x2 r3(x,y) = |x2− y2|

r4 ϕ1(x) =
√

x, ϕ2(x) =
√

x r4(x,y) =
√
|
√

x−√y|

r5 ϕ1(x) =
√

x, ϕ2(x) = x r5(x,y) =
√
|x− y|

r6 ϕ1(x) =
√

x, ϕ2(x) = x2 r6(x,y) =
√
|x2− y2|

r1(x,y) = |
√

x−√y| r2(x,y) = |x− y|

r3(x,y) = |x2− y2| r4(x,y) =
√
|
√

x−√y|

r5(x,y) =
√
|x− y| r6(x,y) =

√
|x2− y2|

Figure 1: RDFs obtained using different automorphisms of [0,1], as listed in Table 1.
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for each orientation γ ∈ {N,W,E,S}, where g, as
in Eq. (5), is a decreasing function that modulates
the amount of diffusion depending upon the absolute
difference between the intensity of the pixels. We re-
fer to the functions g as conductivity functions. As a
conductivity function, Perona and Malik propose to
use either

g1(x) = e−(
x
K )2

(9)

or
g2(x) =

1

1+
( x

K

)2 , (10)

where K is a threshold such that the diffusion is in-
hibited whenever |Ψγ Ii, j| > K. In Fig. 3 we plot
the functions g1 and g2 with two different values of
K. In this figure we observe how, for a fixed K, g2
permits more diffusion than g1. More importantly,
when x≈ 1, g2(x) is above 0, which means that there
is some diffusion even when the difference between
pixels is extremely large. A deep study on the inter-
pretation of conductivity functions was performed
by Whitaker and Pizer 19, while Black et al. pro-
posed and studied alternative conductivity functions
in 20.

PMAD has been criticized in the literature,
mainly because of the scalar treatment of the dif-
fusivity 21,10,19. However, it can also be seen as
vectorial, being restrictive on the orientation of the
fluxes. The flux does not happen at the pixel, but
at each of the four sides of the pixel (as depicted
in Fig. 2). The simplicity of the scheme, especially
regarding the connectivity restrictions in the neigh-
bourhood, was already recognized by Perona and
Malik 9. They acknowledge that the discretization is
not exact, but justify the choice by its simplicity, and
claim that less crude approximations of the gradient
yielded perceptually similar results at the price of in-
creased computational complexity. Despite its sim-
plicity, PMAD holds interesting properties, namely:

• Energy preservation: The global energy in the en-
vironment (image) is preserved.

• Causality: No new local maxima or minima are
generated in the diffusion process.

Note that, unlike other AD methods, PMAD is
not bound to the time scale. Using Eq. (7) a se-
quence of versions of the image are obtained, but

time is not taken into consideration for purposes
other than iteration counting.

3.2. Generalizing Perona-Malik anisotropic
diffusion using restricted dissimilarity
functions

As we have shown in Section 2, RDFs are useful
to measure the dissimilarity between the intensity
of two pixels (Fig. 1). The fact is that the percep-
tual dissimilarity between two intensity values need
not to be linearly proportional to their absolute dif-
ference. As a consequence, functions that are able
to represent appropriately the dissimilarity between
two pixels can be considered. We generalize PMAD
by replacing the absolute difference between pixels
by an RDF. In this way, the measurements in Eq. (6)
turn into

ΨNIi, j = sign(Ii−1, j− Ii, j) · r(Ii−1, j, Ii, j)

ΨW Ii, j = sign(Ii, j−1− Ii, j) · r(Ii, j−1, Ii, j)

ΨEIi, j = sign(Ii, j+1− Ii, j) · r(Ii, j+1, Ii, j)

ΨSIi, j = sign(Ii+1, j− Ii, j) · r(Ii+1, j, Ii, j)

(11)

where r is an RDF. Our method generalizes PMAD,
since Eq. (6) is computationally equivalent to
Eq. (11) using r2(x,y) = |x − y|. We refer to
this AD method as the Generalized Perona-Malik
Anisotropic Diffusion method using an RDF r
(GPMAD-r).

