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Abstract

Since the performance of a system of interacting peers depends strongly on their individual contributions, the ratio
between their provided and consumed resources should be set in line with the social welfare improvement, without
relying on a central coordinator. In this paper, we devise a self-organized mechanism for cooperation policy setting
of the interacting peers based on decision-theoretic analysis. By extensive simulation experiments, we demonstrate
that when the proposed mechanism is followed, a Pareto optimal equilibrium emerges in the system from fairly
coordinated decisions of the rational peers on their cooperation policies.
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have been considered in the literature®: soft and hard

As opposed to traditional client-server networking, the
peer-to-peer paradigm is flexible and distributed in nature
and allows individual peers (or users) to play the roles of
both consumer and provider at the same time. Due to
these characteristics, it has been widely deployed for file
sharing and more recently for multimedia streaming sys-
tems. The performance of existing peer-to-peer systems
relies on the cooperation of the peers and the contribution
of their resources!>3*3. However, it can be highly vari-
able and unpredictable as there is no central authority to
coordinate resource contributions of individual peers.

To improve the overall performance of the system,
the rational peers should be incentivized to set the ra-
tio between their provided and consumed resources in a
self-organized manner. Two classes of incentive schemes

schemes. Hard schemes, which are monetary-based, in-
cludes various methods of token-exchange and micro-
payment, while in soft schemes, fairness of cooperation
is the main concern and it is promoted by prioritizing
peers according to their cooperation level. Under ei-
ther of these incentive schemes, many different mecha-

nisms of resource allocation*7-8

and policies of server
selection” %11 have been proposed, to respectively lead
the decisions of rational peers as the provider and the
consumer of resources. While they successfully provide
incentives by differentiating the peers according to their
contributions, the adjustment of their sharing ratio (the
ratio between their upload and download resources) in ac-
cordance with the inherent dynamics of peer-to-peer sys-

tems is not explicitly considered. In other words, it is as-
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sumed in the aforementioned works that each peer in the
system has separate capacities for upload and download
(as in the case of ADSL), and hence the upload capacity
is the only possible bottleneck. However, this assumption
is not realized in many systems where the access technol-
ogy does not separate upstream and downstream flows
(such as wireless or Ethernet-like protocols)!'?. Strictly
speaking, each peer has to decide on how to share its
limited-capacity resources between upload and download
simultaneously.

We focus in particular on setting the cooperation poli-
cies of individual peers by adjusting the ratio between
their upload and download resources under an incentive
scheme. Otherwise, rational peers would prefer to ex-
ploit their full capacity as the download resource in or-
der to maximize their individual utilities, and the system
would collapse. To this end, we devise a self-organized
interaction mechanism among the participating peers by
taking a decision-analytic approach'?. The motivation is
that under an incentive scheme, the interaction mecha-
nism can be formulated as a process by which individ-
ual peers, observe the other participants’ behavior, learn
from these observations, and make the best decision in
response to what they have learned. More specifically,
interacting participants of a peer-to-peer system, which
adjust their cooperation policies concurrently and adap-
tively, exhibit general properties of an individual-based
Lagrangian swarm model'#, since:

« the system consists of many individual peers with sim-
ilar and simple functionalities;

« the interactions among the peers are based on simple
behavioral rules by exploiting only local information
that is exchanged directly via the environment;

« the overall behavior of the system results from the
interactions of the individual peers with each other,
which is emergence;

« the interactions of peers are realized in a distributed
manner without relying on a centralized coordinator,
that is self-organization.

In the context of a peer-to-peer system, e.g. a file-
sharing or a media-streaming system, the behavior of an
individual peer is defined by its cooperation policy which
is characterized by the ratio between its upload and down-
load resources (e.g. storage space in file-sharing system
or bandwidth in media-streaming system). Moreover, the

social welfare is defined as the overall behavior of the
system that is desired to emerge from fairly coordinated
cooperation policies of individual peers.

