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Abstract

In this work, the axiomatical definition of similarity measure, distance measure and inclusion measure
for interval-valued intuitionistic fuzzy soft set (/VIFSSs) are given. An axiomatical definition of entropy
measure for IVIFSSs based on distance is firstly proposed, which is consistent with the axiomatical
definition of fuzzy entropy of fuzzy sets introduced by De Luca and Termini. By different compositions
of aggregation operators and a fuzzy negation operator, we obtain eight general formulae to calculate the
distance measures of IVIFSSs based on fuzzy equivalences. Then we discuss the relationships among
entropy measures, distance measures, similarity measures and inclusion measures of IVIFSSs. We prove
that the presented entropy measures can be transformed into the similarity measures and the inclusion
measures of IVIFSSs based on fuzzy equivalences.
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1. Introduction

Many new set theories treating imprecision and
uncertainty have been proposed since fuzzy sets
were introduced by Zadeh'. Atanassov’s intuition-
istic fuzzy sets® (IFSs), vague sets* and interval-
valued fuzzy sets202l (JVFSs), as extensions of
classic fuzzy set theory, are proved to be useful
in dealing with imprecision and uncertainty. As
a combining concept of /FSs and IV F'Ss, interval-
valued intuitionistic fuzzy sets (IVIF'Ss) introduced
by Atanassov > greatly furnishes the additional ca-
pability to model non-statistical uncertainty by pro-
viding a membership interval and a non-membership
interval. Therefore, IVIF Ss play a significant role

* Corresponding author.

in the uncertain system and receives much atten-
tion. The concept of soft set theory, which can
be used as a general mathematical tool for deal-
ing with uncertainty, is initiated by Molodtsov® in
1999. Since it has been pointed out that classical
soft sets are not appropriate to deal with imprecise
and fuzzy parameters, some fuzzy (or intuitionis-
tic fuzzy, interval-valued fuzzy) extensions of soft
set theory , yielding fuzzy (or intuitionistic fuzzy,
interval-valued fuzzy) soft set theory &7:8910:11 hag
been presented to deal with imprecise and fuzzy
parameters. Recently, by combining the interval-
valued intuitionistic fuzzy sets and soft sets, Jiang et
al '2 propose a new soft set model: interval-valued
intuitionistic fuzzy soft sets (IVIFSSs). Intuitively,
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interval-valued intuitionistic fuzzy soft set can be re-
garded as an interval-valued fuzzy extension of the
intuitionistic fuzzy soft set 310 or an intuitionistic

fuzzy extension of the interval-valued fuzzy soft set
11

Some scholars have already noticed and studied
entropy measures based on distance for fuzzy sets
and extensions of fuzzy sets. Mi'? extended De Lu-
cas axioms 2 to introduce an entropy of fuzzy set
based on fuzzy distance. Later, Farhadinia'® pro-
pose a class of entropies of IV FSs based on the dis-
tance measure and investigate the relationship be-
tween the entropy measure and the similarity mea-
sure. Zhang et al'” propose an axiomatical defini-
tion of entropy measure for /VIFSs based on dis-
tances and discuss the relationship between entropy
with similarity and inclusion measure. However,
few scholars have paid attention to the entropy mea-
sures based on distance for fuzzy (or intuitionis-
tic fuzzy, interval-valued fuzzy, interval-valued in-
tuitionistic fuzzy) extensions of soft sets yet. In this
work, we provide an axiomatic definition of entropy
based on distance for IVIFSSs and discuss the re-
lationship between entropy measure with similar-
ity, distance and inclusion measures for IVIFSSs.
There are several reasons that motivate us to do
this research. Firstly, although there are a number
of researches regarding entropy measures for hy-
brid fuzzy set theory, few literatures studied the en-
tropy measure of /VIFSSs; Secondly, the uncertain
measures of /VIFSSs have great application poten-
tial in many fields such as uncertain system control,
decision-making and pattern recognition; Thirdly,
the study of relationships between different mea-
sure benefits us in achieving as more information
as possible through each measure. This new ex-
tension not only provides a significant addition to
existing theories for handling uncertainties, but also
leads to potential areas of further research field and
pertinent applications. It is worth noticing that we
give a method to construct the distance measures
of IVIFSSs by aggregating fuzzy equivalencies and
prove that the presented entropy measures can be
transformed into the similarity measures and the in-
clusion measures of IVIFSSs based on fuzzy equiv-
alences.
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The structure of this paper is as follows. Sec-
tion 2 reviews some concepts which are necessary
for our paper. Section 3 provides the axiomatic def-
initions of similarity measure, distance measure and
inclusion measure of IVIFSSs, an information en-
tropy based on distance is also introduced to esti-
mate uncertainty in /VIFSSs. Corresponding calcu-
late formulae or construction methods of these mea-
sures are also given. In section 4, we investigate the
relationship between the entropy measure and other
uncertain measures of IVIFSSs, prove that both the
similarity measures and the inclusion measures of
IVIF SSs can be constructed by entropy measures of
IVIFSSs. In section 5, an application of the entropy
and the distance measure of IVIF SSs is given. This
paper is concluded in Section 6.

2. Preliminaries

In this section, we shall recall several definitions
which are necessary for our paper.

Let U be the universe of discourse and P be the
set of all possible parameters related to the objects
in U. In the following discussion, we assume that
both U and P are nonempty finite sets.

Definition 1. ® Let #2(U) be the power set of U,
a pair (F,A) is called a soft set in the universe U,
where A € P and F is a mapping given by

F:A— 2(U)

In other words, the soft set is not a kind of set in
ordinary sense, but a parameterized family of sub-
sets of the set U. For any parameter e¢; € A, F(e;) C
U may be considered as the set of e;— approximate
elements of the soft set (F,A).

Interval-valued intuitionistic fuzzy set was first
introduced by Atanassov and Gargov '3. It is char-
acterized by an interval-valued membership degree
and an interval-valued non-membership degree.

Definition 2. '8 An interval-valued intuitionis-
tic fuzzy set on a universe U is an object of
the form A = {(x,ua(x),va(x))/x € U}, where ua :
U — Int([0,1]) and v4 : U — Int([0, 1]) satisfy
the following condition: Vx € U, sup(ua(x)) +
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sup(va(x)) < 1. (Int([0,1]) stands for the set of all
closed subintervals of [0, 1]).

The class of all interval-valued intuitionistic
fuzzy sets (IVIFSs) on U will be denoted by
IVIFS(U).

For an arbitrary set A C [0, 1], define A = supA
and A = infA. The interval-valued intuitionistic
fuzzy set A can be written as

A = {00, [ug (%), (x))], [4 (), Va ()] /¥ € U}

with the condition: 0 < w4 (x) +va(x) < 1 for all
xeU.

The union, intersection and complement of the
interval-valued intuitionistic fuzzy sets are defined
as follows: let A,B € IVIFS(U), then
1) the union of A and B is denoted by AU B where

AUB = {(x, [sup(uy (x), up(x)), sup(ua (x), up(x))],
[inf (va(x), vp(x)), inf (va(x),va(x))])|x € U}

2)the intersection of A and B is denoted by AN B
where

ANB = {{x, [inf (uy (x),up(x)), inf (wa (x), up(x)],
[sup(va(x),vp(x)), sup(va(x), vp(x))]) |x € U}.

3) the complement of A is denoted by A¢ where

AC = {(x,va(x),ua(x))}.

Atanassov® shows that AUB, AN B and A€ are
again interval-valued intuitionistic fuzzy sets.

Jiang et al.'? define interval-valued intuitionis-
tic fuzzy soft sets (/VIFSSs) by combining interval-
valued intuitionistic fuzzy sets and soft sets, and
then give some operations on IVIFSSs.

Definition 3. '> A pair (F,A) is an interval-valued
intuitionistic fuzzy soft set over U, where A € P and
F is a mapping given by

F:A— IVIFS(U)
The class of all interval-valued intuitionis-

tic fuzzy soft sets over U will be denoted by
IVIFSS(U).
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An interval-valued intuitionistic fuzzy soft set is
a parameterized family of interval-valued intuition-
istic fuzzy subsets of U, thus, its universe is the set
of all interval-valued intuitionistic fuzzy sets of U,
i.e., IVIFS(U). For any parameter ¢; € A, F(e;)
is referred as the interval-valued intuitionistic fuzzy
value set of parameter e;, it can be written as:

F(ei) = {{xj up (e (), V(e () 1x; € UL = {(x),
[EF(e,v)(xj)aﬁF(e;)(xj)]a[KF(ei)(xj)?vF(ei) (xj)]>|xj € U}

with the condition 0 < g (e, (X;) + Vp(,) (x;) < 1.
Here, uF(el.)(xj) is the interval-valued fuzzy mem-
bership degree that object x; holds on parame-
ter e;, Vp(e,)(x;) is the interval-valued fuzzy non-
membership degree that object x; holds on param-
eter e;.

Definition 4. '° Let [a1,b1], [az,b2] € Int(]0,1]), we
define

la1,b1] < [az,by); iff a1 < ax; by < b

la1,b1] = [az, by); iff ay < ag; by 2 by;

[al,bl] = [az,bz]; iffa1 =aj, b1 = bz.

Definition 5. !> Let U be an initial universe and
P be a set of parameters. Suppose that A,B C P,
(F,A) and (G, B) are two interval-valued intuitionis-
tic fuzzy soft sets, we say that (F,A) is an interval-
valued intuitionistic fuzzy soft subset of (G,B) if
and only if

(1) ACB;

(2) Ve; € A, F(e;) is an interval-valued in-
tuitionistic fuzzy subset of G(e;), that is,
[Up (e (X)) T () (X)) < [UG(e) (X)), UG e;) (%))]
and
Vr(e) (X7, VF (@) ()] Z [Vg(en (X))sV6(e,) (%))]
forall x; € U, e; € A.

This relationship is denoted by (F,A) C (G,B).
(F,A) and (G, B) are said to be intuitionistic equal if
and only if (F,A) D (G,B) and (F,A) C (G, B) at the
same time, we write (F,A) = (G, B).

The union and intersection of the interval-valued
intuitionistic fuzzy soft sets are defined'? as follows:
let (F,A), (G,B) € IVIFSS(U), then
1) The union of (F,A) and (G,B) is an interval-
valued intuitionistic fuzzy soft set (H,C), where
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C=AUBande; €C.

Ur(e) (X)) = Upe)(Xj)s VE(e)(X]) = VE(e) (X)), if

eiEA\B,XJ'GU;

uH(e,')(xj) = uG(ei)(xj)’ VH(ei)(xj) = vG(e,')(xj)’ if

e;€B\A,x;eU;
) (x

UH (e; )= [S”P(MF )( )EG(ei)(xj))asup(ﬁF(e,-)(xj)a
ey (xj))]
VHe( J) = [inf (Vo) (%7), VG ey (K5 inf (Ve (e (x7),

V(e ,)( xj))] 1fe,€AﬂB x;eU.

We denote it by (F,A)U(G,B) = (H,C).

2) The intersection of (F,A) and (G,B) is an
interval-valued intuitionistic fuzzy soft set (H,C),
where C=AUB and ¢; € C.

Ur(e;) (X)) = Ure)(Xj)s VE(e) (X)) = VE(e)(x)), if
e; EA\B,)CJ' e U,

MH(e,-)(xj) = UG(e) (X)) VH(e) (X)) = VG (%)), if
e; € B\A,x; € U;

”H(e,-)(xj) [mf(ﬂF e,-)(xj)’ﬂG(e,»)(xj))a inf(ﬁF(e,-) (xj)a
ﬁG(ei) (xj))]’
Va (e (X7) = 5D (V) (X)) VG e) (7)) 51D (VE(e7) (%)),

ife,-GAﬂB,xj- eU.
We denote it by (F,A) N

(G,B)=(H,C).

Definition 6.  The relative complement of an
interval-valued intuitionistic fuzzy soft set (F,A)
is denoted by (F,A) and is defined by (F,A)¢ =
(F€,A), where F€ : A — IVIFS(U) is a mapping
given by FC(er) = {(x},vp(e)) (%)), ur (e (%)) [xj €
U} forall e; € A.

Definition 7. '> An interval-valued intuitionistic
fuzzy soft set (F,A) over U is said to be a null
interval-valued intuitionistic fuzzy soft set denoted
by (Q,A), if UF(e;) (xj) = [0,0],Vp(ei)(xj) = [1, 1] for
alle;GA,xj- eU.