The role of r in GPMAD-r is to measure the
dissimilarity between neighbouring pixels. Ideally,
an RDF must produce small dissimilarity values for
pixels within the same object; but at the same time,
it should be able to produce large values for pixels
belonging to different objects. Since the expected
behaviour of the diffusion process may vary among
different images, the selection of the most appropri-
ate RDF is problem dependent.

In order to show the influence of the RDF in the
diffusion process, Fig. 4 contains the diffusion co-
efficients (zγ(x,y) = g(r(x,y))) obtained combining
the RDFs in Table 1 and the conductivity functions
g1 and g2. For each conductivity function two differ-
ent values of the threshold K have been used. Recall
that the case of PMAD is recovered using r2. The
amount of diffusion between two pixels is linearly
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Ii+1, j

Ii, j

Ii−1, j

Ii, j−1 Ii, j+1

ΨN

ΨEΨW

ΨS

Figure 2: Discrete scheme for diffusion used in PMAD.

0

0.5

1

0 1

g1 with K = 0.1
g1 with K = 0.3
g2 with K = 0.1
g2 with K = 0.3

Figure 3: Conductivity functions g proposed by Perona and Malik.

proportional to zγ(x,y), and hence combinations of
g and r producing greater zγ(x,y) empower the heat
transfer between pixels. We observe two different
behaviours, depending upon the automorphism ϕ1
used to generate the RDF. Those RDFs generated
with ϕ1(x)= x, i.e., r1, r2 and r3, permit significantly
more diffusion than those using ϕ1(x) =

√
x. As ex-

pected from Fig. 3, g2 yields more diffusion than
g1, but the most influential factor in zγ(x,y) is the
selection of the automorphism ϕ1. An important di-
vergence between g1 and g2 occurs when |x−y| ≈ 1,
since the latter leads to a certain amount of diffusion,
even for relatively small values of K. Interestingly,
the behaviour of the function strongly depends upon
the overall brightness of x and y, not only upon the
difference between them. For example, r1 produces
more diffusion than r3 when x ≈ y ≈ 1, but exactly
the opposite happens with x≈ y≈ 0. Therefore, r1 is
a better choice when we intend to regularize bright
regions, while inhibiting heat transfer in dark ones.

3.3. Examples of image regularization using
GPMAD-r

In order to illustrate the results that can be obtained
using different RDFs, we have applied GPMAD-r to
the images in Fig. 5 using the RDFs in Table 1. The
first image is a 100× 100 image contaminated with
Gaussian additive contamination (σ = 0.2). The
second one is a natural image with 256× 256 pix-
els. The diffusion has been carried out with fixed
λ = 0.1 and variable K, which is calculated at each
iteration using the histogram-based technique pro-
posed in 9.

In Fig. 6, the results on the first image are pre-
sented. We observe that the choice of r severely af-
fects the amount of noise that GPMAD-r is able to
remove, as well as the number of iterations it needs
to do so. Those RDFs producing more diffusion (r1,
r2 and r3) lead to smoother versions of the image.
In the case of r1, the resulting image is excessively
blurred, to the point that the edges are hardly recog-
nizable. When using r2 or r3, the diffusion process
is able to remove most of the noise, but at the same
time preserves the true edges. Those RDFs yield-
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r1

r2

r3

r4

r5

r6

g1, K = 0.2 g2, K = 0.2 g1, K = 0.4 g2, K = 0.4

Figure 4: Diffusion coefficients (z(x,y) = g(r(x,y))) obtained with different combinations of RDFs and conduc-
tivity functions.

Figure 5: Images used for the visual evaluation of GPMAD-r.
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500 its. 1000 its. 2000 its. 5000 its. 7500 its. 10000 its.