Therefore, in order to develop the interaction mech-
anism in a self-organized manner, we model the coop-
eration policy setting as a swarm-based decision making
process where distributed peers are represented by indi-
vidual particles in the swarm. By means of extensive sim-
ulation experiments, we demonstrate that by taking this
approach, the proposed mechanism results in fairness and
Pareto-optimality in the system, and while rational peers
set their cooperation policies through an iterative learn-
ing process to maximize their own utilities, their deci-
sions are coordinated in line with the social welfare of
the system as well.

This paper is organized as follows: In Section II, we
develop the model of the system by describing the ex-
pected behavior of its constituent peers. In Section III, we
propose our decision-analytic approach toward coopera-
tion policy setting and then we evaluate the proposed ap-
proach through a simulated experimental setup in Section
IV. Finally, after exploring some related works in Section
V, we conclude our work in Section VI.

2. System Model

We consider a peer-to-peer system, e.g. a file-sharing or a
media-streaming system, that consists of a set of interact-
ing peers who participate in the system by contributing
their resources. The interaction of participating peers for
cooperation policy setting can be defined as a stochastic
game G = (N,{D;}ien,X,P,{U;}ien) Where N is the set
of peers, D; is the finite discrete set of actions (or cooper-
ation policies) available to peer i, X is the finite discrete
set of system states that can be defined with respect to the
cooperation policies of the constituent peers, P is the state
transition probability of the system, and U; is the reward
function of peer i for contributing to the system.
Generally, in such multi-player game, the state tran-
sitions and consequently the rewards are the result of the
joint actions of all the players. However, in a peer-to-peer
system, the reward of a peer is strongly dependent on the
cooperation policies of the peers that are included in its
environment and the peer benefits due to their participa-
tion. In other words, each peer has its own finite state
space X; corresponding to its environment, and hence it
is associated with a local state transition function; where
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P;(I,"X’/' denotes the probability of transitioning from a state
xi € X; to another state x} € X; by taking action d; € D; at
x;. Through their interactions, the rational peers should
find the optimal policies in order to maximize their re-
wards.

We consider the state space of the system, X, as the
set of all possible outcomes of this stochastic game. Let
U} be the payoff to peer p; in outcome x € X. The social
welfare of the system in state x is defined as the sum of in-
dividual payoffs } ;- U7 under this outcome. In order to
improve the social welfare of the system, Pareto optimal-
ity and fairness are defined as the two necessary require-
ments for the mechanism of cooperation policy setting.
The system is in a Pareto optimal state x if and only if for
any other outcome preferred by some peer, another peer
will prefer the current outcome:

vy €X,3ieN; U > U" )

The requirement of fairness is also fulfilled if and only if
the maximum difference of payoffs under the outcome x
is minimized:

X X
vx' € X, max g_i < max %—U—j\ )
Vi,jeN b; bj Vi,jeN b; bj
where b; is the contribution of peer i to the system. In or-
der to develop our swarm-based stochastic search method
for this iterative learning process (in Section 3), we first
model the system by describing the expected behavior of
its constituent peers. A question that might be posed is
why a quantitative model can give a reasonable descrip-
tion of the peers’ behavior in the system. The fundamen-
tal results of decision theory directly address this ques-
tion, by showing that any decision maker who is rational
should always behave so as to maximize the mathemati-
cal expected value of some utility function, with respect
to some subjective probability distribution'?. That is, a
rational strategic peer’s behavior should be describable
by a utility function, which gives a quantitative character-
ization of its rewards, and a subjective probability distri-
bution, which characterizes its beliefs about other peers’
behavior in its environment. Formally, the behavior of a
rational peer i is given by:

EMUM = Y Y B Ud) . G)

d,'ED,' x; Exi

where P; is the subjective probability distribution of lo-
cal state transitions for the environment of peer i, and

Self-organized Resource Allocation in P2P Systems

EFi[U] is the expected utility of peer i over the distribu-
tion P; at state x;. In order to construct a dynamic model
based on the interaction of the participating peers, we first
develop their individual reward function as fully rational
expected utility maximizers and deal with the subjective
probability distribution of their local state transitions in
Section 3.

