International Journal of Computational Intelligence Systems, Vol. 5, No. 6 (November, 2012), 1173-1183

Oasa: An Active Storage Architecture for Object-based Storage System

Shuibing He L* , Xianbin Xu 2 , Yuanhua Yang 3

! School of Computer, Wuhan University,
Luojiashan Road No. 16,
Wuhan, 430072, China

* Key Laboratory of High Confidence Software Technologies, Peking University, Ministry of Education,
Beijing, 100871, China

E-mail:heshuibing @whu.edu.cn

2 School of Computer, Wuhan University,
Luojiashan Road No. 16,
Wuhan, 430072, China

E-mail:xbxu@whu.edu.cn

3 School of Computer, Wuhan University,
Luojiashan Road No. 16,
Wuhan, 430072, China

E-mail:yangyuanhual23 @ 163.com

Abstract

Active storage can largely reduce the network traffic and application execution time. In this paper, we
present the design and implementation of an active storage architecture called Oasa for object-based
storage system. Compared with previous work, Oasa has the following features.(1) It provides a flexible
and efficient way for user to process data. User functions can process data of one user object or multiple
objects at a time. (2) Oasa supports multiple patterns of user functions: both the input and output of the
functions can a) come from network or disk or b) go to network or disk. (3) It keeps compatible with
the current T10 OSD standard and requires little extra modification to execute user functions. Using the
extended OSD commands, user can conveniently create, delete, associate and execute user functions with
user objects. We also evaluate the performance of Oasa by running a typical application-data selection.
It is a representative data analysis application widely used in solving real problems. Experimental results
show that when the proposed active storage functions are enabled for object-based storage system, the
client can obtain upto 61.9% reduction of application execution time.

Keywords: active storage, object-based storage system, object-based storage device, intelligent storage,
T10 standard

1. Introduction processors and plenty of memories. However, the
. considerable processing capabilities of the storage
With the development of VLSI technology, more device have not been fully utilized. In addition,

and more storage devices are built with powerful

Published by Atlantis Press
Copyright: the authors
1173

S.B.He, X.B.Xu

some 1/O intensive applications often move a large
amount of data between the compute nodes and
the storage nodes thus put unprecedented pressure
on the network bandwidth!. On this occasion, ac-
tive storage technology?>*> has been prosed and is
proved to be one of the most effective approaches to
reduce the bandwidth requirements between storage
and compute nodes. By exploiting the under-utilized
processing power of storage devices to process data
on the device without moving it to the host, active
storage is able to not only reduce the network traffic,
but also provide aggregative processing intelligence
when multiple devices are used parallelly.

Numerous academic research institutions have
made contributions to the active storage research
field, such as Active Disk® and IDISK®. However,
with the narrow storage interface(e.g., IDE/SCSI),
active storage may result in complicated manage-
ment and high overhead.

On the other hand, object-based storage’ has
gained enormous popularity in storage area. To
achieve goals such as cross-platform data sharing,
policy-based security, direct access, and scalability,
many object-based storage systems (e.g., Lustre®,
Storage Tank”, Centera!®and Ceph!!) have been de-
veloped by the industrial community. In order to
regulate the more and more sophisticated object-
based technology, the object-based storage interface
standard'? (also referred as T10 OSD standard) is
being developed by the Storage Network Industry
Association. With more expressive object interface,
there is a potential for object-based storage devices
(OSDs) to be more intelligent.

To further improve the object-based storage,
there have been several efforts to integrate active
storage into the object-based storage technology.
John et al.'3 proposed an active storage framework
for object-based storage device. Piernas et al.'*
gives an active storage strategies implemented in
user-space for Lustre parallel File System'?. Qin et
al.! present a hybrid approach combining a request-
driven model and a policy-driven model to execute
code on OSDs. However, these works are prelimi-
nary, and user function can process data of one ob-
ject at a time, and this fixed data processing pattern
sometimes is not suitable to satisfy the users require-

ments.

In this paper, we present the design and imple-
mentation of an active storage architecture called
Oasa that is based on the current T10 OSD standard.
Specifically, Oasa has the following unique advan-
tages.

First, Oasa provides a flexible and efficient way
for user to process data. User function (application-
specific code) can process data of one user object or
multiple objects at a time. Second, Oasa supports
multiple patterns of user functions: both the input
and output of the functions can a) come from net-
work or disk or b) go to network or disk.