Figure 6: Example of the application of the GPMAD-r on the first image in Fig. 5 with different RDFs. Note
that the use of r2 is computationally equivalent to PMAD.
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ing more restricted diffusion (r4, r5 and r6) produce
similar results: they perfectly preserve the edges, but
they are unable to regularize the image at the posi-
tions where the noise contamination is severe. As
a consequence, a significant amount of noise is also
preserved. In this image, due to the combination of
high-contrast edges and heavy Gaussian contamina-
tion, r2 and r3 are the RDFs producing the best re-
sults.

The results obtained on the second image are dis-
played in Fig. 7. In this case, the less conservative
RDFs (in particular r1) produce excessive diffusion,
leading to the removal of important edges, such as
the lower side of the middle pepper. Relatively high-
contrasted edges are also destroyed, such as the stalk
of the leftmost pepper. Alternatively, the RDFs r4,
r5 and r6 offer a good trade-off between preserva-
tion of the edges and intra-region regularization. For
this specific image, r4 seems to produce the best re-
sults. However, studying the images in detail we ob-
serve that some weak edges in the original image
gain contrast as the number of iterations increases.
In this way, smooth transitions due to the lighting
or shading become sharper, looking like true edges,
and potentially producing false positive edge detec-
tions. This effect is referred to as staircasing, and
it might induce errors in further processing of the
image 22.

Despite the fact that intra-region regularization
(together with the preservation of the edges) is not
easily noticeable on a visual example, is is very im-
portant for edge detection. In order to illustrate the
improvement obtained, we display in Fig. 8 the lo-
cal contrast∗of the images in the rightmost column of
Fig. 7, together with the local contrast of the images
produced with Gaussian linear filters with different
standard deviations σ . We observe how GPMAD-r
outperforms the commonly used Gaussian smooth-
ing in the regularization within the objects, while
not blurring the edges. However, this comes at the
cost of removing some meaningful edges (leading to
false negative detections) and the reinforcement of
non-meaningful objects (producing false positives).

The most interesting conclusion drawn from
Figs. 6 and 7 is that the results of GPMAD-r are

directly related to the characteristics of the RDF
employed to quantify the dissimilarity of the in-
tensity of two pixels. In this way, we can predict
the results by analyzing the diffusion coefficients
zγ(x,y) = g(r(x,y))), which depend upon the char-
acteristics of r and g.

4. Experimental study

The qualitative example in Section 3.2 illustrates the
performance of GPMAD-r, but there is a need for
a quantitative evaluation of its usefulness for im-
age regularization. In this section, we study the
performance of the well-known Canny method for
edge detection after regularizing the images using
GPMAD-r, with different RDFs r. We also intend to
find out whether there are significant differences in
the performance of GPMAD-r when using different
RDFs. Since we include r2 in the comparison, we
also cover PMAD. In this experiment the parameter
λ is set to 0.05, while K is updated at each iteration
using the same technique as in Section 3.3.

4.1. Edge detection algorithm

For the experiment we have selected the Canny
method 4, which is commonly taken as a standard for
edge detection 5,23. In this edge detection method
the images are preprocessed using Gaussian linear
filters, which we replace by GPMAD-r. The Canny
operators for gradient extraction are generated with
σ = 1.0 4,24. Then, the binarization process con-
sists of (a) thinning using Non-Maximum Suppres-
sion (NMS) 25 and (b) binarizing using hysteresis 4.
The values of the thresholds in the hysteresis have
been set using the technique by Medina-Carnicer et
al. 26, which is based on computing the properties of
the edge images generated with a large set of thresh-
old candidates.