Definition 8. '> An interval-valued intuitionistic
fuzzy soft set (F,A) over U is said to be an absolute
interval-valued intu- itionistic fuzzy soft set denoted
by (U,A), if MF(e,-)(xj) =1, l]vVF(e,-) (xj) = [0,0] for
all ¢; GA,XJ' eU.
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3. The distance, similarity, inclusion measure
and entropy of /VIFSSs

3.1. Axiomatic definitions

In this subsection, we extend the axiomatic defini-
tions of the distance, similarity, inclusion measure
and entropy of IVIFSs in Ref. ! to IVIF SSs.

Definition 9. Let (F,P), (G,P) and (H,P) be
interval-valued intuitionistic fuzzy soft sets over U,
ie., (F,P),(G,P),(H,P) € IVIFSS(U). Let D be
a mapping D : IVIFSS(U) x IVIFSS(U) — [0, 1].

If D((F,P),(G,P)) satisfies the following properties
(D-@):
(1) D((F,P),(F,P)¢) = 1, if (F,P) is a classical
soft set;

(2) D((F,P),(G,P)) =0, iff (F,P) = (G,P);

(3) D((F7P)7(G7P)) :D(<G7P)7(F7P));

> D((F,P),(G,P)) and
> D((G,P),(H,P)), if
(H,P).

Then D((F,P),(G,P)) is a distance measure be-
tween interval-valued intuitionistic fuzzy soft sets
(F,P) and (G, P).

4) D((F,P),(H,P)

)
D((F,P),(H,P))
(F.P) C (G,P) C

Definition 10. Let (F,P), (G,P) and (H,P) be
interval-valued intuitionistic fuzzy soft sets over U,
ie., (F,P),(G,P),(H,P) € IVIFSS(U). Let S be
a mapping S : IVIFSS(U) x IVIFSS(U) — [0, 1].

If S((F,P),(G,P)) satisfies the following properties
(1)-(4)):
(1) S((F,P),(F,P)¢) =0, if (F,P) is a classical
soft set;

(2) S((F,P),(G,P)) = 1,iff (F,P) = (G,P);

(3) S((va)v(GvP)) :S((G’P)7(F7P));
4) S((F,P),(H,P)) < S((F,P),(G,P)) and
) < S

S((F, )7( P) ((GP) (H,P)), if
(F.P) C



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 569-592

Then S((F,P),(G,P)) is a similarity measure be-
tween interval-valued intuitionistic fuzzy soft sets
(F,P) and (G,P).

Definition 11. A real function J : IVIFSS(U) x
IVIFSS(U) — [0,1] is named as the inclusion
measure of interval-valued intuitionistic fuzzy soft
sets, if J has the following properties:

(1) If (FaP) = (va)v(GaP) = (@,P),
then J((F,P),(G,P)) =0;
),(G,P)) = 1,iff (F,P) C
(3) If (F,P) € (G,P) C (H,P),
then J((H,P), (F,P)) < J((G,P),(F,P)) and
J((H,P),(F,P)) <J((H,P),(G,P)).

Then J((F,P),(G,P)) is called an inclusion measure
of interval-valued intuitionistic fuzzy soft sets.

2) J((F.P (G,P):

Definition 12. Let (Q, P) be an interval-valued intu-
itionistic fuzzy soft seton U, s.t. for Ve; € P, Q(e;) =
{(xj,[1/2,1/2],(1/2,1/2])|x; €U}. A real func-
tion / : IVIFSS(U) — [0, 1] is called an entropy for
interval-valued intuitionistic fuzzy soft sets, if I has
the following properties:

() I((F,P)) =

) I((F,P)) = 1 iff up)(xj) = Vi) (x)) =
[1/2,1/2],Ve; € P,xj € U;
)=

) <

0 if (F,P) is a classical soft set;

(3) I((F,P)) =1((F,P)):

)
@) I((F,P)) < I((G,P)), if D((F,
D((G,P).(Q,P)).

Here, the requirement (2) implies that entropy
of (F,P) will be maximum if (F,P) is equal to
(0, P) the requirement (4) 1mp11es that the closer
an interval-valued intuitiionistic fuzzy soft set (F, P)
is to (Q,P), the more entropy of (F,P) should de-
crease.

P),(Q,P)) >

3.2. Some general formulae to construct the
distance measure of IVIFSSs

Before giving some general formulae to construct
the distance measure of IVIFSSs, we review the no-
tions of aggregation operators and equivalence oper-
ators.
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Definition 13. '* A function M : {J,cy[0,1]"
[0,1] is an aggregation operator if it satisfies the fol-

lowing properties: for each n € N and x;,y; € [0, 1],
() M(x;) = x;.
(2) M(0,0,...,0)=0.
——
n times
3) M(1,1,...,1)=1.
n times

4) M(x1,x2,...x,) < M(y1,y2,...y,) Whenever
xi <y, Vie {1,2,...1’1}.

severe
This definition allows us to introduce the follow-
ing notions:
An aggregation operator M : (J,cn[0,1]" —
[0, 1] is called a severe-aggregation operator if it sat-
isfies properties: for each n € N and x; € [0,1](i =

{1,2,...,n}),
(5) M(x1,x2,..xy) < 1ifx; <1,Vie{l,2,..n}.

(6) M(xy,x2,..x,) >0ifx; >0,Vie{l1,2,..n}.

An aggregation operator M : |J,cn[0,1]" —
[0,1] is called a top-aggregation operator if it sat-

isfies property: for each n € N and x; € [0,1](i =
{1,2,...,n}),
(7) M(x1,x2,..%) =1 < x;=1,Vie{l,2,..n}.

An aggregation operator M : (J,cn[0,1]" —
[0,1] is called a bottom-aggregation operator if it
satisfies property: for each n € N and x; € [0,1](i =

{1,2,...,n}),

(8) M(x1,x2,..x,) =0 x;=0,Vie {1,2,..n}.

An aggregation operator M : (J,cn[0,1]" —
[0,1] is called an idempotent-aggregation operator
if it satisfies property: for each n € N and x € [0, 1],

(9) M(x,x,...,x)=xforVxe|0,1].
——
n times

Example 1. As examples of the severe-aggregation
operators, we take: foreachn € N and x; € [0, 1](i =

{1,2,...,n}),
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(1) M(x1,x2,..%,) = %Z?’:]x,-.

(2) M(x1,x2,...%,) = Amin(xy,Xx2,...,%;)+ (1= 1)
max(xy,x2,...,x,) with A € [0, 1].

(3) M(x1,x2,...x,) = max(xy,xa,...,X,) / (max(xp,
X2y ey Xp) Fmax(1—x1,1 —xp, ..., 1 —x,)).

As examples of the top-aggregation operators, we
take: foreachn € Nandx; € [0,1](i = {1,2,...,n}),

P 1
xf'i'xg-’iz-...-&-m)];, p > 1'

(1) M(x1,x2,..,%,) = (
(2) M(x17x25"'7xn) Ixf/\xg/\.../\x,’;, p > 1.

As examples of the bottom-aggregation operators,
we take: for each n € N and x; € [0,1](i =

{1,2,...,n}),
Do A\ L
(1) M(x1,x2,...,%,) = (W)P, p=>1.
(2) M(x1,%2,....%,) =x} VbV ..V, p> 1.

As examples of the idempotent-aggregation opera-
tors, we take: for each n € N and x; € [0,1](i =

{1,2,...,n}),
(1) M(x1,20, o) = (L0 sy

n

(2) M(x1,x2,...%,) = Amin(xy,Xx2,...,%;)+ (1= 1)
max(xy,xz,...,x,) with A € [0, 1].

(3) M(x1,X2, . %n) = X1 AX2 A . A X
@) M(xl,xz, ...,xn) =x1Vxo V.. Vx,.
Definition 14. 'S A function E : [0,1]* — [0,1] is

called a fuzzy equivalence if it satisfies the following
properties:

(1) E(x,y) = E(y,x) forall x,y € [0, 1].
(2) E(x,x)=1forall x € [0,1].
(3) E(0,1) = E(1,0) =0.

(4) Forall x,y,x',y’ €]0,1],if x <x’ <y <y, then
E(x,y) SE(X.Y).

In this article, we strength condition (2) to (2'):

(2") Forallx,y € [0,1], E(x,y) = liff x = y.
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Definition 15. > If a decreasing function n :
[0,1] — [0,1] satisfies the boundary conditions
n(0) =1 and n(1) =0, then n is called a fuzzy nega-
tion.

If a fuzzy negation n : [0,1] — [0, 1] is a strictly
decreasing function, it is called a strict fuzzy nega-
tion in this work.

By the compositions of three severe-aggregation
operators and a strict fuzzy negation operator, we
obtain eight general formulae to calculate the dis-
tance measures of /VIFSSs based on fuzzy equiva-
lencies.

Definition 16. Given U = {x;,x2,...,x,} and P =
{e1,e2,...,em}. Let My (k = 1,2,3) be severe-
aggregation operators. Let E; (I = 1,2,3,4) be fuzzy
equivalence operators and f be a strict fuzzy nega-
tion. Suppose D,(q = 1,2,...,8) : IVIFSS(U) x
IVIFSS(U) — [0,1] are functions defined for all
(F,P),(G,P) € IVIFSS(U) as follows: for any e; €
P, Xj€ U,
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®)

Theorem 1.  D,((F,P),(G,P))(q € {1,2,..8})
in Definition 16 are distance measures between
interval-valued intuitionistic fuzzy soft sets (F,P)
and (G, P).

Proof. (1) If (F,P) is a classical soft set, we have

[ZF(ei)(xj%ﬁF(e,')(xj)] =[1,1], [YF(e,-) (xj)vvF(ei) (x))] =
[0,0] or
[EF(e,-)(xj)7ﬁF(e,-)(xj)] = [0?0]’ [EF(e,-) (xj)avF(e,-)(xj)] =
[1, 1], Ve,‘ (S P,x]' eyv.

Then we get

[tpe e (%7) pe ey (X))]1=[0,0], [Vge e (%)), Vre (e (x5)]
=[1,1] or

e o) (), ) (7)) = [ 1 [ (57), P (59)]
= [0,0], Ve; € P, Xj € U.

By property (3) of fuzzy equivalence operators, we
have

Ev (e, (%)), Upe (o) (7)) = B2 (tp o) (%)) e o) (%))
=E3(Vr(e,) ( )5 VEC(e) (X)) = E4(VF( ) (X)), VEe (o) (%))
ZO,Ve,-eP x;eU.

Thus, we have
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Dy((F;P),(G,P)) =1(q € {1,2,..8}).
(2) If (F P) = (G,P), it is obviously that
D,((F,P),(G,P)) =0(q < {1,2,...8}).

Forqe {1 2,...8}, assume that D,((F,P),(G,P)) =
0, if there exists ae; € P,and ax; € U, s.t.

Ey (tip (o) (%), ﬁc(e,)(x/))<1 or

En(up (o) (X)) Ug(e,) (x))) <1 or

E3(VF(e,)(xj)7vG (ei) ( )) < 1 or

E4(Vr(e) (X)), VG(e) (%)) <

since f is a strict fuzzy negation, we get
D,((F,P),(G,P)) > 0. It is a contradiction.

So, we have

Ey(ttp () (%)) U er) (X)) = E2(Up () (X)), Uge,) (X)) =

E3 (Vi (o) (X)), V) (% )) _E4(VF(e,)(x1)7VG(e,)(xJ)))
1,Ve,e Px;cU.

Thus, we have for any e¢; € P,x; € U,

UF (e) (X]) = UG e) (X)) Up (o) (X)) = Ug(e) (%)

VE(e) (X)) = VG er) (%) ) Ve (1) = V(e l)(xj),

that is, (F,P) =

(3) By the commutative law of the fuzzy equivalence
operators, we can easily get that

Dq((F7P)7(G7P)) - Dq((GaP)7(F7P))(q €
{1,2,...8}).

(4) Since (F,P) C (G,P) C (H,P), we have for any
e < P,Xj elU,

[tp (o) (Xj)sTre) ()] < [uge) (X)), T (x7)] <
[ﬂH(e,-) (xj) ) ﬁH(e,-) (xj)] >
[EF(K,-) (xj) ) vF(e,-) (Xj)]
[EH(e,-) xj) ) vH(e,‘) (Xj)] .
By the property of fuzzy equivalence operators, we
getforanye; € P,x; €U,

> [EG(e,-)(xj)va(e,-)(xj)] >

Ey(Up (o) (X)) b (e;) (X7)) < E1(Up (o) (X)), TG(e;) (X))
Ea(up (e (X)) e, (XJ)) S Ea(up (e (X)), Uge,) (x7)),
E3 (VF(E,') (xj>7vH(e,-)(xj)) < E; (VF(ei) (xj)va(ei) (Xj)),
Eq(vp( )(xj)aEH(e,-)(xj)) S Es(Vr(e) (X)), V(e (7))
Thus ((F7P>a(H7P)) >Dq(( 7P ,(G,P)) (qE
{1,2,...8}). O
Remark 1. All of the distance measures for

IVIFSSs are discussed on discrete universes here,
the cases for continuous universes can be researched
similarly.