Third, Oasa keeps compatible with the current
T10 OSD standard and requires little extra modi-
fication to execute user functions. Using the ex-
tended OSD commands, user can conveniently cre-
ate, delete, associate and execute user function with
user object.

We also evaluate the performance of Oasa by
running a typical application: data selection which is
a representative data analysis application and widely
used to solve real-word problems.

The rest of this paper is organized as follows. In
section 2, we give an overview of object-based stor-
age and the related work on active storage. Then
we describe the design and implementation of Oasa
in section 3. In section 4, we run a real application
on the Oasa prototype and evaluate the performance
of Oasa. Finally, section 5 concludes the paper and
points out some future work.

2. Related work

In this section, we first give an overview of object-
based storage. Then we present the related work on
active storage.

2.1. Overview of object-based storage

An object is a storage container with variable-length
and can be used to store any type of data. Besides
data, an object has numerous attributes that are used
to describe the characteristics of the data. An ob-
ject behaves exactly like a file, it can be created and
deleted, and can grow and shrink their size during
their lifetimes. Different from traditional file-based

Published by Atlantis Press
Copyright: the authors

1174

storage architecture, Object-based storage divides
the file system into two components: the user-related
component and the storage-related component, and
offloads the latter component into the object-based
storage device (OSD).

The architecture of the Object-based storage sys-
tem (OBSS) is shown in Fig. 1. The OBSS consists
of three main parts: the Metadata Server (MDS), the
OSDs, and the clients. The MDS provides objects
mapping information and authentication for clients’
data access. When a client accesses the data in an
OSD, it first contacts with the MDS and gets the
mapping information about the objects. Then the
client interacts with the OSD directly. Here the re-
quest contains object ID, an offset within the ob-
ject, attribute values, and so on. Finally, the OSD
receives the object-based request and performs cor-
responding operations.

@ C“‘Tz Clint n
cli t:\ S S
ien P N— \@/
(
¢

n
~

A Metadata Server
-

Network)

~

~ — _//

OSD2

Network

Interface CEPROM]

0SDn™,

y
s,

Fig. 1. The architecture of the object-based storage system

The OSD is one of the cornerstones of the
OBSS!6. Tt is an versatile storage device that con-
tains CPU, memory, the storage media (disk), and
the network interface which allows it to manage the
local object store, autonomously serve, and store
data from the network. Generally speaking, the OSD
provides three major functions: object management,
device security management, and network commu-
nication.

In order to further promote the development
of object-based technology, the International Com-
mittee for Information Technology Standards (IC-
ITS) under Storage Networking Industry Associa-

Oasa: An Active Storage Architecture for Object-based Storage System

tion (SNIA) developed the T10 OSD standard. The
T10 OSD standard'? defines the OSD model and the
basic command set (e.g., READ and WRITE com-
mand) that operate data on the OSD. Comparing
with the traditional file, the object is a more expres-
sive interface. Each object is identified by an object
ID, and is accessed by offset, length, and so on. Be-
sides user objects, there are three kinds of objects,
namely, root objects, partition objects, and collec-
tion objects, used to address user objects more effi-
ciently. In addition to the data access commands, the
T10 OSD standard also defines attribute commands
(e.g., GET ATTRIBUTES and SET ATTRIBUTES)
that are responsible for attributes retrieval and set-
ting.

2.2. Related work on active storage

The idea of active storage was first developed in the
database area, such as CASSM!7 and RAP'8. How-
ever, as disk drive has limited performance and the
cost is expensive in the earlier time, the database ma-
chines are quickly eliminated by the market.

With the development of VLSI technology, nu-
merous researchers focus on active storage technol-
ogy again. Riedel et al.* proposed Active Disks,
which exploits the processing power on individ-
ual disk drives to migrate and execute of general-
purpose code on disk drives. Keeton et al.% pre-
sented intelligent disks (IDISKs), designed for de-
cision support database system. Similar to Active
Disks, IDISKs use low-cost embedded processors,
main memory, and high-speed serial communication
links on each disk. IDISKs are connected to each
other via these serial links and high-speed crossbar
switches, overcoming the I/O bus bottleneck of con-
ventional systems. Our work on active storage, how-
ever, focuses on OSDs with commodity disk drives,
general purpose CPUs, and common operating sys-
tems.