4.2. Quantifying the results of an edge detection
method

In order to quantify the quality of a given edge
image we use Baddeley’s Delta Metric (BDM) 27,

∗The local contrast at each pixel is defined as the difference between the brightest and darkest pixel in its 3×3 neighbourhood.
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Figure 7: Example of the application of the GPMAD-r on the second image in Fig. 5 with different RDFs. Note
that the use of r2 is computationally equivalent to PMAD.
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Figure 8: Local contrast of the images generated performing 20000 iterations of GPMAD-r with different RDFs
(first row) and the images generated using Gaussian smoothing with different standard deviation (σ ).

which permits to quantify its distance to a perfect
or ground-truth solution. Let A and B be two binary
edge images of size M×N, and let S = {1, . . . ,M}×
{1, . . . ,N} be the set of their positions. Their β -
BDM, also denoted ∆

β
w(A,B), is defined as

∆
β
w(A,B) =

[
1
|S|∑s∈S

|w(d(s,A))−w(d(s,B))|β
] 1

β

(12)
where d(s,A) represents the distance from the po-
sition s to the closest edge point of the image A
and w : R → R is a concave, increasing function
used for weighing. We use the trimmed distance
d(p,q) = min(10,deuc(p,q)), where deuc is the Eu-
clidean distance. In this way, the maximum penal-
ization produced by a pixel is restricted to 10 (about
2% of the image diagonal). The other parameters
take values β = 2 and w(x) = x, as in 28,29.

Let A be the output of the Canny method in com-
bination with GPMAD-r, with a given RDF r. Given
a set of ground-truth images provided by different
human experts, {B1, . . . ,Bn}, the error of the RDF r
in that image is mini∈{1,...,n}∆2(A,Bi), i.e., the dis-
tance of the edge image to the closest solution pro-
vided by a human expert.

We have used the images in the Berkeley Seg-
mentation Dataset (BSDS) to test our proposal, con-
sisting of 100 images. This dataset offers a wide

variety of natural images, each of them coming with
5 to 9 hand-made segmentations. The boundaries of
the regions of these segmentations can be taken as
ideal solutions of the edge detection problem. The
images in the BSDS are in grayscale and have di-
mensions 321×481 or 481×321.

4.3. Analysis of the results

In Fig. 9 we display the results obtained by each of
the RDFs in Table 1, i.e. the average performance
of the Canny method after applying GPMAD-r, de-
pending on the number of iterations. In Fig. 9(a)
the results obtained with the conductivity function
g1 are shown, whereas Fig. 9(b) includes those ob-
tained with g2. The scale used for the iterations is
not linear, so that the evolution of the image in the
first iterations can be properly noticed.

First, we observe that most of the improvement
gained using GPMAD-r takes place in the first it-
erations. The improvement after 100 iterations is
about 80% of the total gain after 3000 iterations.
Second, the error never rises when the number of it-
erations increases. In this way, we can overestimate
the number of iterations needed to perform the dif-
fusion without having the risk of hindering the per-
formance.

In Fig. 9 it can be seen that the performance of
GPMAD-r strongly depends on the automorphism
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(b) Results using the conductivity function g2.

Figure 9: Performance of the Canny edge detection method in combination with GPMAD-r measured in terms
of ∆2.
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(b) Results using the conductivity function g2 .

Figure 10: Number of images in the test set of the BSDS for which the results produced by each RDF r are the
best and the worst among the candidate RDFs.
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ϕ1, as we anticipated in Section 3.3. The RDFs
based on ϕ1(x) = x (i.e. α = 1) obtain the best av-
erage results, always outperforming those based on
ϕ2(x) =

√
x. There are slight differences in perfor-

mance depending upon ϕ2, but they are not as signif-
icant as those generated by the selection of ϕ1. Re-
garding the comparison between conductivity func-
tions, we observe that both perform in a similar way.
As expected, g2 produces a faster improvement of
the results, due to the larger amount of diffusion (see
Figs. 3 and 4), which leads to a faster removal of
noise and textures. Note also that the combinations
of the most conservative conductivity function (g1)
and the most conservative conductivity coefficients
(those based on r4-r6) do not produce good results,
since the reduction of ∆2 is relatively slow.