Remark 2. If the IVIFSSs degenerate to IVIFSs,
the distance measures of /VIFSSs degenerate to the
corresponding distance measures of IVIFSs.

Example 2. Considering (F,P),(G,P) €
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IVIFSS(U), let
(1) My(x1,x2,...%,) = Ma(x1,X2,...%p) :% X,
€10,1],Vn € N;
(2) Ei(x1,x2) = Ex(x1,x2) = E3(x1,x) =
E4(x1,x2) = 1 —|x; , for any xj,x; €

[0,1];
3) f(x)=1—x,Vxe[0,1],

then, we may construct the following distance mea-
sures for IVIF SSs by Eq.(2) in Definition 16.

(1) Let M3(x1,x2,x3,x4) = [%(x% +x3 —i—x% —i—xﬁ)]%,
then we get the Normalized Euclidean distance

(PP (G P) = {1 3 (B 39Tt 1)
() (057) = b (57)) o (e (37) — vG(e,.><xj>>2
+ (Ve (¢ >—vG )T}

(2) Let M3(x1,x2,x3,x4) = %()q +x2+x3+x4), then
we get the Normalized hamming distance

G((FP)L(GP) = ii[!um(m Tt (1)
+ |EF(6,)(XI) UG(e;) (x])

(3) Let M3(xy,x2,x3,%4) = %(xl VX2 +x3Vxy), then
we get the Normalized hamming distance measure
induced by Hausdorff metric

() (GP) = 5 3 T (e 05) Tt 1)
V80t 60D+ 09T )
Y (o) ()~ v ()]

4) Let M3(x1,x2,x3,%x4) = x7 Vx3 Vx2 V x2, then we
1 VA VA3V Ay
get the fourth distance
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1
(5) Let M3(x1,x2,x3,x4) = [%(x% —i—x% +x§ —|—xi)]§,
then we get the fifth distance

+ (Vr(e)) (%7) — V(e (XJ)) ]}“

If (F,P),(G,P) € IVIFSS(U) are reduced to
F,G € IVIFS(U), we get the following distance
measures of IVIF'Ss. Note that the similarity mea-
sures dj —dj of IVIFSs have been proposed in
Ref. 7, whereas dj — d, are new for IVIFSs.

(1) The Normalized Euclidean distance

0(F.0) = [, L1 () ~To(x)" + )~
ug ()2 + (7 () — 6 ()2 + (g (x7) — v6 ()]}

(2) The Normalized hamming distance

—uG(x;)| + |up (x;) —ug(x;)|

v ()l

(3) The Normalized hamming distance measure in-
duced by Hausdorff metric

1 n
d,(F,G)=—
2( 4n]§‘1|quj

+[VE (%)) =V (x))| + e (x)) =

d3(F,G)= Z ([2tr (xj) =26 (x) |V [up (%)) —ug (x;)])

l\)‘,_

—Vc(xj)‘ \ ’XF(XJ) _EG(xj))m‘

(4) Let M3(x1,x2,x3,X4) = xl \/x2 \/x3 \/x4, then we
get the fourth distance

+ ([vr (%))

dy(F,6) = ¥ [ (35) — ()7 V up () — g )

Jj=

1
V (Ve (x5) = V6 (%)) V (vr () — v6(x)7)-

1
(5) Let M3(xq,x2,%3,%4) = [%(x? —i—x% —i—xg +xi)]§,

then we get the fifth distance

.6 = g, Y [ (x) ~ ol + (s ()~
ug () + (75 () = T6 (x)))* + (v (x)) = v (x)) 5.
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Example 3.
IVIFSS(U), let

Considering ~ (F,P),(G,P) €

(DM (x1,x2, ey Xn) = Amin(xy,x2,...,%,) + (1 —
A)ymax(xy,x2,...,x,) with A € [0,1],
Mz(xl,xz,...,xn) = l n —1Xi»
M3(x1,x2,...,xn):x1\/xz, , Vg,

for eachn € N and x; € [0, 1], i€ {1,2,...,n}.
OEi(xm) = Bnx) = 1 - T
E5(x1,x2) = Eq(x1,x2) = 2+ 2 for any x1,x; € [0,1].

(3) f(x) =1—x, forany x € [0 1].
We may construct the distance measure for I/VIFSSs
by Eq.(3) in Definition 16 as follows.

d()((va)v(GaP)) = A‘min(alaa%"-aan) + (1 -
Amax(ay, o, ..., Qy),
where A € [O 1] and o; = A= -
[t o) (%)) — Tge) (x))?]) V ( |”F y(x)? —

N2 Z‘F(e)(XJ)VG(e,)( ) ) (XJ)VG y (%)
6(e) (%) DV 5 6 ey 07V g (e a7

(j=1,2,...n )

4. Relationships between distance, similarity,
inclusion measures and entropy for /VIFSSs

4.1. Transformation of distance measures into
similarity measures for IVIF SSs

Theorem 2. Let f' be a strict fuzzy negation and D
be a distance measure of interval-valued intuition-
istic fuzzy soft sets. Then a similarity measure S of
interval-valued intuitionistic fuzzy soft sets can be
deduced from the distance measure D as follows:

S((F,P)(G,P)) = f'(D((F,P),(G,P)))

Remark 3. If we take the strict fuzzy negation
fl(x) =1—x for all x € [0,1], by the distance
measures D;((F,P),(G,P))(1 < i < 8) given in
Definition 16, we can generate the correspond-
ing similarity measures of interval-valued intuition-
istic fuzzy soft sets as S;((F,P),(G,P)) =1 —
D;((F,P),(G,P)),(1 <i<3).

Example 4. Considering the distance measure
given in Example 3, take f’(x) = 1 —x, one can
get a similarity measure of IVIFSSs as follows.
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S((F,P),(G,P)) = 1 — [Amin(ou, 0z, ...,04,) + (1 —
Aymax(ay, 0, ..., 04)],
where A € [0,1] and o; = {1 =1 -
() (X)) = Tge)(x))?]) V (1 - !MF ) (x))? =

N2 ZVF(C,,.)(X]')V(;(C,)(X]) 2VF(¢ (XJ)VG(L (xj)
EG(t?i)(xf) ‘)\/VF(el-)(xj)ZJFVG(e,-)(xj)z VE(ep (%) V(e )(X])Z]}’
(j=1,2,...,n).

4.2. Transformation of distance measures into
entropies for [VIFSSs

Now we present a transformation method for con-
structing entropy of IVIF SSs based on the distance
measure of IVIFSSs as follows.

Theorem 3. Ler (Q,P) be an interval-valued in-
tuitionistic fuzzy soft set on U, s.t. for any e; € P,
O(ei) = {{x;,[1/2,1/2]),[1/2,1/2])|x; € U}. Sup-
pose that
(1) for each p € {1,2,3}, M, is both a bottom-
aggregation operator and an idempotent-
aggregation operator;

(2) M3(x1,x2,X3,%3) = M;3(x3,X4,x1,x2)  for
x1,%2,X3,X4 € [0,1];
(3) Ei(x1,x2) = Ex(x1,x2) = Ez(x1,x2) =

Ey4(x1,x2) =1 —|x; — x| for any x;,x; € [0,1];

(4) f(x)=1—x, foranyx € [0,1];

(5) Di((F,P),(Q,P)) and Dy((F,P),(Q,P)) are
distance measures between (F,P) and (Q,P)
constructed by Eq.(1) and Eq.(2) in Definition
16, respectively;

(6) fis a strict fuzzy negation,
then for any (F,P) € IVIFSS(U),

IQ((FaP)) :f/(ZDq((FaP)7(Q7P)))(q: 172)

are entropies for interval-valued intuitionistic fuzzy
soft sets.

Proof. It is sufficient to show that I((F,P)) satis-

fies the requirements (1)-(4) listed in Definition 12.
(1) If (F, P) is a classical soft set, we have
(1 (o) (x7) Up (o) (X)) = [1A]s [V ey (%)), VE(ep) (57)] =

[0,0] or
[p (e (7)) ()] = [0, 01, [vp o) (%)), Vr (e ()] =
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[1,1],V€,‘€P,Xj eU.

Since E] (X],Xz) = Ez()C],Xz) = E3(X1,X2) =
E4()C1,X2) =1- ‘X1 —X2’ for any x,x2 € [0, 1], and
f(x) =1—xforanyx € [0,1],

Wehavef(El (ﬁF(e,)(xJ)u %)) -
f(E3(VF(e,)(xJ)7 2))
Ve, P,xj€U.
Since M,(p = 1,2,3) is an idempotent-aggregation

operator, we haveD ¢((F,P),(Q,P)) = ; (g=1,2),
ie.. 2D, ((F.P),(Q.P)) = 1 (¢ = 1,2).
Thus, we getI ((F,P))=f"(1)=0(g=1,2).

(2) Since M,(p = 1,2,3) is a bottom-aggregation
operator and f is a strict fuzzy negation, we get
I,((F,P)) =1(q=1,2)

& 2D,((F,P),(Q,P) =0(g=1,2)
& Dy((F,P),(0,P) =0 (g=1,2)

P E oy (), 0) =SB, 1)) =
FEFriey (), 1) = FElvpie(x), 1) = 0.

Ve, P,x;€U.

& Ei(ipe)(x)3)
E3(VF(ei)( )7%) = E4(£F(e,-)(xj)7%) =
Xj€ U.

= uF(el.)(xj) = vF(el.)(xj) = [f f} Ve; € P, Xj€ U.
(3) For any e; € P,

ifF(ei) = <xjauF(ei)(xj)7vF(ei)(xj)>7 ij ev,
then F€(e;) = (x}, V(e (X)), Ur(e) (1)), Vx; € U.
Since El(.X],XZ) = E2(.x17.x2) = E3(X1,X2) =
E4(x1,x2) for any xl,xz € [0,1], we have

1, Ve,‘ € P,

|
5
—
(S
~
=
o
K>
—
N—
(3]
N—

E\(lp (e, (%)), z) Es(Tip(e) (1)), 3):
EZ(EF )(XJ) 2) = E4(EF(ei)(xj)7%),
E3(vp e,)(x])7 %) E; (VF(e,-)(xj)a %)’
Es(vp(e)(%))s 3) = E2(Vp(ep (%)) 3)5

Ve, P,xj€U.

Since M3(x1,x2,x3,%4) = M3(x3,x4,%x1,x2) for any

X1,%2,%3,X4 € [0, 1], we have

M3 (f(Eq (g (e (%)), 5))s f (B2 (g o) ()

FES(Vp(e) (%)), 5))s f (Ea(vp(e (xj),%

= M3(f(E3(Vr(e) (%)), 3))s S (Ea(vpey)
FE (g (e (%)), 5)), [ (Ex(up e,>(xj),%

= M5(f(E1(V(e) (%)), 3))s S (E2(Ve(ey (%)) )

) ) (

FE3(@r(e)(x)); ) f(Ealtpie) (x7), 5))
Ve, € P,x; € U.
By Definition 16 we get

Dq((F’P)’(QaP)) :DQ((FC

Thus, I((F,P)) = I((F,P)).
(4) Since f” is a fuzzy negation

HD/(FP)(0P) > Di(G,7), @ P) (g = L)
then £'(2D,((F. P), (0,P))) < f(2D,((G.P).(0.P)))
(q=1.2). 1. L(F.P) <1,(G.P)) (g =1,2). T

Example 5. Now we list some aggregation opera-
tors M3 which satisfy the conditions in Theorem 3:
for any xy,xz,x3,x4 € [0,1],

((X1VX2)";(X3VX4)'))%, p=>1.

(1) M3(x1,x2,X3,%4) =

((x1+x2)1’\/(X3+x4)1’)%, p > 1.