A peer i’s utility function under a soft incentive
scheme is determined by its strategy choices and its lo-
cal states, which are dependent on the benefit and cost of
contributing to the system, as will be discussed in more
detail.

2.1. Measuring the Cost and Benefit

In our setting, the strategy s; that a peer i chooses to set
its cooperation policy, reflects its decision on the changes
in its cooperation level. In other words, a peer i’s coop-
eration policy (or action) is denoted by d; € [0, 1] and can
be defined as a numerical assessment of the ratio between
the peer’s upload and download resources in the system.
The resources can be considered as the storage space in
file-sharing systems or the bandwidth shared by partici-
pating peers in media-streaming systems. The definition
of d; is, nevertheless, acceptable as long as Ad; = d{ —d;
(which represents peer i’s strategy s;) can be quantified
and treated as a decision variable.

For contributing to the system with cooperation level
of d;, a peer i incurs a cost that can be either in terms
of the storage cost or the transmission cost in the afore-
mentioned kinds of peer-to-peer systems. In case of a
linear cost function which is commonly adopted in the
literature'>16:11:6 the total cost could be assumed to be
given by c¢;d;. However, more generally, the incurred cost
is a function of cooperation policy and would be repre-
sented by c(d;).

On the other hand, the cooperation of each peer po-
tentially benefits the other participating peers in the sys-
tem and particularly in its environment. A participating
peer j can be of benefit to i as a result of serving the
required files of i in a file-sharing system or by means
of supplying the streaming sessions of i in a media-
streaming system. This benefit is represented by a matrix
B, where b;; = 0, and b;; denotes how much the coopera-
tion of j is worth to i; it can be measured as the relative
buffering progress of peer j (e.g. in”), its service level
(e.g. in*7), or its quality of service (e.g. in'?), to the
other participating peers. Obviously, the global contri-
bution of peer i to the system, denoted by b;, can be de-
fined in terms of its local benefits to the other participants
(e.g. in'7). In general, b; j 2 0, and the set of peers with
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bjj > 0 is called the neighborhood of i. In other words,
the neighborhood of a peer i, which is formally defined
as N; = {j € N|b;; # 0}, can be viewed as its local envi-
ronment, in the sense that N; C N represents the subset of
all the participants in the peer-to-peer system that i may
interact with them directly.

2.2. Modeling the Incentive

Two prominent forms of soft incentive schemes that have
been used widely>*18:19:20.15,11.21.22 are peer-approved
and service-quality. They both use rating methods to as-
sign points to each peer in the system according to its
cooperation level. Under a peer-approved scheme, each
peer only serves requests from peers with equal or higher
ratings. In contrast, under a service-quality scheme, each
peer serves all requests, but serves peers with higher rat-
ings first. The authors in'! applied a mechanism de-
sign approach to show that the service-quality scheme is
a more promising form of modeling an optimal incen-
tive mechanism in comparison with the peer-approved
scheme.

In this paper, we aim at analyzing the interactions of
peers under a soft incentive scheme, and hence we are
primarily interested in modeling the effect of the incen-
tive mechanism rather than implementing it. To this end,
any reasonable function that is monotonically increasing
in the cooperation policy of a peer can be considered.
This is because, the benefit a peer can obtain from the
system is proportional to its cooperation level under the
service-quality form of a soft incentive scheme. Thus, we
can simply model it as f(d;) = d; or use a more complex
function of d;, since the exact form of the function is not
relevant to our analysis.

2.3. Defining the Utility Function

As we discussed, the total benefit that a peer i can draw
from the system is } ey bij-d; which is the weighted
sum of the cooperation level of the other participating
peers, while the weights reflect how much their cooper-
ation is worth to i (according to their contributions). It
is clear that the developed function in this general form
is applicable to the settings where the environment of i
consists of a limited set of peers that are included in its
neighborhood; since b;; = 0 for all the other j ¢ N;.