Previous work has focused on limited applica-
tions such as image processing, decision support and
data mining. Acharya et al.’ presented a stream-
based programming model of active disks, in which
an application is divided into a host part and a disk-
resident part(called disklet). Disklet is a piece
of JAVA code, and it can be efficiently and safely

Published by Atlantis Press
Copyright: the authors

1175

S.B.He, X.B.Xu

executed on the processors embedded in the disk
drives. A disklet takes one or more streams as in-
put and generates one or more streams as output.
MapReduce'®?°, a concept similar to active storage
has also been employed in cluster computing field,
MapReduce splits the computations and maps them
to many computers processing the data locally, then
the sub-results of the split computation are merged
for form the global result of the problem.

The above researches are built on the storage sys-
tems based on the block-level interface. This makes
it hard to handle the block mapping and results in
surprisingly high overhead. Since object-based stor-
age technology may significantly influence the net-
worked storage industry, a lot of researchers have
gradually made efforts to integrate active storage
into the object-based storage system. Piernas et al.
gave an active storage strategy implemented in user-
space for Lustre parallel File System'*!'?, which
proves to be faster, more flexible, portable, and read-
ily deployable than the kernel-space version. Hus-
ton et al. presented an active storage architecture
called diamond?2, used for interactive search of non-
indexed data from the massive storage system. The
idea of object-based storage has been embodied in
diamond. For instance, the object attribute is used
to determine whether an object may be of interest to
the users. By running a set of application-generated
filters inside storage devices, diamond can perform
efficient filtering of large data collections. However,
these two systems are designed for specific storage
platforms with private storage protocols. In contrast,
Oasa is designed for general object-based storage
platform and do not comply with the T10 OSD stan-
dard.

In order to promote the development of object-
based storage technology, several work tried to inte-
grate the active storage technology into the object-
based storage technology based on the T10 OSD
standard!>21'13, Recently, Xie et al. presented an
object-based active storage framework with a pre-
liminary security solution?®>. However, these work
is preliminary and lack of detailed implementations,
so it is difficult to make the solutions be practical
and convincible. In contrast, Oasa provides more de-
tailed implementation of how to gain benefits from

the object-based active storage technology. Further-
more, previous work only allows one user function
to process data of one object at a time. This fixed
data processing pattern may limit the potential of
the performance improvement when a lot of small
requests are served. Contrastively, Oasa provides
more flexible way for users to process data. By
allowing user function to process data of multiple
objects in one command, Oasa can further improve
storage system performance and better meet user de-
mand for data access.

3. Oasa design and implementation

In this section, we first describe the design of Oasa.
Then we present the details on implementations of
Oasa.

3.1. Oasa architecture

In traditional OSD software stack, there isn’t a com-
ponent supporting active storage. As a result, we
modify the OSD software design based on our ear-
lier work®* to employ the concept of active storage.

Client Request Response
,,,,, l,,,,,, A UserSpace
Kernel Space
-~

iSCSI Target 5 5 N
Function Activation N
~
N
ASL 5 A
Function Register ' Object Active

Storage
Manager

(OASM)

unction and Object

OSD System Information - -

‘ Object-based File System (OBFS) ‘

OSD Commander
Extensions)

Partition
Object
User Object User Object

Root
object

Fig. 2. Oasa architecture overview

Fig. 2 shows the architecture of Oasa in an OSD
device. As depicted in Fig. 2, Oasa includes four
modules, namely, the iSCSI Target, the OSD Com-
mander, the Object-based File System (OBFS), and
the Object Active Storage Manager (OASM). The
last component OASM does not exist in traditional

Published by Atlantis Press
Copyright: the authors

1176

OSD software stack. OSD Commander uses OBFS
to perform object (data and attributes) access and
retrieval, as well as OASM to provide active stor-
age service for clients to execute their functions on
the OSD device. Oasa is able to handle two kinds
of OSD commands, namely, the existing commands
defined in the T10 OSD standard and the new exten-
sional commands proposed in this paper, and they
were referred as STD CMD and EXT CMD respec-
tively in later sections.

Typically, a client request issued to an OSD inte-
grated with OASM will be processed as follows.

(1) ISCSI Target receives the iSCSI commands and
forwards the OSD commands carried in the
iSCSI package to OSD Commander.

OSD Commander resolves the command ac-
cording to its type. If the command is a STD
CMD, it will be delivered to the OBFS. Other-
wise, it will be delegated to the OASM for fur-
ther processing.

2

(3) OASM prepares the environments for execution
of application function, and then invokes a pro-
cess in user space to execute application code.