(2) M5(x1,x2,x3,x4) = 5

X Axl x4k (L
( 1 243 4)”,]721-

Theorem 4. Let (Q,P) be an interval-valued in-
tuitionistic fuzzy soft set on U, s.t. for any e; € P,

O(ei) = {(x},[1/2,1/2]),[1/2,1/2])|x; € U}. Sup-

pose that

(1) for each p € {1,2}, M, is both a bottom-
aggregation operator and an idempotent-
aggregation operator;

(3) M3(x1,x2,x3,x4) =

(2) M5 is both a top-aggregation operator and an
idempotent-aggregation operator;

(3) M3(x1,x2,x3,X4) = M3(x3,x4,x1,X2) for any
x1,%2,%3,X4 € [0,1];

(4) Ei(x1,x2) = Ex(x1,x2) = E3(x,x2) =
E4(x1,x2) =1 —|x; —x2| for any x1,x, € [0,1];

(5) f(x)=1—=x, forany x € [0,1];

(6) D3((F,P),(Q,P)) and D4((F,P),(Q,P)) are
distance measures between (F,P) and (Q,P)
given by Eq.(3) and Eq.(4) in Definition 16,
respectively;

(7) fis a strict fuzzy negation,
then for any (F,P) € IVIFSS(U),

L,((F,P)) = f'(2D4((F,P),(Q,P))) (q = 3,4),
is an entropy for interval-valued intuitionistic fuzzy
soft sets based on the corresponding distance D,

(q=3,4).
Theorem 5. Let (Q,P) be an interval-valued in-
tuitionistic fuzzy soft set on U, s.t. for any e; € P,

O(ei) = {{x,[1/2,1/2]),[1/2,1/2])|x; € U}. Sup-
pose that
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(1) M, is both a bottom-aggregation operator and
an idempotent-aggregation operator;

(2) for each p € {2,3}, M, is both a top-
aggregation operator and an idempotent-
aggregation operator;

(3) Ms(x1,x2,x3,X4) = M3(x3,x4,%x1,X2) for any
X1,X2,X3,X4 € [0,1];

(4) E\(x1,x2) = Ex(x1,x2) = E3(x1,x2) =
E4(x1,x2) =1 —|x; —x2| for any x1,x; € [0,1];

(5) f(x)=1—x, foranyx€0,1];

(6) D5((F,P),(Q7P)) and D6((F7P)7(Q7P)) are
distance measures between (F,P) and (Q,P)
given by Eq.(5) and Eq.(6) in Definition 16,
respectively;

(7) f'is a strict fuzzy negation,

then for any (F,P) € IVIFSS(U),

I,((F,P)) = f'(2D4((F,P),(Q,P))) (¢ =5,6),
is an entropy for interval-valued intuitionistic fuzzy
soft sets based on the corresponding distance D,

(q=75,6).
Theorem 6. Let (Q,P) be an interval-valued in-
tuitionistic fuzzy soft set on U, s.t. for any e; € P,
O(ei) = {{x;,[1/2,1/2]),[1/2,1/2])|x; € U}. Sup-
pose that
(1) for each p € {1,2,3}, M, is both an
idempotent-aggregation operator and a top-
aggregation operator;

(2) M3(x1,x2,x3,x4) = M3(x3,X4,X1,X%2) for any
x1,%2,x3,%4 € [0,1];

(3) E\(x1,x2) = Ex(xi,x2) = E3(x1,x2) =
E4(x1,x2) =1 —|x1 —x2| for any x1,x, € [0,1];

(4) f(x)=1—x, foranyx €[0,1];

(5) Dy((F,P),(Q,P))(q=1,8) are distance mea-
sures between (F,P) and (Q,P) given by
Eq.(7) and Eq.(8) in Definition 16, respec-
tively;

(6) f'is a strict fuzzy negation,

579

then for any (F,P) € IVIFS(U),

I,((F.P)) = f'(2D4((F,P),(Q.P))) (¢ =1.8),

is an entropy for interval-valued intuitiionistic fuzzy
soft sets based on the corresponding distance D,

(q=17,8).

Example 6. Now we list some aggregation oper-
ators M5 which satisfies the conditions in Theorem
4-6: for any x1,x2,x3,x4 € [0, 1],

X 4xbxb4xb (L
(3) M3(x1,x2,x3,x4) = (F——=27—)r, p >

(1) M3(x1,%2,x3,%4) = (w)%, p=1l
P P 1
(2) M (x1,02,x3,x4) = (P20 lotasl?ys >
1.

Remark 4. We can easily obtain a large number
of distances by Definition 16, employing different
aggregation operators. Furthermore, we can easily
obtain a large number of entropies by Theorem 3-6,
employing different distances.

4.3. Transformation of entropies into similarity
measures for IVIF SSs

Next, we provide a transformational method of con-
structing similarity measure of IVIFSSs based on
the entropy of IVIFSSs as below.

Definition 17. Let (F,P),(G,P) € IVIFSS(U), as-
sume that: for any ¢; € P,

F(er) = {(x),up(e;) (X)) VE(e) (X)) [x; € U} = {(x;,
[p (o) (X)) T o) () L VR (e (X)) VE(e) (X)X € U S,

Glei) = {{xj,uG(e;) (%)) VG (X)) xj € U = {{x),
[EG(ei) (xj)aﬁG(e,-)(xj)L[EG(e,-)(xj)7vG(ef)(xj)]>’xj € U}
Suppose that

(1) M, is a bottom-aggregation operator,

(2) M (x1,x2,x3,x4) = Ma(x1,x2,x3,x4) for any
Xx1,X2,%3,X4 € [0,1],

(3) f1is astrict fuzzy negation,

4) E; (I1=1,2,3,4) are fuzzy equivalence opera-
tors,
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then for any o € [1,+o), € [1,40), we can de-
fine a new interval-valued intuitionistic fuzzy set
(vi(F,G),P) from (F,P) and (G,P) as follows: for
anye; € P,x; €U,

Uy, (F.G)(en) (X)) =

S M (s () ()t (7).

F(E2(bp (o) (X)), UG e) (X)) F(E3 (Vo)) (X7), Y (e) (X7)))

FEarey (x7), 6 ()] 4

Uy, (F,G)(e)) (X)) =

0= IV (OB () (), (7).

F(E2(bp () (X)), UG (X)), F(E3 (Vo)) (X)), VG ey (X7)))

F(Es(Vr ) (X)) V6 (e (7))}

Yy (F.G) (e (X7) =

S+ V(B (5) i) (), f

F(E2(bp (o) (X)) e (X)) F(E3 (Vo)) (X7), Y (er) (X7)))

FEs(Vr(en (%)), V(e )P 15

Yy (£G)(e) (X))

= O+ V(B () (5710 (1)),

F(E2(bp () (X)) UG (X)) F(E3 (Vo)) (X7), Y (er) (X7)))s

F(Ea(Vr(e)) (%)), V60 (X))}

Theorem 7. Let I be an entropy measure of
interval-valued intuitionistic fuzzy soft set.  For
(F,P),(G,P) € IVIFSS(U), then I((y(F,G),P))
is a similarity measure of (F,P) and (G, P).

Proof. We only need to prove that all the properties
in Definition 10 hold.

(DIf (F,P) is a classical soft set, then for all
e; € Px; € U, we know

up(e)(xj) = [1,1], vpee)(x;) = [0,0], upc(,(x;) =
[0’0]’ VFC(e,-)(xj) = [17 1]’ or

MF(ei)(xj) = [an]’ VF(ei)(xj) = [171]’ MFC(ei)(xj) =
[1’ 1]’ VFC(e,-)(xj) = [070]’

then we have

E1(up (e (X)), upc(e) (%))
E3(VF( )( i) VFC(el-)(xj)):E4(VF(6,')(xj)vvFC(e,-)(xj))
0.

Since M1, M, are aggregation operators, we get
My (f (B (up (e (%)) e () (%7))) s f (B2 (1 ) (%)),
Upc(e ,)(x/))) f(ES(EF( ,)( 7)s YFC(e ,)(xj)))
F(Ea(V(e)) (%)), Vpe e (%)) = 1,

= EZ(EF(e;) (xj)vﬁFC(e,-) (Xj)) =

580

Mo (f(E1(up (e (X)), upc(ey (6)))), f(E2(p () (%)),
Upc(, ( N f <E3(VF (]) XFC ( )))7
(E4(VF ) (X)), VEe(e, ( ) =

Veler] ev.

hence we get

Uy, (£ FC) (&) (X7) = Ty (F€) ) (5) = O

Vi (FFC) ) (K) = Yy (FF€) ) () = 1

Ve; € P,Xj el.

So, (y1(F,F¢),P) is crisp soft set in U.

By Definition 12 of entropy for IVIFSSs, we have
S((F,P),(FC,P)) =1((y1(F,F€),P)) =0.

< iy, <F,G>(ef>(xj') =V (E6)(e) (X)) = 2 2):

Ve, € Pxj €
& My (f(Er(up(e) (%)), uG(e) (%)), f (E2(ttp (g;) (x)),
UG (e;) (% ))),f( 3(0r () (%)) Vg e (X))
(E4(VF )(%7): V6 (%5)))) = 0 and
Mo(f(E 1 (1 (e0)X7)s ey (X)) S (B2 (R (e (%)),
(en) (X ))), ( 3V (e (X)) YG(e (X7)))
(E4(VFe)( ) Glen (%)) =0,
Ve; € P,Vx; €
< f(Ei(up(,) (xj)aﬂc;(e,-) (x))) =0,
J(E2(ttp (e (%)), UG(er) (x7))) = O,
f( 3(VF e)(Xi): Y6 (%)) = O,
JE4(VF(e;) (%7) V6 er) (7)) = O,
U.
j)

X
Ve; € P, Vx] €
& Ei(up(e,) (x
=E3(Vp (o) (X7): V(e (
=1, Ve; EP,VXJ' eU.
S Up(e) (X)) = Uge) (X)), TR (X)) = Ug(e,) (),

VE(en) (X)) = YG(e) (X7)s and Vi (o) (X)) = Vi (e;) ()
Ve; € P,V)Cj eU.

& (F,P)=(G,P).

(3)From the definition of (y;(F,G),E
forany e; € P,x; € U,

Uy, (F,G)(e) (X)) = Uy (GF) (er) (X7)s

Vi (FG)(e) (X7) = Vi (6.F) (e (X))

UGy (X)) = E2 (p (o) (X)) (o) (X7))
X)) =Ea(VF(e) (¥7), V6 () (%))

), we know

that is, (i (F,G),P) = (%(G, ),P),

then we get I((y1(F,G),P)) =I((y1(G,F),P))

< S((F,P),(G,P)) =S((G,P),(F,P)).

DIf (F,P) C (G P) C (H,P), we know for any
e, € Px;jeU,

Up () (%)) < Ug(ey (X)) < Upg(e) (X))

Up (o) (X)) < Ug(e) (%)) < Up(ey) (X)),

VE(en)(X7) 2 YG(e) (X)) Z Ve (X))

V() (X)) 2 V6(e) (%)) = Vae,) (X))
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creasing monotone property of f we have

My (f(E1(up(e) (X)), g (o)) (X)), f(E2 (U e (%)),

g (e (%)), f8E3(VF( )( Xj), VH(e,)(xj)))a

(E4(vF (), V(e (x ))))

E1 uF 8()61 uG (x;)
(x)),v

Uy (F,H) (e) (X)) < Uy (F,6) () (Xf) < [1%,1%],

Vun (FH)(e) (X)) Z Yy (F.6)(e) (Xf) = 15,3,

Ve; € PVx; e U.

Let (Q,P) € IVIFSS(U) and Qe) =

{(x,[1/2,1/2]),[1/2,1/2])|x; € U} for any ¢; € P,
then we get

Similarly, we get

(WI(F?H)7P) - (W](G,H),P) - (QaP)'

By Definition 9 of distance measure for IVIFSSs,

we know

D((Wl(FaG)vp)v(QaP)) <D((W1(F,H),P),(Q,P)),
D((Wl(GaH)¢P)>(Q>P)) gD((Wl(FvH)aP%(Q?P))
By Definition 12 of entropy for IVIFSSs, we con-
clude that
1((y1(F,H),P)) < I((yi(F.G),P)),
1((wi(F.H),P)) <1

Hence,

I}S(ll{l(F,H),P)) <I((y1(F,G), P)NI((y1 (G, H), P)),
that is,
S((F,P),(H,P))<S((F,P),(G,P))AS((G,P),(H,P)).
O

Example 7. Let / be an entropy measure of

interval-valued intuitionistic fuzzy soft sets. For
(F,P),(G,P) € IVIFSS(U), assume that: for any

581

e,-EP,

F(ei) = {<xj7uF(e,')(xj)7VF(e;)(xj)>‘xj S U} = {<Xj,
[p () (X7) s U () () VP () (%7) VE(er) ()] € UL,

Glei) = {{x)s ug(e)) (X)), Ve (X)) [xj € U = {{x;,
[tG(ep (X)) () (X)L [VG () (X7) Ve (e (X)) € U
let

(1) Mi(x1,x2,X3,x4)

(2) MZ(xl ,xz,X3,X4)

= (x1 \/XZ) V (X3 \/X4),
= (x1 Vx2) A (x3 Vxg),

(3) Ei(x1,x2) = Ex(x1,x2) =
E4(x1,x2) =1 — |x1 —x2],

@ a=p=2.
) f(x)=1-x,

we get an interval-valued intuitionistic fuzzy soft set
(y{(F,G),P) from (F,P) and (G,P) by Definition
17 as follows: for any ¢; € P, x; € U,

E3(x1,x2) =

3 (1= (o (59) 0 (5

en) (X)) = V(e (X)) [V

Ut (F,G) (e5) (X)) =
(en) (X)) = UG(er) (x)])s ([vp(
V(e (X)) = Ve () )] 2T

V [t

(en) (X)) —UG(e)) ()]

) (X)) = YG(en (x) [V

i |
Ty (G (er) (%j) = 5 {1 = [max((Jug

(ei) (xj) - ﬁG(ei) (xj) |)7 (‘EF(e
VF (e (%) = Ve (K)1))]}:

V|up

(en) (X)) — UG (o) (%)

(xj)\\/

1 .
Yy, (.G)(e)) ¥7) = 5 AL [min ((|ug

V [ip () (%) =T e (x7)1); ([vp
V(e (¥7) = G(e,)(xj)D)]z};

(ei)( ]) YG(e;

(en) (X)) —Ug (e ()]
(en) (K1) = V(e (X))

Vil (F.G)(er) (X)) = 3 { 1+ [min((|up
V[ip(e;) (X)) = Uge) (X7)1)s ([vp
(en (X)) = Vg(en (X))}

then I((y{(F,G),P
(F,P) and (G,P).