As already explained above, in order to take into ac-
count the effect of the incentive scheme, the expected
benefit of i should be proportional to its cooperation level;
thus, f(d;) - the function that is defined to model the in-
centive - is considered as a coefficient of the total benefit

in the utility function of i. Consequently, in each environ-
ment state x; - that is defined by the cooperation policies
of the participating peers in N; - a nonnegative real-valued
utility function U; can be developed for i corresponding
to the total expected benefit and the cost of contributing
to the system. Strictly speaking, the total utility U; that i
will derive by setting the cooperation policy d; in the state
X; is:
Ui(xi,di) = f(di) - Y bij-dj—c(dy) “4)
JEN
In the next section, we propose our decision-analytic
approach to the cooperation policy setting, and then we
evaluate how much the resultant individual decisions of
the participating peers are in line with the social welfare
of the system, with reference to Eq.(1) and Eq.(2).

3. The Decision-Analytic Approach

In this section, we propose a decision-analytic approach
to devise the interaction mechanism of peers for cooper-
ation policy setting under a soft incentive scheme. The
decision-analytic approach to player i’s decision problem
is to first assess some subjective probability distribution
to summarize player i’s beliefs about which strategies
will be used by the other players and then to select a strat-
egy for player i that maximizes its expected utility with
respect to these beliefs>>. However, there might be a fun-
damental difficulty in developing the decision-analytic
approach; to assess its subjective probability distribution
over the other players’ strategies, player i may realize that
the optimal strategies of the other players cannot be deter-
mined until their subjective probability distributions over
player i’s possible strategies have been assessed. Thus,
player i cannot predict the other players’ behavior until it
understands what they expect it rationally to do, which is
of course, the problem it started with?*.

To overcome this difficulty, we predicate our
decision-analytic approach to cooperation policy set-
ting on an iterative learning process based on swarm
intelligence®. However, in order to formulate the no-
tion of rationality and derive the implication of this notion
for the emergent behavior, some modifications are neces-
sary in modeling this process. The traditional model as-
sumes that all particles in the swarm work together coop-
eratively to achieve a common goal; meanwhile, a peer-
to-peer system consists of participants which are strate-
gic and rational. In other words, they wish to maximize
their own utility and hence they choose their strategies
to achieve this goal. Thus, we make two modifications
in order to construct a dynamic model for the process of
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cooperation policy setting:

« Instead of a single global objective for all particles, dis-
tributed local objectives (utility functions) are defined
for individual peers.

« The interaction of participating peers is represented as
a non-cooperative game - each particle as a decision-
maker wants to maximize its own utility.

Therefore in our approach, each peer makes an estimation
of objective probability distribution” over the other play-
ers’ strategies. Meanwhile, individual opinion of the peer
based on its past experience is also considered in this it-
erative decision making process. In other words, observ-
able strategies of other peers are monitored by each peer
in a sequence of iterations; then, based on this empirical
evidence and its prior experience, each peer can decide
rationally on a strategy in every iteration. Through this
chain of decisions that are made based on a method in-
spired by particle swarm optimization®, each participat-
ing peer concludes its final cooperation policy with re-
spect to the other peers’ behavior. It should be mentioned
that particle swarm optimization is a stochastic evolution-
ary algorithm in which every particle in the swarm has a
position in a socio-cognitive space; it updates its posi-
tion in order to optimize an objective function, according
to both social and cognitive behaviors. These behaviors
are involved in the whole optimization process with two
control parameters and respectively take the role of lo-
cal and private guide of a particle in search of optimal
value of corresponding objective function. With respect
to the objective function, the best position that a particle
has reached so far is called its private guide and the best
position visited by one of its neighbors is the particle’s
local guide.