When the execution of a user function is com-
pleted, OASM writes the result to the disks
through OBFS or returns it to the client through

network.

)

3.2. Object-based active storage manager

OASM is the core of employing the idea of active
storage. In order to perform their own functions con-
veniently on the OSD for every client, OASM pro-
vides a transparent, safe mechanism that consists of
the following aspects.

3.2.1. Application function management

OASM is need to addresses the problem of how to
express, offload, identify, and execute an application
function between the client and the OSD. In Oasa, an
application-specific function is denoted by a piece of
code (written in C/C++/Java) and it is delivered to
the device at first. A client uses the function register
interface to offload their function code on the OSD
, and the OSD returns the client with a function ID

Oasa: An Active Storage Architecture for Object-based Storage System

used to identify which function should be executed
later. In order to locate the function code in the disk
effectively, OASM maintains an active storage loca-
tion table(ASL table) which can quickly show the
disk location according to the function ID.

However, the function code may not be needed
any longer, so the client can delete it freely. There-
fore, OASM also provides a function cancel inter-
face resolved in deleting the function code and the
related entry in the ASL table.

3.2.2. Association between object and function

In addition to the function from the clients, OASM
also defines what data a function can process. In
an OSD device, data is accessed by the interface of
object, OASM uses the association between object
and function to describes which object(s) can be pro-
cessed by which function according to a function ID.

There are two kinds of association between ob-
ject and function. The first is default association,
and on this scenario an object does not need to spec-
ify the function ID and it can be processed by a
default function. OASM also maintains an object-
function map table(OFMap table), in which each
entry is in the form of < objectID, functionlD >.
When a client sends a request including an EXT
CMD to an OSD, OASM will check the EXT
CMD’s parameters. If a function ID is not speci-
fied in the parameters, OASM will use the object
ID as a key to search the default function ID in the
OFMap table. If found, then OASM will continue
to process with the function identified by the search
result. Otherwise, an error message will be returned
to the client.

The second association is the explicit associa-
tion, where the object ID and the function ID needs
to be specified together. However, if the disk loca-
tion of the related function given by the client does
not exist in the ASL table, OASM also returns an
error message to the client.

As OASM provides interface for client to get rid
of their functions resided on an OSD device, OASM
also allows client to remove the default association
between object and function. On this case, an entry
is needed to be deleted from the OFMap table.

Published by Atlantis Press
Copyright: the authors

1177

S.B.He, X.B.Xu

3.2.3. Execution of function

Ultimately, the application function should be exe-
cuted on the disk on demand of client’s request. As
our OSD is usually equipped with mediocre PC and
operating system (e.g., Linux), OASM is in charge
of building the running environment for the execu-
tion of the application function. OASM first pre-
pares parameters for the function code, and then
invokes the code. After the function code is fin-
ished, OASM deals with the result according the
OSD command type.

In order to provide a safe, transparent approach
for clients to execute their functions on an OSD de-
vice, OASM provides the OSD system information
interface to describe the platform-related informa-
tion (e.g., OSD CPU architecture, operating sys-
tem kernel version and C library, if needed) for
the clients. An advantage of such design is that
the clients are able to execute their codes on cross-
platforms.

3.3. Flexible data processing in Oasa

Different from previous researches', Oasa provides
more flexible approach for user to process data.
Oasa achieves this goal through the following two
ways.

3.3.1. Flexible association between object and
Jfunction

In the existing OSD standard, a client can access the
data of one user object with one OSD command,
thus these earlier work!>!> based on the existing
OSD standard in fact provides only an one-to-one
association between object and function. In this pa-
per, we extend the association to an many-to-one as-
sociation: in one EXT CMD one user function is
able to process multiple objects. As a result, more
flexible granularities, such as part of a user object,
the whole user object and multiple objects are sup-
ported by an EXT CMD. In Oasa, we use collec-
tion object defined in the current OSD standard to
represent multiple objects, and a user can deal with
multiple objects by specifying the collection object
identifier in the EXT CMD.

Employing the many-to-one association between
object and function brings benefit. Namely, the OSD
command transmission times between clients and
OSDs can be largely reduced. As the iSCSI pro-
tocol which is used to transfer commands and data
is a heavy-weight protocol®, the less interaction the
less overhead of command resolving. For instance,
a remote client that needs to process 100000 objects
maybe need to send 100000 requests if the one-to-
one association is adopted. However, if the many-
to-one association is used, 99999 requests can be
omitted. From the above discuss, we believe that our
design is specifically good for the applications with
a large amount of small objects because in those
cases protocol overhead is considerable in term of
the whole data transfer process.