V |vp

)) is a similarity measure of
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Definition 18. Let (F,P) and (G,P) be two
IVIFSS(U) in universe U = {x1,x2,...x,}, assume
that: for any ¢; € P,

F(ei) = {(xj,up(e;) (X)), VE(e) (X)) [x; € U} = {{x;,
[ZF(e,-)(Xj),ﬁF(e,-)(xj)]a[EF(e,-)(XJ) VF(e;) (xj)])lx; € U},
G(er) = {(x),uG(er) (%)), Va(e) (X)) [x; € UL = {(x,
[tG(e)) (X7) s U er) (X)L Ve (%7) s Vi er) (x)])x; € UL

Suppose that M;,M, are aggregation operators
which satisfy that

(1) M, is a top-aggregation operator,

(2) My (x1,x2,x3,x4) < Ma(x1,x2,x3,%4) for any
X1,X2,X3,X4 S [071]9

(3) fis a strict fuzzy negation,

(4) E; (I =1,2,3,4) are fuzzy equivalence opera-
tors,

then for any a € [1,4o0),8 € [1,40), we can de-
fine a new interval-valued intuitionistic fuzzy set
(ya(F,G),P) from (F,P) and (G, P) as follows: for
anye; € P,x; €U,

*{1—[ (M1 (E1 (e (X)), ey (X)),
Ep (U () (%)) Uc(er) (X)), E3 (VE (o) (X)) V(e (7)),
Ea(Vp (e (x7), Ve (x))))] 3

Uy, (F,G)(er) (X)) =

*{1—[ F(My(E1 (up o) (X)), ey (X))
EZ(”F(e,-)( j)auG(e,-)( j))’E3(XF(e,-)( j)aEG(e,-)(xj))v
E4(VF(ei)(xj))vG(ei)(xj))))]};

Vo (FG)(en) (X)) = %{1 + [f(M2(Er (g0 (%)) Uge,) (X))
En(tp (o) (X)) UG (er) (%7))s E3 (VR (e (X)) Vg ep) (X))
E4(Vr(ey) (x7), V(e ()P}

*{1+[ (Ma(E1 (up (o) (X)), Uge (X))

(en) X)) E3(VE(e) (X)), V(e (X))
(en X))}

Uy, (F,G)(e;) (xj)

Vyn(FG)(e) (X)) =
Ex(tp(e,) (X)), 4
E4(VE(e) (X)), V6

582

Theorem 8. Let I be an entropy measure of
interval-valued intuitionistic fuzzy soft set. For
(F,P),(G,P) e IVIFSS(U), then I((y»(F,G),P)) is
a similarity measure of (F,P) and (G, P).

Example 8. Let / be an entropy measure of
interval-valued intuitionistic fuzzy soft sets. For
(F,P),(G,P) € IVIFSS(U), assume that: for any
e; € P,

F(ei) = {<xJ7uF el)(xj) VFE(e) (XJ)HXJ € U} {<xja
[HF(E,-) (xj),up (xj)]u[VF (e7) (xj) VF(e;) (XJ)DIXJ cU},
Glei) = {<xjv”G (e)(X7)5VG(e (X)) xj € U = {(x;,

[tGe)) (%) UG (er) (X)) Ve (K1) Va(e) (x)DIx; € U
let
(1) Mi(x1,x2,X3,X4) = w for any
x1,%2,X3,X4 € [0,1];
(2) Ma(x1,x0,x3,x4) = Stmlvlotn) - for any
X17X2,x37x4€[ ]
(3) Ei(x1,x2) = Ex(x1,x2) = E3(x,x2) =

E4(x1,x2) = xz%)%% for any x,x; € [0, 1].

(4) aZS’ﬁ:4vf('x):l_x7
we get an interval-valued intuitionistic fuzzy soft set
(W5 (F,G),P) from (F,P) and (G,P) by Definition
18 as follows: for any e; € P, x; € U,

)= 1{1 ne 1( 2up () (X)) g e, (X))
2 2 o (57)7 + UGy (1))
205 (o) (X))V(ep) (X))
Vi(en ()7 + V600 (1))

) 2)]1/8};

1 ZEF(e,-) (xj)ﬂc(e,-) (x;)
) (e

1
-1 ==
S 2(uF( Pttt ()

g (o)) (X)) UG (e (X)) VA 2V () (%) VG (e (X))
T () (%)) +Tig(ep) (X7) Vi(en (%) + Ve (1))
2VF e (X‘)VG e; (x )

+ - ()2] 7() J 2)]};
VE(e) (%)) +Vg(e) (X))



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 569-592

1 1, 2up ) (X)) tgep (X))
= {1+ 15 g

U (e;) (x;

2 2
e e;) (Xj)

20 () (X)) UG (e;) () 205 (e)) (K1) ¥ (er) (%))
v =) V( 32 32
lp(e) (X)) +Ug(e;) (X)) V(e (%) + Ve (X))
20k (ep) () V6(en (X))
+ = 5 DIME
VE(e) (X7)” +V6(e) (%))
_ 1 1, 2up ) (X)) Uge) (X))
Yy (F,G) (e (X7) = {1+ 1= 5(
’ 2 2 U () F g ()
2ip (o) (X)) UG (e, (X)) 20p (1) (X)VG (e (x5)
2, - )V 2 2
UF(e;) xj) +uG(6,‘)(xj) XF(ei)(xj) +EG(€,~)(XJ)
2vg e (x')VG ei)\ X )
+ - ()2J 7() J 2)]}7
Fle) (%)) V6 (e (X))

(
then I((VA(F,G),P)
(F,P) and (G,P).

is a similarity measure of

Definition 19. Let (F,P),(G,P) € IVIFSS(U), as-
sume that: for any e; € P,

F(ei) = {(x)j,up(e;) (X)), Vi) (X)) X € U} = {{x;,
[tp (o) (X)) UE () (X)) L 1VE (o) (X)) VE(e) (X)X € U S,

Glei) = { (xjsuG(e) (), vo(e) (%)) [xj € UL = {(x;,
(66 (%)) Uen) (X)) V6 er) (X)) Vaien ()X € U
Suppose that,

(1) M is a top-aggregation operator,

(2) fis a strict fuzzy negation,

(3) E; (I1=1,2,3,4) are fuzzy equivalence opera-
tors,

then for 0 < o) < o < a4 < a3, we can define a new
interval-valued intuitionistic fuzzy set (y3(F,G),P)
from (F,P) and (G,P) as follows: for any e; € P,
Xj € U,

*{1—[ (M(E
Ep (U () (%)) Uc(er) (X)), E3 (VE (o) (X)) V(e (7)),
Es(Ve(e)) (%)) V(e ()™ T

Uy (FG)(er) (X)) =

1(Up(e)) (X)), Ugey (X)),

583

1
s (.G) o) () = A1 = [F(M(E1 (tp (o) (x7), e, (%)),

Vus(F.G)(ep) (X)) = %{1 + [f(M(E1 (up () (X)), U e (X))
Ex(tp(e;) (X)), UG (er) (%7))s E3(VE (e (X)) VG (e (X))
E4(VF(ei) (xj)va(ei) (xj))))]a3};

= 2 O L MCE (o (7)) (),

Eo(tp (o) (X)) UG (er) (X7))s E3 (VE (e (X)) VG (e (X))
E4(Vp(e)) (X)), V(e (x7))))] % 3

Vs (F,G) () (X))

Theorem 9. Let I be an entropy measure of
interval-valued intuitionistic fuzzy soft set. For
(F,P),(G,P) € IVIFSS(U) , then I((y3(F,G),P))
is a similarity measure of (F,P) and (G, P).

Proof. We only need to prove that all the properties
in Definition 10 hold.

(DIf (F,P) is a classical soft set, then for Ve; € P,
x;j €U, we know

up(e)(x;) = [L, 1], vpee)(x;) = [0,0], upc(y(x;) =
[0,0] Vpe(e)(x) = [1,1] or

Uup(e)(xj) = [0,0], v, (x;) = [1,1], upee)(x;) =
[17 1]’ VFC(e;)(xj) = [070]’

so we get

Ey(up(e,) (X)) upc(e) (X)) = E2(Up (e (X)), Hpe o) (X)) =
E3(vp(e) (%)) YEc(e) (%)) = Ea(VE () (X)), Ve () (X)) =
0

For Vo; € {061 , 00,03, 064} we have

[f (M (E1 (up(, (xj)vMFCSei)(xj))aE2(”F(e,~) (/) e e (%)),
E3(Vr (o)) (X)) V(e (%)) Ea(VE () (X7) s Ve (o) (7))
1Ve;e Px;€U.

Hence, I/t%(FFC)( )(x]) w3 (F,FC)(e )( j) :0,
Yua(F.FO) (e )(XJ) = Vys(F.FC)(e) ( i) =1,
Ve;€ Px; €U.

Thus, (w3 (F,FC),P) is classical soft set in U.

By Definition 12 of entropy for IVIFSSs, we have
S((FaP)a(FC7P)) :I((W3(FaFC)7P)) =0.
@)S((F,P), (G,P)) = I((y(F,G).P))
& Ml//3(FG)( ) (X) = VysE6)en (X)) = [35 3]s
Ve, € Pxj €

& for Vo, € {061, 0,03, 064},

f(ME (up (e (X)) tGey) (), E2(HF (e) (X)), By (X)),

I
=
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E3(Vr (o) (X)) Y6(e1) (X7)) s Ea (V) (X)) V(e (%)) ] % =
0,Ve; € Px; €U,

<:>]V[(E1(uF( )( ) G(e;) ( j) uF () J)aﬁG(ei)('xj))7
E3(Vr(e)) (%7), Y6 () (X7))s E4 (VE (e (X)) V6 (e) (X)) =
1,Ve; € P x;j 6 U

& E1(Up(e) (X)) UG(e) (X)) = E2(F (o) (X)) U e) (X)) =
E3(£F(e,-)éxj)7XG(e,-)(xj))_E4(VF(e,)(x]) Gle )(x;))

1,V€,‘ (S P,x]' ceU,
S Up(e) (X)) = U (X)) Tr(e) (X)) = (e (X)),

V(e (K1) = V(e (%1)s V() (X7) = V(o) (X)),
Ve; € P,Xj S

& (F,P)=(G,P).

(3)From the definition of (y3(F,G),P) we easily
know that

oy (.G) () (X)) = Uy (G.F) () (%)

Vys(F.G)(e) (¥]) = Vi (G.F) (e) (X))

ie. (y3(F,G),P) = (y5(G,F),P).

Thus, I((y3(F,G),P)) =I((y3(G,F),P))

o S((F,P),(G,P)) = S((G, P), (F, P)).