In Fig. 10 we display the number of images for
which each RDF r is the best and the worst per-
former, after a fixed number of iterations. The re-
sults using g1 are included in Fig. 10(a), while those
with g2 are in Fig. 10(b). When using g1 we observe
clear differences between r1−−r3 and r4−−r6. It
is remarkable that r1 accounts for a large portion of
the best results, although the average performance is
not much better than that of r2 or r3. When using g2,
the differences in performance are much smaller, as
seen in Fig. 9(b). It is noteworthy how GPMAD-
r2, despite having a similar average ∆2 to that of
GPMAD-r1 or GPMAD-r3, is a much safer choice,
in the sense that it almost never produces the worst
possible result, regardless of the conductivity func-
tion g.

We observe that the incorporation of different
RDFs into PMAD does not result in an increase of
the performance on average. However, it can re-
sult in a clear improvement when the conditions of
the images fit the characteristics of the RDF. From
these results we conclude that (a) any RDF r can
perform well when the conditions of the image fit
its interpretation of the intensity dissimilarities and
(b) GPMAD-r2 is the safest choice, in the sense that
it yields acceptable average performance and hardly
ever produces very bad results. We recommend to
select the specific RDF based upon the characteris-
tics of the images in which the diffusion is going to
take place. However, in case no information is avail-

able about the image, GPMAD-r2 (which is equiva-
lent to PMAD) is the best option.

5. Conclusions

In this work, we have introduced GPMAD-r, a gen-
eralization of PMAD. Our proposal consists of re-
placing the absolute difference by an RDF to mea-
sure the dissimilarity of the intensity two contigu-
ous pixels, which determines the amount of diffu-
sion that takes place at each position of the image.
We have studied the behaviour of different RDFs
and, using visual examples, we have shown that the
success of a diffusion process depends upon the se-
lection of an adequate RDF. Finally, we have car-
ried out a quantitative analysis of the improvement
an edge detection method can experience by using
our method with different RDFs.

The use of RDFs provides more flexibility in
the interpretation of the difference between pixels,
offering the possibility to adapt AD to the condi-
tions of an image, and consequently leading to bet-
ter results from a qualitative and quantitative point
of view. Moreover, GPMAD-r is simple enough to
establish a clear connection between the RDFs and
the final results. Ideally, we would be able to auto-
matically adapt the choice (or even the creation) of
the RDF to the specific conditions of an image. This
process could be semi-supervised, using tagged re-
gions provided by a human expert, or fully unsuper-
vised, using noise and texture estimators. For this
reason, in future works we aim to study the automa-
tion of the RDF selection depending upon the char-
acteristics of each individual image, or even depend-
ing on the region where the RDF is applied.
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10. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Im-
age selective smoothing and edge detection by nonlin-
ear diffusion,” SIAM Journal on Numerical Analysis,
vol. 29, pp. 182–193, 1992.

11. J. Song and H. R. Tizhoosh, “Fuzzy anisotropic diffu-
sion based on edge detection,” Journal of Intelligent
and Fuzzy Systems, vol. 17, no. 5, pp. 431–442, 2006.

12. J. Weickert, “Coherence-enhancing diffusion filter-
ing,” International Journal of Computer Vision,
vol. 31, no. 2-3, pp. 111–127, 1999.

13. Y. Yu and S. Acton, “Speckle reducing anisotropic dif-
fusion,” IEEE Trans. on Image Processing, vol. 11,
no. 11, pp. 1260–1270, 2002.

14. K. Krissian, C.-F. Westin, R. Kikinis, and K. Vos-
burgh, “Oriented speckle reducing anisotropic diffu-
sion,” IEEE Trans. on Image Processing, vol. 16,
no. 5, pp. 1412–1424, 2007.

15. H. Bustince, E. Barrenechea, and M. Pagola, “Re-
lationship between restricted dissimilarity functions,
restricted equivalence functions and normal EN-
functions: Image thresholding invariant,” Pattern
Recognition Letters, vol. 29, no. 4, pp. 525–536, 2008.

16. M. Galar, J. Fernandez, G. Beliakov, and H. Bustince,

“Interval-valued fuzzy sets applied to stereo matching
of color images,” IEEE Trans. on Image Processing,
vol. 20, no. 7, pp. 1949–1961, 2011.
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