3.3.2. Flexible data process patterns

Besides the association between object and function,
the input and output of a function also affect the flex-
ibility of the active storage service. In this paper, we
use process pattern to represent the input and output
of a function, and it indicates the various sources and
destinations of the data processed by a function.

Pattern Network Inpu

I |
I |
i I

|
| |
| I
| Patgem Inu Function [OUtPY I
I !
| I
|

Fig. 3. Data process patterns in Oasa

Oasa provides four process patterns for clients to
execute their function on an OSD device. As indi-
cated in Fig. 3, the input and output of a function can
be both network client and disk. Similar to the pre-
vious work!!4, data flows in pattern 1 and pattern 3
are as same as that in the normal OSD WRITE and

Published by Atlantis Press
Copyright: the authors

1178

READ command. On this occasion, intelligent op-
eration such as data filter (e.g. encryption and com-
pression) can be performed as pattern 1, and other
operations (e.g. decryption and decompression) can
be performed as pattern 3. In this paper, we also
extend the patterns to pattern 2 and pattern 4. Pat-
tern 2 decreases the slow operations on the disk, and
pattern 4 reduces the transmission on the network,
so they can further improve the performance of the
whole system.

3.4. Extensions to the T10 OSD standard

In order to integrate the concept of active storage
and the object-based storage technology, we make
new interface for OSD device based on the exist-
ing object interface. Through modifying several ex-
isting commands and their corresponding Data Out-
Buffer, Oasa keeps compatible with the current T10
OSD standard and makes limited extend to execute
user functions.

Firstly, we change some fields in four OSD com-
mands (CREATE, REMOVE, READ and WRITE)
to employ active storage. From the command de-
scriptor block (CDB) of these commands, we find
they have similar structure: the bit 3 to 0 of byte at
offset 11 are reserved, so we use these 4 bits as the
active storage control (ASC) field to show distinc-
tion.

Table 1 shows the modified CDB format of the
CREATE command. When the ASC=0000b, the
meaning of the CREATE command is as the same
as that in the current OSD standard. However, when
the ASC is set to be other value, the CREATE com-
mand becomes to be a EXT CMD supporting spe-
cial purpose for active storage. Table 2 gives the de-
scription of CREATE and REMOVE command with
different ASC values, and the descriptions of other
commands are omitted here.

Then we also add five new fields (F1-F5) to the
Data-out Buffer of every command to deliver pa-
rameters and additional information for the extended
command. Table 3 describes the format of Data-
Out Buffer, and the F1 field specifies the application
function ID, the F2 field gives the user object ID that
needed to processed, the F3 field is used to transfer
the user’s executable code, the F4 field specifies the

Oasa: An Active Storage Architecture for Object-based Storage System

parameters of the function and the F5 field is used to
locate the result.

Table 1. CREATE command format

Bit
Bytd 7 6 5 4 3 2 1 0
8 | MSB
9 SERVICE ACTION(8882h) 1SB
10 Reserved \ DPO| FUA ISOLATION
11 Reserved I GET/SET
12 TIMESTAMPS CONTROL
Reserved
16 | MSB
3 PARTION_ID —1SB
24 | MSB
3 REQUESTED USER_OBJECT_ID 1SB
235
Table 2. Extended commands
Commands ASC Description
0000 Original CREATE command
0001 Function register
CREATE | 0011 User object makes association
with one function
0100 | Collection object makes associa-
tion with one function
others | Reserved
0000 | Original REMOVE command
0001 Function cancel
REMOVE 0011 Association between a user object
and a function is canceled
0100 Association between collection
object and a function is canceled
others | Reserved

With the aid of the new fields, the new EXT
CMDs are qualified for executing the clients’ func-
tion on an OSD device. Of course, different EXT
CMD may need different fields mentioned above,
so they should be selectively specified according to
the type of the command rather than specified all
together. For example, when the ASC in an EXT
CREATE CDB is 0001b, it is used as a function reg-
ister command. On this occasion, the REQUESTED
USER_OBJECT_ID field at byte offset 24-31 in the
CREATE CDB is used to fill the expected function

Published by Atlantis Press
Copyright: the authors

1179

S.B.He, X.B.Xu

ID for a client. If the function ID field is zero, then
the OSD will automatically allocate a function ID
for the client. At the same time, the function code is
filled in the F3 field of the Data-Out Buffer, and the
length of the function code is assigned by the content
at byte offset 34-41(8 bytes) in the CREATE CDB.