Strictly speaking, any particular peer i in the system,
interacts only with a limited set of all possible peers, the
ones that are included in its neighborhood N;; each peer
i’s optimal policy should maximize its expected utility
U; with respect to the objective probability distribution
over the possible policies of the other peers in N;. To
achieve this goal, each peer i sets its final cooperation
policy through an iterative decision making process: in
every iteration, each peer i monitors the strategies of the
other peers in its neighborhood N;, evaluates their strate-
gies and chooses its strategy in the next iteration, s,
with respect to the evaluation result and to its own ex-
perience (what it has learned up to the current iteration).
Specifically, s"* is given by:

1

S;_'Lext :war+r16‘1(dp*dicwr)+r2€2(dn 7dicurr) (5)

1
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where r| and r; are two distinct random values in [0,1], ¢;
and c; are the mentioned control parameters, determined
theoretically in particle swarm optimization to properly
balance between exploration and exploitation. d,, is the
best previous cooperation policy of the peer itself and d,
denotes the best cooperation policy of all other peers in
its neighborhood ;. It should be noted that the cooper-
ation policies are evaluated by each peer i according to
the local utility function U; defined in Eq.(4). Then, the
cooperation policy d; of peer i is revised by:
d;‘lext — diCMrl’ _’_s;'le)([ (6)
As we mentioned, d{le’“ would be a feasible coopera-
tion policy for peer i, if the revision of df*'" results in a
value between 0 and 1; otherwise dl-””’ would be set to:

Lo dfr+siet > |
0 ;dlg'urr_~_s?exl < O

next __
di -

Theorem 1. The proposed mechanism for the coopera-
tion policy setting converges to a Pareto optimal state in
the system.

Proof. By following the proposed mechanism, the it-
erative decision making process of interacting peers will
converge when Vi € N : s; — 0 in successive iterations. In
this situation, coordinated cooperation policies of partic-
ipating peers in the system are led into a Pareto optimal
operating point, since the mentioned condition of conver-
gence is held when no peer can improve its utility by de-
riving from its current cooperation policy. In other words,
for any other outcome preferred by some peer, another
peer will prefer the current outcome. Then with refer-
ence to Eq.(1), it can be claimed that the operating point
of the system has converged to a Pareto optimal state. [

4. Evaluation Results

4.1. Simulation Model

In this section, we evaluate our self-organized approach
to cooperation policy setting by studying the behavior
of the interacting peers, through a set of simulation ex-
periments. More specifically, we simulate a system of
1000 interacting peers who provide and consume band-
width simultaneously for content sharing, and they are
connected to a backbone network through their access

bObjeCtive probabilities are determined based on a recorded observation rather than a subjective estimate.
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links with different capacities®. They send and receive
different number of requests among each other through
their random overlay interactions. We evaluate the pro-
posed mechanism of resource allocation by investigat-
ing individual decisions of the participating peers on the
allocation of their limited capacities among upload and
download bandwidth.

In all the experiments, the following heterogeneous
setting is used to setup the simulation model unless some
changes are explicitly mentioned for some of the scenar-
i0s. We choose the initial values of d; assigned to peers
i € N from a Uniform distribution over [0,1]. In practice,
a peer i interacts only with a small subset of other peers in
the system, and hence b;; is non-zero only for a few val-
ues of j, specifically for the j that is included in N;. Thus,
the neighborhood size of individual peers is chosen to be
in average 2% of N, while the non-zero values of b;; are
randomly selected between (0,1].

The following form has been chosen to define the
function that models the incentive in our experiments:

d%
= L ;a, B >0, 7
o B @)

f(d;)

where the choice of the exponent a determines how
“step-function-like” the incentive model is. For small
values of « for example o = 1, the function is smooth;
but for larger values, for example o = 10, the function
has a steep step. Thus, for large values of a, f(d;) -
that converges to ideal step-function - can be used to
model a peer-approved incentive mechanism; since in
this case, each peer almost serves only requests from the
peers with contributions equal or above the step; while
the threshold of step is determined by the value of f. It is
clear then, that for small values of a, f(d;) can model a
service-quality mechanism in which a peer serves all re-
quests of the participating peers, but only proportionally
to their cooperation levels (these two forms of incentive
schemes were discussed in Section 2.2). Here, we set
o = B = 1. Regarding the cost function, the linear form
of ¢(d;) = ¢; - d; is adopted in most of the experiments.