4If (F,P) C (G,P) C (H,P), then we know

Up (e (Xj) S UG(en (X)) < tgg(ep (X))

Up (e) (X)) S UG(e;) (X)) < Up(e;) (),

VE(e)(¥5) 2 YG(e) (X)) Z Vh(e) (X)),

VE(er) (X)) 2 V6(er) (X)) 2 V(e (X))

Ve, € Px; €U,

hence,

Ey(p(e) (X)) Up(e) (X)) S E1(Up (o) (X)), Uge,) (X))
Er (1 (¢) (X7) T (o) (%)) < Ea(lp (o) (X)), UG (e;) (X))
E3(VE(ep (X)) Vh(e) (X)) < E3(Vp(e) (X)), V(o) (7))
E4 (VF(ei) (%7): Vh(er) (%7)) < Ea(VE(e) (%)), V6(e0) (%))

E3(XF(KI-) xj),XH(ei 7E4(VF( )\ X 7VH(e,)(x] )
[f(M(Eq (ﬂF(ei)(xjiaﬂG(e,-)(xj))yEZ(uF( (X)), T
E3(vp (o) (%)) Y6(e) (X)) Ea(VF(er) (X)), VG (e )(xJ )
Ve; € P,Xj euv,

so we get,

Uy (FH)(e) (X)) S Uy (F.6) (e) (%)
Vs (FH) () (X)) Z Vs (F.6) (e) (X))
Ve; € P,VXJ' el.

Let (Q,P) € IVIFSS(U) and Qe;) =
{(x,[1/2,1/2]),[1/2,1/2])|x; € U} for any ¢; € P,
then we get

(W3(F’H)7P) - (W3(F7G)7P) -
Similarly, we get

(Q,P).

584

(w3(F7H)’P) - (V’3(G7H)7P) - (QvP)'

By Definition 9 of distance measure for IVIFSSs,
we know

D((V’3<F7G)7P)7(Q7P)) <D(<w3(F7H)7P)7(QaP)>’
D((‘I’3<G7H)7P)7(Q7P)> gD((‘I@(F?H)’P):(Q:P))'
By Definition 12 of entropy for IVIFSSs, we con-
clude that

I((y5(F,H),P)) <I((y3(F,G),P)),

I((w3(F,H),P)) <I((y3(G,H),P)).

Hence,

I}E(w3(F7H)aP)) <I((W3(F7G)aP))AI((W3(G7H)7P))9
that 1s,
S((F,P),(H,P))<S((F,P),(G,P))AS((G,P),(H,P)).
O

Definition 20. Let (F,P),(G,P) € IVIFSS(U), as-
sume that: for any ¢; € P,

F(ei) = {{xj up(e) (), V(e () [x; € UL = {{x},
[wp (e (%)) 1 (e) K )bV ) (%7)s V(o) ()])Ix € U Y,
Glei) = {(xj,uc(e,) (X)) Va(e) (X)) [xj € U = {{x;,
[tGep) (X)) U (er) (X)) [VG () (K1) Va(e) (x)Dx; € U
Suppose that,

(1) M is a bottom-aggregation operator,

(2) f1is a strict fuzzy negation,

(3) E; (I=1,2,3,4) are fuzzy equivalence opera-
tors,

then for 0 < o1 < o < a4 < a3, we can define a new
interval-valued intuitionistic fuzzy set (y4(F,G),P)
from (F,P) and (G,P) as follows: for any e; € P,
Xj € U,

Uy (F,G) o) (Xi) = *{1—[ (f(Er(up e (%)) (e, (%7)));

F(E2(bp () (X)), G (e (X))))s (B3 (Vo) (%7) s V(e (X7)))
f(E4 (VF(ei) (xj) ) vG(ei) (xj))))]al };

) (X)) = {1—[ (f(Er(up(e) (%)) e, (%7)));
f(Ex(u F(e,')(xj)v G(e;)(xj)))vf(E3 (EF(ei) (xj)7EG(e,~)(xj)))v
S(Ea(Vr(e (%)), V(e (x7)))]“ };

Uy, (F.G)(e
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Yy (F.G)(en) (X)) =

*{1 + [M(f(Er (up (o) (X)) U(e) (%)),

F(Ea(@p(e;) (%)), () (%7)))s (B3 (Vp (o) (X)) V(e (X))

J(Ea(Vp(e) (), VG( D EDI® Y
o (X)) = *{1

Vyy(F.G)(e

[M(f(E1(up (e, (%)) tge,) (X)),

f(EZ(”F(e,—)(xj)a G(ei)(xj)))7f(E3 (EF(e,-)(xj)?EG(e,-)(xj)))7

J(Es(Vp(e) ()5 Ve (X))}

Theorem 10. Let I be an entropy measure of

interval-valued intuitionistic fuzzy soft set. For
(F,P),(G,P) € IVIFSS(U) , then I((y4(F,G),P))
is a similarity measure of (F,P) and (G, P).

Example 9. Let [/ be an entropy measure of
interval-valued intuitionistic fuzzy soft sets. For
(F,P),(G,P) € IVIFSS(U), for any e; € P,

F(ei) = {<xj’uF(e,)( X)) Vr(e) ()% € Ut = {{x),
[1p ey (%) B () (X)) [V ) (%) V(e (X)])lxj € U
Glei) = {<xnuc ) (%)) vae) (X)) € U = {{x,

[ZG(K,-)( ) uG (ei) (X])],[VG (ei) (x]) vG(e, (XJ)D‘X] € U}
Let

(1) M(x1,x2,x3,54) = 55858 for  any
x1,X2,X3,%4 € [0,1],
(2) Ei(x1,x2) = Ex(x1,x2) = Ez(x1,x) =

E4(x1,x2) = 1 —|x; — x| for any xy,x; € [0, 1],
B)ouu=2,00=3,03=

@) flx)=1-x
we get an interval-valued intuitionistic fuzzy soft set
(y4(F,G),P) from (F,P) and (G,P) by Definition
20 as follows: for any e; € P, x; € U,
{1 - H!uF ) (%)) = ey (%5)]
+ (U () (%)) = UG o)) (X)) + VP () (%) — V(e (7))
+ [Vr(e) (/) —Vc;(e,-)(XJ)D]Z};

Uy, (F,G) (er) (X)) = {1—[*

+ WF(e,-)(xj) UG(e;) (x;)[ + |VF
+ [Vr (e (%7) = Voen ()T}

5, (07} :4,

Uy (F.G)(er) (X)) =

( 7) —UG(e;) ()]
) (%)) —

’”F

V(e (%))

585

Ve 057) = 5 01+ [ ) () — i ()
+ [t (e (x j)_ﬁG(ei)(xj)|+|EF(ei)( j)—Ec(e,-)( )
T Frte) (57) — Tt () DI

Pyt (e (35) = 511 [ () (05) — i ()

+ [T (o) (X)) — ”G(e,-)(xj)| + [Vr(e,) (%) = Vgep (X))

+ WF(ei) (xJ) - vG(e[)(xj) |)]4}7

then I((y,(F,G),P
(F,P) and (G,P).

Theorem 11. If [ is an entropy measure of IVIFSSs
and (y,(F,G),P)(h = 1,2,3,4) is given by Defi-
nition 17-20, then I((y,(F,G)¢,P))(h = 1,2,3,4)
is also a similarity measure between (F,P) and

(G,P).

Remark 5. Based on Definition 17-20, by select-
ing different aggregation operators and fuzzy equiv-
alences, we can obtain a large number of IVIFSSs,
which can be used to transform an entropy measure
into a similarity measure for IVIFSSs.

Remark 6. If (F,P),(G,P) € IVIFSS(U) degener-
ate to F,G € IVIFS(U), the specific interval-valued
intuitionistic fuzzy soft set (y| (F,G),P) in Example
7 degenerates to Y (F,G) € IVIFS(U). The entropy
of y{(F,G) has been proven a similarity measure
between F and G in Ref. '7. Our research in this
subsection can be regarded as a generalization and
extension of the research in Ref. !7 based on fuzzy
equivalences and aggregation operators. However,
even if it degenerates to the IV IF'Ss situation, all the
formulae given by Definition 18-20 in this work are
new.

)) is a similarity measure of

4.4. Transformation of entropies into inclusion
measures for IVIFSSs

Definition 21. Let (F,P),(G,P) € IVIFSS(U), as-
sume that: for any e; € P,

F(ei) = {{xjsup(e) (%)), vr(e) (x)) 1xj € U = {(x),
[p (e (%)) 1 (e) ¥ bV ) (%7)s V(o) ()] )Ix € U Y,
Gei) = {(xj,ug(e) (%)) va(e) (X)) xj € UL = {{x;,
(166 (%)) U o) (X)) [V er) (%)) Ve ()P € U
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Suppose that,
(1) M is a bottom-aggregation operator,

(2) M (x1,x2,x3,%4) = Mo(x1,x2,%3,x4) for any
x1,X2,X3,X4 € [0,1],

(3) fis a strict fuzzy negation,

(4) E; (I =1,2,3,4) are fuzzy equivalence opera-
tors,

then for any & € [1,+00), B € [1,40), we can de-
fine a new interval-valued intuitionistic fuzzy set
(¢1(F,G),P) from (F,P) and (G, P) as follows: for
anye; € P,x; €U,

U, (F.G)(en) (X)) = l{1 — My (f(Er (p (o) (X)) tp (o) ()
(X)) f (B2 (b (o) (X)) Tp (o)) (X)) Alig(e)) (X7)))

FES(Vp(e) (%) VE () () V V660 ()5 S (Ea(Vp () (),
V(e () VTG ()] 4T

/\MG

U, (FG)(ep) (X)) = %{1 — [My(f(Er (g o) (X)) Up (e, (X))
Nttge) (X)) FE2(TE () (X)), U () (X)) ANTG(e) (X)),
FE3(Wp(e) (X)) E(e) (X)) V V(e (X)), £ (Ea(VE(e;) (%)
VE(en) (%)) VVG(e) (x))))] 15

Vo, (F.G)(ep) (X)) = *{1+[M2(f(E1(MF( ) (1) Up e ()
) (6)))s f (B2t (e;) (%)) U o) (%7) ANTige) (%))
FE3 (Vo) (%)) Yr () (X)) V V(6 (X)) f (Ea(VE () (),
Vr(e) (X)) V V6(e) ()P 1

*{1 + [Ma(f(Er (g o) (X)) ) ()
) ()5 S (Ea(ttp (e;) (X)) U o) (%7) ATige (%))

JE3(Vr(e) (%)) VE(e)) (X)) V V(o) (X)) f (Ea(VE(e) (%)),
VE(er) (%)) VV6(e) (x)))))] -

/\MG

Vo, (F,G) e,( )

NUG(e,

Theorem 12. Let I be an entropy measure of
interval-valued intuitionistic fuzzy soft set. For

(F,P),(G,P) € IVIFSS(U), then 1((¢1(F,G),P)) is

an inclusion measure between (F,P) and (G, P).
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Proof. We only need to prove that all the properties
in Definition 11 hold.

() If (F,P)=(U,P), (G,P) = (0,P),

we get F(er) = {(x,[1,1,10,0)x; € U}, Gley) =
{<Xj, [0,0}, [1, 1])’)6]' S U} for Ve; € P,

then we have for any x; € U,e; € P

E1(up(e,) (X)), tp (o) (X)) N ge (x7)) = E1(1,170) =
Ep (W () (X)) Ur (¢ (X)) ANlig(e) (X)) = E2(1,1A0) =
0,

E3(vp(e) (%)) Ve(e)) (X)) V VG o) (X))
0,

E4(Vr(e) (X)), V(o)) (X)) V Vg e (X))
0,

so we get

=E;(0,0V1)=

=E4(0,0V1)=

=l <

]

5
)“\)’—\

=

<.
\_/\_/\_/'
< <>

o
5

o
O‘Q»—
[¢]
-
-
=
oo
-

Thus, it is easy t

[”q)l F,G)(e;) (XJ)Jﬁq)l (F,G)(ei) (Xj)] - [07 ]’

Vo, (£G)(e) (X7) Yoy (FG)(er) (7)) = [1, 1],

Vx; € U e, eP.

By Definition 12 of entropy for IVIFSSs, we know
1((91(F,G),P)) = 0=J((F,P),(G,P)) = 0.
@I(6:(F,G).P)) = J(F.P).(G.P)) = 1.

g, (£.6)(en) %i)> By (F.6)(e) )] = [353):

[V, (F,G)(e,»)(xj),%(F,G)(ei)(xj)] = 13,3,

VXJ' eU,e;eP

& M, (f(E1 (p (o) (X)) Up () (X7) N (X)),

f(Ez(uF( )( )7”F(e1)(xj) /\ﬁG(e[)(xj)))a
f(E (VF(e, (x )7 e,)(xJ)VEG(e,)(xj)))a
(d (VF(e, ( )’VF e,)(xj)va(e,)(xj)))) =0,

Mo (f(E1(up () (X)), tp(e) (X)) Attgey (X))

F(Ex(bp () (X)), Up(e;) (X)) Nlge) (X)),

F(E3(Vp(ep (X))s VE(e) (X)) V Ve (x7))),

f(E4(VF( )(xj)’vF(e,’)(xJ) va(e,)(xj)))) =0,

Vx;j € U,e; € P.