Table 3. Data-Out Buffer format

g;te 7 6 5|43 |21
0 | MSB . .
15 (FD)Function ID, if any 1sB
16 | MSB .
3 (F2)USER_OBIJECT IDI, if any —1SB
MSB (F2)USER_OBIJECT ID2, if any 1sB
j MSB . .
-] (F3)Function data,if any IsB
k | MSB . .
I (F4)Function Parametersl, if any IsB
... | MSB . .
p— Function Parameters2, if any 1IsB
m | MSB .
i3 (F5)Data offset1, data lengthl, if any 1sB
MSB (F5)Data offset2, data length2, if any 1sB

3.5. Implementation

We implement a prototype of Oasa based on our ear-
lier work?* which includes the OSD software stack
in Linux. A client downloads the function code on
the OSD through the extended CREATE command,
and the OSD stores the code (similar to the WRITE
operation) on its disk and returns back a function
ID. As the code will be called hereafter, one concern
is how to locate the code according to the function
ID. Though both the object ID and the file path both
can be used to identify the function code in Linux,
we adopt the later due to the convenience for code
execution. In order to effectively search the entry of
the ASL table consisting of numerous entries, a hash
table is maintained to manage the mapping informa-
tion.

The second concern is how to execute the func-
tion code in Linux. As OASM is in the kernel space
while the function code is invoked in the user space,

we use the function call_usermodehelper() in Linux
to execute application function codes in kernel space
and deliver corresponding parameters to function
codes.

The last concern is how to address the commu-
nication between OASM and the user processes de-
rived from the function codes. In our implementa-
tion, OBFS is built on a general purpose file system,
so OASM and the user processes exchange data in
different space by accessing a data file. In order to
improve the efficiency, the inter-process communi-
cation mechanism—pipe is used: user writes the re-
sult to a pipe, and OASM gets the result though a
pipe read operation.

4. Experiments

In this section, we will evaluate the performance of
Oasa by running a representive application-data se-
lection.

4.1. Experimental Setup

Our experiment test bed consisted of a client and an
OSD. The client and the OSD have the same hard-
ware components, and they are connected through
the gigabit Ethernet network. The configuration of
each node is shown in table 4.

Table 4. CONFIGURATION

CPU Memory Disk Network
COhSe]I)lt Xeon 3.0G|512M DDR|200GB/SATABCMS5700
Switch Cisco Catalyst 3750 GE switch
oS Redhat 9, Kernel Version 2.4.20

We use a typical application-data selection to
discuss the performance of OASA. Selecting the re-
quested data from a large-scale data set is a repre-
sentative operation in database field and it is widely
used in real-world problem solving. In our test, the
data set is a data sequence consisting of millions of
data, each of which is 0-9, and the large-scale se-
quence is stored as a user object in the OSD.

We test the performance of the application under
the traditional storage architecture and the new ar-
chitecture with active storage. In order to show the

Published by Atlantis Press
Copyright: the authors

1180

difference, hereafter the former is called TS test and
the latter is called AS test.

In the TS test, a client first fetches data to the lo-
cal memory through a OSD READ command from
the OSD device, and then performs the data selec-
tion operation. The execution time of the application
consists of object read time through network and ob-
ject process time on the host. In the AS test, a remote
client first downloads the function code onto the
OSD device, and then associates the function code
with the user object including the data set. After
that, the client requests the data selection operation
on the OSD device through a new EXT CMD. Fi-
nally, the OSD returns the result to the client through
network. In this test, the execution time of the appli-
cation consists of object read time, object process
time on the OSD, and the result transfer time.

4.2. Results

Oasa: An Active Storage Architecture for Object-based Storage System

2000

1500

1000

500

Execution time (ms)

f=}

TS_8KB AS_8KB TS _32KB AS_32KB

Fig. 4. Application performance under different read size

Fig. 4 shows the application execution time with
the data selection condition is “data value is less than
2”. We test the performance of two scenarios: the
object read size of each time is 8KB and 32KB. As
can be seen from Fig. 4, the active storage test under
object read size 8KB and 32KB can reduce the ap-
plication execution time 61.9% and 46.5% respec-
tively comparing with that in TS tests. This result
indicates that active storage can improve the appli-
cation’s overall performance. At the same time, we
can find that the application execution time has a
relationship with the object read size: a large size
read will further improve the performance compar-
ing with a smaller request size. This is because the

iSCSI protocol is a heavy weight protocol, and a
large size read operation each time will reduce the
time of data transmission, thus reduce network over-
head.