We study the proposed mechanism of resource alloca-
tion in this simulated setup, to evaluate its effectiveness
towards fairness and Pareto optimality in line with the so-
cial welfare, by coordinating the cooperation policies of
the participating peers.

4.2. Performance Metrics

Our focus in this paper is how to dynamically allocate the
resources (in this case the bandwidth) of rational peers in
a self-organized manner to provide fairness and Pareto ef-
ficiency in the system. Therefore, we introduce a system-
wide performance metric to capture these requirements
based on the utilities of individual peers:

%Z\ﬁ,/eN Ui _Uj|
ZVieN Ui

where 0 < P < 1. This metric is defined by the ratio be-
tween the fairness and the social welfare that emerge in
the system, and hence it can measure and compare the
performance of different resource allocation mechanisms
with respect to the aforementioned requirements.

P=1-

®)

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Percentage of Peers

0 0.2 0.4 0.6 0.8 1
% requests

Fig. 1. Diversity of the percentage of requests that is received by
individual peers.

Notice that the peers have various contributions to the
system, as they send and receive different numbers of re-
quests among each other through their random interac-
tions (different probability distributions of the percentage
of received requests by individual peers, that are simu-
lated in our experimental setup, are illustrated in Fig.(1)).
In order to take into account the variety of individual con-
tributions in evaluating the performance, the normalized
utilities of peers? are used in Eq.(8).

4.3. Alternative Schemes

In order to evaluate the performance of our proposed
mechanism, we compare it with other resource allocation
schemes as follows.

CThe capacity of the backbone network is regarded sufficient to provide the functionality of the peer-to-peer system. This assumption is quite realistic as
previous studies have shown that the access links are most likely the bottleneck and not the backbone.

41t is defined as the ratio between U; and b; for peer i.
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4.3.1. Random Strategy

Under this scheme, peers follow a random strategy in de-
termining the proportion of their capacity that is respec-
tively assigned to provide and consume bandwidth. In
other words, we consider that each peer i uses its capac-
ity C; to satisfy its own needs and offer the residual band-
width to its requesters, while its demands vary randomly
between [0,C;].

4.3.2. Evenly Averaged Policy

According to this policy, a peer i takes decision on how
to allocate its upload and download resources based on
the cooperation policies of its providers. To this end,
it evenly averages over the resource allocation policies
adopted by the peers j € N; that are included in the
neighborhood®. According to the assessed cooperation
policy, it determines the allocated bandwidth to its own
requesters in turn.

To compare different resource allocation mecha-
nisms, we denote our self-organized approach as RAM-S,
while the random strategy and the evenly averaged pol-
icy schemes as RAM-R and RAM-E respectively when
reporting the results.

4.4. Test Scenarios

In the first set of experiments, we consider a scenario in
which a set of peers does not follow the resource alloca-
tion mechanism, to see how much the proposed mecha-
nism is incentive-compatible and can promote the ratio-
nal peers to be adherent. In each experiment, only a frac-
tion of peers {0.1, 0.25,..., 0.85} is considered to be par-
ticipant in the proposed mechanism and the rest of them
adopt the random strategy to allocate their resources.
0.25

0.15

0.05

0
0.1 0.25 0.4 0.55 0.7 0.85

Proportion of Participation

0.4

0.35 M Panticipants Non-participants

I
w

Average Utility
o
~N

=]
=

Fig. 2. Average utility of participating and non-participating peers.

Self-organized Resource Allocation in P2P Systems

As the illustrated results in Fig.(2) show, the partic-
ipating peers achieve a higher utility in all the experi-
ments, and the average utility improves as the proportion
of participation increases in the system. The utility of in-
dividual peers versus the value of their contributions (in
the last experiment where the proportion of participation
is 0.85) is plotted in Fig.(3). This plot clearly shows that
while there is a strong correlation between the utility of
participating peers and their contributions, the achieved
utility by the non-participants is not guaranteed at all. It
means that a non-participating peer with a high value of
contribution may gain a very low utility and vice versa.