S f(E1(p e, (X)) Up ) (X)) Nge, (x)))) =0,
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ij' cU,e €P.
<(F,P) C (G,P)
(3)If (F,P) C (G,P) C
e €P,

[1r (e (% )),MF( YL < [uGe) (%)) g e ()]

(H,P), then for any x; € U,

[4p1 e (%), i (X:)] and [Vp(e, (%), Ve (e (%))

V(e )(h 1):V6(e )(xj)] 2 V(o) (X7)s Va(en) (%7)],
El(“H( ) ()5 Upg ey (X)) Ntp o (7)) = Er (g0 (%),
Up(e)) ))<E1(“G ) (X7 uF(e)( ))_El(uG(e)( i)
UG(e) XJ)/\”F ))
Ex(u e,))(xj)auH( )(xj)/\uF( ) (X)) =
( e

)

VA

e

T Ep (e (%),
Up(e) (X)) < E2(tg(e,) (X)), U (o) (X ))*EZ(MG(e)( xj),
Ug(e) (X)) Np(e (X)),
E3(Vh(e,) (%)) VH( )(XJ)VVF( ) () = E3(vp e (%)),
!F(e,-)(xj))<E3(VG( (x )VF(e)(xj)):E3(EG(e,-)(xj),
VG(en (X)) V Vg (e (% )3
E4(VH(6,)('X])7VH( (x])vvF(e( )) E4(VH(ei)(xj>7
VF(e,)(xJ))<E4(VG( (x/),Vr ,)(;))254(%(&-)()51),
VG(e) (X)) V VE (e (x 1))

then we get

WV

5
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g, (11,F) (o) (X)) s T, (11.F ) (@) (7)) < [ty (6.7 (e) (1)
g, (G,F)(en) (X)) <[5 3]

Vo, (1,F) (e)) X7)s Vo (11,7 ) e)) X0)] 2 [V, (6.7) () (X7

Vo (G.F)(e) ()] = [302)-

Let (Q,P) € IVIFSS(U) and Qe;) =
{(x,[1/2,1/2]),[1/2,1/2])|x; € U} for any e; € P,
then we get

(¢1(H7F)7P) - (¢1(GaF)>P) C (Q7P)>

thus,

D((¢1(H7F)ap)7(Q>P)) >D((¢1(G5F)>P)7(Q5P))

By Definition 12 of entropy for IVIFSSs, we get
1((91(H,F),P)) <1((¢1(G,F),P))
<J((H,P),(F,P)) <J((G,P),(F,P)).
By the similar way, we get

P))

1((9:1(H,F),P)) <I1((¢:1(H,G),
<J((H,P),(F,P)) <J((H,P),(G,P)). O

Definition 22. Let (F,P),(G,P) € IVIFSS(U), as-
sume that: for any ¢; € P,
F(ei) = {{xj, up(e,) (X)), VE(en) (X)) X € U = {{x},
[r o) (%) 8 o) (%)) L[V (6 (%) V(e (6)) Dl € U,
Glei) = {(xjsuge) (X)), va(en (X)) xj € UL = {(x;,
e (%7), UG(er) (X)L VG (e (X)), Vo(e) (x)])]x; € U L.
Suppose that,

(1) M, is a top-aggregation operator,

(2) My(x1,x2,x3,X4) < Ma(x1,x2,x3,x4) for any
X1,X2,X3,X4 S [0,1],

(3) fis a strict fuzzy negation,

(4) E; (I1=1,2,3,4) are fuzzy equivalence opera-
tors,

then for any a € [1,+o0), B € [1,400), we can de-
fine a new interval-valued intuitionistic fuzzy set
(¢2(F,G),P) from (F,P) and (G, P) as follows: for
anye; € P,x; €U,

Us,(F.G)(er) (X)) = *{1—[ S My (Er (up () (X)) Up o) (X))
Ao, (X)), E2(tp o) (X)) Tp () (X)) AUig(e;) (X5)),

Es(vr(e) (1), 2reg () Y Yote) (%1)): Ea Ve (47
Pr(e) (47 Pae) ()]}
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(X)) =
Atg(e) (% J))aEZ(MF(e)(xj) Up (o) (X)) Ng(e)) (X)),
E3(Vr(ep (X)) V(o)) (X)) V VG(e) (%)), E4(VE (6) (X)),
V() (%) VV6(en (X))}

Uy (F.G)(e

Vo, (F,G)(ep) (X)) =
ANttge))(X7))s E2(Up (e (X7) U () (X)) NUGiep) (X))
E3(v(e)) (%)), V() (K1) V V6o (X)) Ea (VE(e) (X))
Vr(en (1) V V(e ()P 11

Vs (F.G)(e) (¥))
Aty (X)) E2(Up o) (X)), U (e (X)) NUG(er) (X))
E3(Vr(e)) (%7), Y () (%) V YG(e) (X)) Ea (VE(e) (X))
VE(e) (X)) V V6(e) (X))}

Theorem 13. Let I be an entropy measure of
interval-valued intuitionistic fuzzy soft set. For
(F,P),(G,P) € IVIFSS(U), then I((¢2(F,G),P)) is

an inclusion measure between (F,P) and (G,P).

Definition 23. Let (F,P),(G,P) € IVIFSS(U), as-
sume that: for any e; € P,

F(ei) = {(xjsupe) (X)) V(e (ki) 1xj € U = {{x;,
[p () (%)) 7 (e) (X)) (%7)s V(e ()]l € U S

G(er) = {(x),uG(er) (X)), Va(e) (X)) 5 € UL = {(x},
[t (X)), UGer) (X)L [VG (e (X)) Vo(en) ()X € U L.
Suppose that,

(1) M is a top-aggregation operator,
(2) fis a strict fuzzy negation,

(3) E; (I=1,2,3,4) are fuzzy equivalence opera-
tors,

then for any 0 < o < 0 < a4 < 3, we can de-
fine a new interval-valued intuitionistic fuzzy set

SO V(B g (55), o (3)

:%{H—[ J(Mo(Er (up () (X)) up o) (X))

{1 — [f(M(E1 (up o) (7)o (X))

588

(¢3(F,G),P) from (F,P) and (G, P) as follows: for
anye; € P,x; €U,

Uy (F,G)(e:) (XJ) *{1—[ (M(E (MF(ei)(xj)aEF(e[)(xj)
AN ttge) (X)) E2 (B (e (X)) TF e (X)) ATlgie) (X)),
E3(Vp(e) (%), V() (%) V YG(er) (57))s Es(VE(e)) (X))
VE(e)) (%) V V(e (X)) 15

Uy (F.G)(ex) (XJ)**{l—[ SM(Eq (o) (%)) Up (e (%)
NUG(ey) (%)), Ea(ttp o) (X)), e) (X7) NUG(ey) (X))
E3(vp (o) (%7) VE () () V V(e (X)), E4(Vr(e) (%)),
VE(e) (X)) V V6 (%)))] %}

Voo (F.G)(en) (X)) = *{1+[ F(M(E1 (up (o) (X)), tp(e,) (X))
NuGe) (X)), E2 (U (o) (X)) U () (X)) AN(ep) (X)),
E3(vr(e;) (X)), Yr(e)) (1) V Y6 (e) (X)) E4(VE (e) (X))
VE(e) (%7) V V66 ()] % 5

= %{1 + [f(M(E1 (up e, (X)), tp (e, (X))
Aty (X)), E2(Up e) (X)) U (6) (X)) NUG(e;) (%))
E3(vp(e) (%), V() (%) V V6o (X)), Ea(VE(e)) (X))
VE(er) (X)) V V(e (%))))]“ }-

Vs (F.G) (e) (X))

Theorem 14. Let I be an entropy measure of
interval-valued intuitionistic fuzzy soft set. For
(F,P),(G,P) € IVIFSS(U) , then I((¢3(F,G),P))
is an inclusion measure between (F,P) and (G, P).

Proof. We only need to prove that all the properties

in Definition 11 hold.

(D If (F,P) = (U,P), (G,A) = (0,P),

we get F(e;) = {<xjv [1,1], [070]>|xj €U}, G(ei) =
{<Xj, [0,0], [1, 1}>|x]' S U} for Ve; € P,

then we have for any x; € U,e; € P,

gl (Up(e) (X)), Up(e) (%) Nge) () = E1(1,1A0) =
Ex (g () (X)), (o) (X)) A Tgey(x;)) = Ea(1,1 A

Vr(e) (X)) VVGey (1)) = E3(0,0V 1) =

X ’EF(e,)(xj) \/KG(e;)(xj)) :E4(()’()\/ 1) —
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0,

SO we get,
M(Ey (p () (X)), Ur (o) (X)) Aty (X)) E2 (U ;) (%)),

Ur (¢;) (X) N UG(e;) (%)), E3 (Ve (e )('x])7EF(e,-)< )V

V6(e)) (X)) E4(VF( 0 (X)) V(e )(XJ)VVG(e,-)(Xj)

:M(0,0,0,0) =0.

Thus, it is easy to get that

[ty (F.6)(er) (X7) s Ty (F.G) (er) ()] = [0,0],

Vo (F,G)(er) (X7): Yoy (FG)en) (57)] = [1, 1],

ij cU,e; e P

From Definition 12 of entropy for IVIFSSs, we

know

($:(F.G).P)) = 0= ((F.P), (G
[ﬂ¢3(F,c)(e,)(xJ) ”¢z( )(ez)(xj =1

[Vos(r.G) e )( ) Vos(£G)(en) (X)) =[5

ij' eU,e; €
& fM(E (F(e,)( J)> (e ()
Ez(ﬁF( (%)sTp (o) (X)) ANG(e) (X7))s E3(VE (o) (X))
(e)( ;) Ea(Vp(e) (X)), Vr(e) (%)) V
=0,Vx; €U,e €P.

M(EI(MF( )X tpey(X7) A UGy (x))),
E> (tip (o) (%), uF(e,)(xj)/\uG(e,)(x])) E3(vp(e )( ),

P))=0.
1,
],

\_/v

8 —

)

I,

A Ugen (X)),

N"_‘I\)\'—'

Yg

VEEe) (X)) V Vo) (X7))s  Ea(Vp(e) (X)), VE(e NE ) v
VG(e,)(xJ))) =1,Vx;eU,e €P.

SE (Up(e,) (%)), Up () (X)) Ao, (X)) =E2(TF () (X)),
ety (5) oy (3]) = B Oy (37) 050y () V
VG(en (X)) = = E4(Vp oy (55) V(o) (6)) V Ve (3))) = 1,
Vxj€U,e; €P.

S Up (o) (X)) = Up(e) (X)) Alige) (X))

UF(¢;) éx] =UF(e;) éxj) NUg(ep) (X)

VE(e) (X)) = Vr(en (X)) V V(e (X)),

VE(e) (%) = VE(e) (X7) V V(e (X)),

Vxj€eU,e; €P.