Table 5. The percentage of the data in the result

Conditions Percentage
Value < 3 19.04%
Value < 5 38.09%
Value < 7 57.1%
Value < 9 76.2%

In addition, we test the application execution
time under different data selection conditions. The
percentage of the data in the result accounts for that
in the original data set under different conditions is
shown in Table 5.

| 22275 tests IELAS tests |

2600

2400

2200

2000

1800

1600

1400

Execution time (ms)

1200

1000

800

value < 3

value <5 value <7 value <9

Data selection condition

Fig. 5. Application performance under different selection
condition
Fig. 5 describes the application execution time
under different data selection conditions where the
object read size is 8KB. From the figure we can ob-
serve that the application execution time in AS test
under different conditions are decreased by 53.4%,
42.29%, 21.83%, and 0.58%. Although the perfor-
mance improvements in AS tests continues to de-
cline, the performance of active storage is always
better than that in traditional storage test. With the
change of the data selection conditions, more and
more data need to be processed on the OSD, even
the data in the result is nearly to the amount of the
original data sequence. As a result, the difference

Published by Atlantis Press
Copyright: the authors

1181

S.B.He, X.B.Xu

between execution time in AS test and TS test be-
comes small. From the above discusses, it can be
seen when the returned data is much smaller than the
original data, the benefit of active storage is particu-
larly evident. Of course, if more than one OSD are
deployed in the system to parallel process, benefit of
active storage will be more significant.

5. Conclusions and future work

In this paper, we propose an active storage architec-
ture called Oasa to integrate the active storage tech-
nology into the object-based storage system. Oasa
provides a flexible and efficient way for user to pro-
cess data, keeps compatible with the current T10
OSD standard, and requires little extra modification
to execute user functions.

We design and implement the prototype of Oasa
on the Linux operating system, we evaluate the pro-
totype’s performance of Oasa by running a typical
application-data selection, which is a representative
data analysis application and widely used in the real
world. Experimental results show that Oasa can ob-
tain upto most 61.9% reduction of application exe-
cution time.

In future work, we would like to test our proto-
type with more extensive applications. Moreover,
we think it is a more promising approach to em-
ploy active storage on a distributed computer sys-
tem. Therefore, how to determine a user function
should be executed in a host computer or in an OSD,
and how to coordinate the underlying OSDs to finish
a task, are the directions of future research on active
storage.

Acknowledgement

We would like to thank Bin Wang, Yulai xie, Yanli
Yuan and Changhu Ma for their help in this study.
This work was funded by Fundamental Research
Funds for the Central Universities No. 3101012,
Key Laboratory of High Confidence Software Tech-
nologies Program No. HCST201104.

References

1. P. Kogge, K. Bergman, S. Borkar, D. Campbell, W.
Car- son, W. Dally, M. Denneau, P. Franzon, W. Har-
rod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lu- cas, M. Richards, A. Scarpelli, S. Scott, A.
Snavely, T. Sterling, R. S. Williams, and K. Yellick,
”Exascale computing study: Technology challenges in
achieving exascale systems,” Tech. Rep. TR-2008-13,
DARPA, September 2008.

2. X. Ma, A. Reddy, I. Center, and C. San Jose, "Myvss:
an active storage architecture,” IEEE Transactions
On Parallel and Distributed Systems, 14,993-1005
(2003).

3. A. Acharya, M. Uysal, and J. Saltz, ”Active disks:
Programming model, algorithms and evaluation,”
ACM SIGPLAN Notices, 33,81-91 (1998).

4. E. Riedel, G. A. Gibson, and C. Faloutsos, “Ac-
tive storage for large-scale data mining and multime-
dia,’Proceedings of the 24rd International Conference
on Very Large Data Bases, 62—73 (1998).

5. H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T.
Yang, and L. Chu, "The panasas activescale storage
cluster- delivering scalable high bandwidth storage,”
Proceed- ings of the ACM/IEEE SC2004 Conference
on Supercom- puting, 53—62 (2004).