6 O Panticipants o
5 Non-participants
o 4
=2
= 3
] pu
2 LI
1 o
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Contribution

Fig. 3. Distribution of utility versus contribution for participants
and non-participants.

In summary, this set of experiments demonstrated
that, while the average utility of the non-participants is
not as high as that of the peers that adhere to the mech-
anism, the value of their utilities is not proportional to
their contribution levels as well. Thus, in the rest of the
experiments, we can safely assume that all the peers in the
system will follow the proposed mechanism of resource
allocation.

In order to evaluate the performance of the proposed
resource allocation mechanism (RAM-S), we should in-
vestigate how much it results in the fairness and improves
the social welfare in the system. Meanwhile, we would
like to see if the performance is acceptable regardless of
the contribution value of the participating peers. There-
fore, in the next set of experiments, we consider a sce-
nario in which the contribution values of the peers are dif-
ferent in distribution, such that they have a certain mean
value in each experiment; e.g. they have random values
between [0,0.4] with the mean value of 0.2 in the first
experiment and between [0.6, 1] with the mean value of
0.8 in the last one. Then, the performance metric P, given
in Eq.(8), is measured and compared for RAM-S, RAM-

®The cooperation policies of the peers can be averaged regardless of their different capacities, since they are in terms of their upload to download ratio.
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E and RAM-R, as illustrated in Fig.(4). As expected,
the social welfare and fairness will not improve by tak-
ing a random resource allocation strategy, and hence the
performance of RAM-R is almost zero in all the experi-
ments. Although RAM-S becomes more effective, while
the contribution of peers to the system increases in aver-
age, it achieves a very high performance as well, even in
the first experiment.

e
—
0.8
@
Q
< 06
m
£
5 o4 ——RAM-R
£
@ RAM-E
a
0.2 ~#—RAM-S
o . + . : +
0.2 0.4 06 0.8

Average Contribution

Fig. 4. Evaluation of the performance metric versus average value
of individual contributions.

To scrutinize the results of this set of experiments,
the distribution of the normalized utility of peers are also
demonstrated in Fig.(5) for each experiment - the three
markers show the maximum, average and minimum val-
ues of utilities resulting from each mechanism. It can be
concluded that RAM-S improves the social welfare and
the fairness more significantly in comparison with RAM-
E and RAM-R, and it achieves a high performance even
if the contributions of the peers are low in average.

0.5
0.45

el

0.4

[ S |
[t B

Normalized Utility of Peers
F---F--1

1] 0.2 0.4 0.6 0.8 1

Average Contribution

Fig. 5. Distribution of the normalized utility of individual peers.

As a complementary scenario to the previous one, we
focus on the diversity of the contribution values of the
peers, and increase it gradually in a set of experiments

to evaluate its effect on the performance. In the first ex-
periment, we consider a homogeneous system of peers,
in the sense that all the participants have the same con-
tribution value (corresponding to the contribution simi-
larity of one). In the next experiments, the mean con-
tribution is fixed over this value (u), while they are in-
crementally distributed more widely, such that in the last
experiment the similarity of contributions is zero and they
are distributed randomly between [0, 2u]. As illustrated
in Fig.(6), while RAM-S outperforms the other schemes
in all the experiments, it effectively improves the social
welfare, and results in fairness, even if the similarity of
contributions between heterogeneous peers is zero.

—h_____‘
08
3
S o0
1]
£
S oa —#—RAM-S
9] RAM-E
a.
02 ——RAMR ...
0 . . . . . .
1 0.8 06 0.4 0.2 0

Similarity of Contributions

Fig. 6. Evaluation of the performance metric versus diversity of
individual contributions.