S up(e) (X)), Up (e (%))] < [Uge,) (X)), Uge; (x;)] and
Ve (X)), VF(e,)(xj) 2 [VG(e) (%)) Vo er) (x7)]5
VxjeU,e; €

&(F,P) C (G,P)-

O (1) < (G,P) € (H.P).then

[tp () (X)), UF(er) (x/)] e,y (X)) Ug(ey (x))] <
[u (e,)(xj)qu (e) xj)] and

Wree)(X1)VE@e) ()] 2 Vo) (X)), Vo) (x))] 2
Va(er) (%7)s Ve (er) (X5)],

VxjeU,e € P

So we have for Vx; € U,e; € P,

Ey (g () (%)) (o) (%) ANty (X)) = En (g e (X)),

589

Up(e)) (%)) < E1(Uge,) (X7) Up(e)) (%)) = E1 (UG (o) (X7)
Uc(e) (X)) Np(e) (X)),

EZ(EH(ei) (xj)77H(e') xj) /\ﬁF(e,-)(xJ» = EZ(EH(E,‘) ()Cj),

U (o) (X)) < E2(Tg(e;) (X)) (o) (X)) = E2 (T (e) (),
UG(e;) (X)) ATE(e) (X))

E3(EH(e,- (x; aEH(e,)(XJ)\/VF( )( xj)) = E3(£H(e,-)(xj)7

VE (e (Xj )<E3(VG(61%( Xj),VE( )( 1)) =E3(vG(e) (%)
Xj

i),V = E4(Vh(e) (%)),
VE(e) (X)) < Ea(V (e,)(x] ,VF( )(xj ) =E4(Vg(e)) (%),
VG (e)) (X)) VVE(e) (X))
SO wWe get
FM(E1 (g o) (X)) Up o) (X)) Aoy (X7))s E2 (Ui )
(X)), tp (o)) (X)) NTip (e (X)), E3(VH(e,)(xJ V(e (X
VVF (e (X)) Ea(Vh(e, (xj) ) (X)) VVE(e) (X)) =
f(M(El(uc( ) (X)), u (,)(xj /\”F( ) ())s E2(Tig(e,)
(), ug(e )(XJ)AMF ) (X)), E3 (Ve (X)) V(e (X
Vp(e) (X)), Es(Vaie )(xj) VG(e,)(xJ VVr ) (X))

Hence,
) gy (1) (e) ()] <
1< (3, %] and

)7 03(H,F)(e; ( )] [V¢3(GF)(e,-)(xj)7
Vq)gGF l)( ]2[; é] VXJEUEIEP
Let (Q P) € IVIFSS(U) and Q(e;)
{(x,[1/2,1/2]),[1/2,1/2])|x; € U} for any e; € P,
then we get
(¢3(H7F)7P) - (¢3(GaF)7P) C (Q7P)’
by Definition 9 of distance measure for IVIFSSs,
we get
Therefore, by Definition 12 of entropy for IVIF SSs,
we get
1((¢3(H,F),P)) <1((¢3(G,F),P))
<J((H,P),(F,P)) <J((G,P),(F.P)).

P))

By the similar way, we get

I((¢3(H7F)7P)) < I((¢3(H7G)a

<J((H,P),(F,P)) <J((H,P),(G,P)).

Definition 24. Let (F,P),(G,P) € IVIFSS(U), as-
sume that: for any ¢; € P,

[”¢3 H F)(e;)\Xj [E(p}(G,F)(e,-)(xj)a

J
u¢3 GF e,)(‘x )
J
x;)

)

Uy, (H
<
v

[Vq); HF (e,)(

O

F(ei) = {{xjsur(e,) (%), E () (%)) [xj € U = {{x},
[p (o) (X)) Tre) (X)) L VR (e (X)) VE(e) (X)) DX € U Y,

Gleir) = {(x), ug(e)) (X)) Va(en (X)) [x; € U} = {{x;,
[tGe)) (X)) U (er) (X)L [VG () (K1) Ve (e (X)) € UL
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Suppose that,
(1) M is a bottom-aggregation operator,
(2) f1is a strict fuzzy negation,

(3) E; (I=1,2,3,4) are fuzzy equivalence opera-
tors,

then for any 0 < o1 < 0 < o4 < 03, we can de-
fine a new interval-valued intuitionistic fuzzy set
(¢4(F,G),P) from (F,P) and (G,P) as follows: for
anye; € P,x; €U,

U, (F.G)(en) (X)) = *{1—[ (f(E1(up(e,) (x))s Up e (x))
Attge) (X)) FE2 (R () (X)), R () (X7) ANliG(e) (X)),
FE3(p(ep (X)) VE(en (%) V V610 (X)), £ (Ea(VE(e) (%)

VE(e) (%) VG ()™ 1

U, (F.G)(ep) (X ):7{1_[ (f(E (MF(e,-)<xj)7ﬂF(e,-)(xj)
Y (X)), f(E2 (i o)) :
F(E3(vp(ey (X)), v ()(xj)\/EG(e,-)(xj)))7f(E4(vF(ei)(xj)7
Glen ()N L

NUG(e,;

i)\
VF(e,-) (x]) \aZ

V(e (%) V V(e -)(xj))))]%},

Voy(F,G)(e) (Xj) = *{H‘[ (f(Er(p(e,) (X)) Up o) (%)
Aty (x))))s fE2(p () (X)), HE () (X)) NlGier) (%)),
JE3(Vr(e) (%)) Vo)) (X)) V V(e (X)) [ (Ea (VE(er) (%)),
VE(en) (X)) V V(e ()] -

Theorem 15. Let I be an entropy measure of
interval-valued intuitionistic fuzzy soft set. For
(F,P),(G,P) € IVIFSS(U) , then I((¢4(F,G),P)) is

an inclusion measure between (F,P) and (G, P).

Theorem 16. If [ is an entropy measure of IVIFSSs
and (¢n(F,G),P)(h = 1,2,3,4) is given by Defi-
nition 21-24, then 1((¢,(F,G)¢,P)) (h =1,2,3,4)

590

is also an inclusion measure between (F,P) and
(G,P).

Remark 7. Based on Definition 21-24, by select-
ing different aggregation operators and fuzzy equiv-
alences, we can obtain a large number of IVIFSSs,
which can be used to transform an entropy measure
into an inclusion measure for IVIFSSs.

Remark 8. In Ref. '7, the authors provided a
specific interval-valued intuitionistic fuzzy set, the
entropy of which have been proved the inclusion
measure for IVIFSs. If we extend this interval-
valued intuitionistic fuzzy set into IVIF SSs, the cor-
responding interval-valued intuitionistic fuzzy soft
set can be constructed by Definition 24, Theorem
15 and 16 in this work, by selecting a specific ag-
gregation operator, a specific equivalence operator, a
specific fuzzy negation operator and several specific
power exponents. To a certain degree, our research
is the extension of the research in Ref. !7 based on
fuzzy equivalence and aggregation operators. How-
ever, even if it degenerates to the IVIF'Ss situation,
all the formulae given by Definition 21-23 in this
work are new.

4.5. Transformation of similarity measures into
inclusion measures for IVIFSSs

Theorem 17. Let S be a similarity measure of
interval-valued intuitionistic fuzzy soft sets and
(F,P),(G,P) € IVIFSS(U), then J((F,P),(G,P)) =
S((G,P),(F,P)U(G,P)) is an inclusion measure be-
tween (F,P) and (G, P).

Proof. We only need to verify that the following

three properties of inclusion measure hold.
(1 J((U,P),(0,P)) = S((0,P),(U,P)) = 0;

@ J(FPLGP) = 1 < S(G.P),(F,P) U
(G,P) = 1 & (G,P) = (F,P)U(G,P) & (F.P) C
(G.P).
(3)If (F,P) C (G,P) C (H,P), we easily get that
J((H,P),(F,P)) = S((F,P),(H,P) U (F,P)) =
S((F,P), (H,P)) < S((F,P),(G,P))

g(( P),(G,P)U(F,P)) = J((G,P), (F,P)),

J((H,P),(F,P)) = S((F,P),(H,P) U
S((F,P),(H,P)) < S((G,P),(H,P))

(F.P)) =
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:S((G,P),(H,P>U(G,P)): (( ) )7( ))
So, we have J((H,P),(F,P)) <J((G,P),(F,P)) and
J((H,P),(F,P)) <J((H,P),(G,P)).

Thus, J is an inclusion measure of IVIF'SSs. O

5. Disease diagnosis based on entropy and
distance measure of /VIFSSs

An application of similarity measure of intuitionis-
tic fuzzy soft set in disease diagnosis can be found in
23 Benefiting from their idea, an application of the
entropy and the distance measure of /VIFSSs in dis-
ease diagnosis is given. In oder to estimate if an ill
person is suffering from a certain disease or not, with
the help of experts, we will construct an interval-
valued intuitionistic fuzzy soft set for the disease and
an interval-valued intuitionistic fuzzy soft set for the
ill person, respectively. The algorithm is stated as
follows:

Algorithm 1

Step 1. Select the threshold a € [0, 1] for judg-
ing the sample set of a disease and the threshold
B € [0,1] for assessing if a patient is suffering from
a disease or not;

Step 2. Constructs an interval-valued intuitionis-
tic fuzzy soft set (F, P) over U for the disease.

Step 3. Calculate the entropy of (F,P). If
I((F,P)) < a, (F,P) can be regarded as a sample
set for the disease; if else, collect more relevant in-
formation and reconstruct the interval-valued intu-
itionistic fuzzy soft set for the disease;

Step 4. Constructs an interval-valued intuitionis-
tic fuzzy soft set (G, P) over U for the patient;

Step 5. Calculate the distance measure between
(F,P) and (G,P), i.e., D((F,P),(G,P));

Step 6. We say the patient is suffering from the
disease if D((F,P),(G,P)) < B; if else, we say the
patient is not suffering from the disease.

The thresholds o and 8 in Step 1 can be selected
according to the actual situation with the help of ex-
perts. Step 2 is based on the consideration that if the
uncertain degree of an interval-valued intuitionistic
fuzzy soft set for the disease is too large, it maybe
not suitable to be a reference sample.

Example 10. Assume that our universal set contain
three elements U = {x;,x,x3}, where x; = on the
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first day of illness, x, = on the second day of ill-
ness, x3 = on the third day of illness. Here the set of
parameters P is the set of certain visible symptoms,
assume that P = {e, e, e3,e4,e5} where e; = fever,
ey = cough, e3 = vomit, e4 = twitch, es = trouble
breathing. We will try to estimate if a patient is suf-
fering from a certain disease or not.

Step 1. Let ¢ = 0.5 and B =0.1.

Step 2. Constructs an interval-valued intuitionis-
tic fuzzy soft set (F,P) over U for the disease which
can be prepared with the help of experienced doc-
tors:

F(er) = {(
[0.15,0.21]
F(e ) {(x1,[0.7,0.8],[0.1,0.2]), (x2,[0.55,0.65],
[0.2,0.25]), (x3,[0.60,0.70],[0.05,0.1])},
F(e3) = {(x1,]0. 7,0.8], [0.1,0.2]), (x2,[0.65,0.75],
)
(

x1,[0.7,0.8],[0.15,0.2]), (x2,[0.6,0.7],
), (x3,]0.55,0.65],0.15,0.25])},

[0.2,0.25]), (x3,[0.77,0.88],[0.1,0.1])},

F(eq) = {(x1,]0.6,0.7],[0.1,0.2]), (x2,[0.55,0.65],
[0.2,0.25]), (x3,[0.66,0.7],[0.05,0.1])}, F(es) =
{(x1,[0.6,0.6],[0.2,0.3]), (x2,[0.55,0.60],
[0.2,0.25]), (x3,[0.7,0.8],[0.05,0.1]) }.

Step 3. Calculate the entropy of (F, P). Here we
use the entropy measure of /VIFSSs constructed by
Theorem 3. Let Dy ((F,P),(Q,P)) be the Normal-
ized hamming distance between (F,P) and (Q,P)
and f'(x) = 1 —x for all x € [0,1]. Then we get
B((F,P)) = f'(2D((F,P),(Q,P))) = 049 < 0.5,
that is to say, (F, P) can be regarded as a sample set
for the disease.

Step 4. Constructs an interval-valued intuitionis-
tic fuzzy soft set (G, P) over U based on the data of
a patient:

G(er) = {(x1,[0.7,0.8],]0.15,0.2]), (x2,[0.6,0.7],
[0.15,0.21)), (x3,[0.55,0.75],[0.15,0.25]) },

G(es) = {(x1,]0.6,0.7],0.2,0.3]), (x2, [0.55,0.65],
[0.2,0.25]), (x3,[0.7,0.88],0.05,0.1])},

Gles) = {(x1,]0.5,0.6],0.2,0.3]), (x2, 0.45,0.55],
[0.2,0.25]), (x3,[0.7,0.78],]0.05,0.1]) },

Ges) = {(x1,[0.3,0.4],[0.3,0.4)), (x2,[0.55,0.65],
[0.2,0.25]), (x3,[0.7,0.88],[0.05,0.1]) },

Gles) = {(x1,[0.4,0.5],[0.2,0.3)), (x2, 0.35,0.40],

);

[0.2,0.25]), (x3,[0.7,0.88],[0.05,0.1]) }.

Step 5. Here we use the Normalized hamming
distance between (F, P) and (G, P), which is denoted
by D»((F,P),(G,P)). It is easy to get that
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D, ((F,P),(G,P)) ~0.067.

Step 6. We conclude that the patient is suffering
from the disease since

D,((F,P),(G,P)) <0.1.

6. Conclusions and Discussion

In this paper, we give eight general formulae to
calculate the distance measures of IVIFSSs by ag-
gregating fuzzy equivalencies. Consistently with a
new axiomatic definition of entropy for IVIF SSs, we
prove some theorems which demonstrate that dis-
tance measures can be transformed into entropies for
IVFSSs. Besides, we prove some theorems which
demonstrate that entropies can be transformed into
the inclusion measure and the similarity measure for
IVIFS§Ss based on fuzzy equivalencies.
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