6. K. Keeton, D. A. Patterson, and J. M. Hellerstein,
”A case for intelligent disks (idisks),” ACM SIGMOD
Record, 27,42-52 (1998).

7. M. Mesnier, G. Ganger, and E. Riedel, ”Object-based
storage: pushing more functionality into storage,’
IEEE Potentials, 24,31-34 (2005).

8. P. Schwan, “Lustre: Building a file system for 1000-
node clusters,” Proceedings of the 2003 Linux Sympo-
sium, 380-386 (2003).

9. J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and

B. Hillsberg, ”Ibm storage tank-a heterogeneous scal-

able san file system,” IBM Systems Journal, 42,250-

267 (2003).

D. Nagle and B. Welch, “object-based cluster stor-

age system,” Proceedings of the 23st IEEE/14th NASA

Goddard Conference on Mass Storage Systems and

Tech- nologies, (20006).

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.

Long, and C. Maltzahn, ”Ceph: a scalable, high-

performance distributed file system,” Proceedings of

the 7th symposium on Operating Systems Design and

Implement,307-320 (2006).

R. O. Weber, “Information technologyscsi object-

based storage device commands -2 (0sd-2), revision

5, Tech. Rep. Technical report, INCITS Technical

Committee T10/1729-D, Jan 2009.

T. M. John, A. T. Ramani, and J. A. Chandy, ~Active

storage using object-based devices,” Proceedings of

the IEEFE Interna- tional Conference on Cluster Com-

10.

11.

12.

13.

Published by Atlantis Press
Copyright: the authors

1182

14.

15.

16.

17.

18.

19.

20

puting, 472-478 (2008).

J. Piernas, J. Nieplocha, and E. J. Felix, “Evaluation of
active storage strategies for the lustre parallel file sys-
tem,’ Proceedings of the 2007 ACM/IEEE conference
on Supercomputing,1-10,(2007).

L. Qin and D. Feng, ”Active storage framework for
object-based storage device,” Proceedings of the IEEE
20th International Conference on Advanced Informa-
tion Networking and Applications,97-101 (2006).

S. He and D. Feng, “Implementation and per-
formance evaluation of an object-based storage
device,” Proceedings of the International Work-
shop on Storage Network Architecture and Parallel
I/0s(SNAPI’07),129-136 (2007).

S. Y. W. Su and G. J. Lipovski, "Cassm: A cellular
system for very large data bases,” Proceedings of the
International Conference on Very Large Data Bases
(VLDB), 456472 (1975).

E. A. Ozkarahan, S. A. Schuster, and K. C. Smith,
“Rap: an associative processor for data base man-
agement,” Proceedings of the AFIPS Joint Computer
Conferences, 379-387 (1975).

J. Dean and S. Ghemawat, "Mapreduce: Simplified
data processing on large clusters,” Proceedings of
the 6th symposium on Operating Systems Design and
Implement,138—150 (2004).

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,

Oasa: An Active Storage Architecture for Object-based Storage System

21.

22.

23.

24,

25.

and I. Stoica, “Improving mapreduce performance
in heterogeneous environments,” Proceedings of the
8th symposium on Operating Systems Design and
Implement,29—-42 (2008).

A. Devulapalli, I. Murugandi, D. Xu, and P. Wyck-
off, "Design of an intelligent object-based storage de-
vice,” http://www.osc.edu/research/network_
file/projects/object/papers/istor-tr.pdf
L. Huston, R. Sukthankar, R. Wickremesinghe, M.
Satyanarayanan, G. R. Ganger, E. Riedel, and A. Ail-
amaki, "Diamond: A storage architecture for early
discard ininteractive search,” Proceedings of the 3rd
USENIX Conference on File and Storage Technolo-
gies, 73-86 (2004).

Y. Xie, K. Muniswamy-Reddy, D. Feng, D. Long, Y.
Kang, Z. Niu, and Z. Tan, “Design and evaluation of
oasis: An active storage framework based on t10 osd
standard,” MSST,1-12 (2011).

S. He and D. Feng, "Design of an object-based storage
device based on i/o processor,” ACM SIGOPS Operat-
ing Systems Review, 42, 30-35 (2008).

B. K. Kancherla, G. M. Narayan, and K. Gopinath,
Performance evaluation of multiple tcp connections
in iscsi, Proceedings of the 24th IEEE Conference
on Mass Storage Systems and Technologies,239-244
(2007).

Published by Atlantis Press
Copyright: the authors

1183