In the next set of experiments, we investigate to what
extent the proposed mechanism of resource allocation co-
ordinates the cooperation policies of individual peers in
a self-organized manner. Since the mechanism dissemi-
nates the state information of peers through their interac-
tions, in the next scenario, our focus is on the number of
connections formed by individual peers for their interac-
tions and we change this parameter in each experiment.
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Fig. 7. Probability distribution of the cooperation policy, set by
individual peers after 20 iterations.
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To see the effect, the probability distribution of the
cooperation policy set by the individual peers is demon-
strated in Fig.(7), when they are connected to a fraction
{0.005,0.01,0.02} of the other participants. The PDF
is assessed after 20 iterations in this set of experiments,
and as observed, it is consistent for all of them. It only
becomes denser with higher percentage of connections;
thus, for smaller fractions, the approach takes longer to
converge with no significant variation in behavior. It is
important to note that the coordination is guaranteed by
the proposed mechanism even if the individual peers in-
teract with only 5 out of 1000 participants in the system.

To examine the self-organization of RAM-S more
thoroughly, we measure the entropy of individual utility
of the peers in the system. The resulting entropy from
RAM-S, RAM-E and RAM-R is illustrated and compared
in Fig.(8). The reduction in this mathematical measure is
equivalent to self-organization, and as it can be observed,
it is significantly reduced by RAM-S in all the experi-
ments. Note that the entropy of the system is very close
to 0 when individual peers interact with only 10% of the
other participating peers.
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Fig. 8. The resulting entropy of individual utilities for different
percentage of overlay connections.

The evolution of individual utilities versus the con-
tribution values of the peers - in the experiment that each
peer interacts with only 0.02 of the other peers - is plotted
in Fig.(9). This figure shows that, by following the pro-
posed interaction mechanism, the system of peers grad-
ually converges to a completely fair state in which the
achieved utility is very strongly correlated with the con-
tribution (it almost scatters along the linear fitting line).
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Fig. 9. The evolution of the utilities of individual peers versus their
contribution values.

Finally, in the last set of experiments, we investi-
gate the adaptability of our proposed approach to possible
variation of the cost of resource sharing, e.g. due to dy-
namic availability of pure resource providers in the sys-
tem. In other words, suppose that the cooperation policies
of the peers have been currently set, but they have to be
readjusted in order to adapt to the new cost of resource
sharing in the system. In this scenario, we consider two
random distributions between [0,0.2] and [0.8,1] as two
extremes for initial cooperation policies to see whether in
adaptation to a specific cost function, the results of the
proposed mechanism in either of these cases are consis-
tent (in terms of the coordinated cooperation policies of
individual peers). The evolution of the cooperation pol-
icy distribution, in the both experiments, is demonstrated
in Fig.(10) and Fig.(11) that are respectively correspond-
ing to two different cost functions - the two markers show
the maximum and minimum values of the distribution at
each iteration.
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Fig. 10. The consistency of the results in adaption to a specific
linear cost function.
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Fig. 11. The consistency of the results in adaption to a specific
non-linear cost function.

According to this set of experiments, it can be concluded
that, by following the proposed mechanism, the partici-
pating peers show an adaptive behavior and set their re-
source allocation policies in a consistent way regardless
of their previously coordinated policies.

5. Related Work

Promoting fair cooperation of rational participants to im-
prove social welfare in peer-to-peer systems has been ex-
tensively studied in the literature. Among these previous
efforts we focus on a category that pays attention to coop-
eration policy setting. Specifically, they analyze a system
of rational peers who decide on their contribution levels
in order to maximize their individual utilities under an
incentive scheme.

Two of the most recent approaches for cooperation
policy setting are introduced in'” and®’. In the proposed
mechanism in'”, participating peers repeatedly interact to
build up and maintain a dynamic social network based
on the similarity of cooperation. Using the prisoner’s
dilemma problem to model net payoffs, they demon-
strate that cooperation is incentivized by the mechanism
in which it is positively correlated with payoff of the par-
ticipants. This is because, in order to gain access to a
social network of highly cooperative participants and a
higher payoff (peers with higher levels of contribution
gain higher payoff), a peer must itself exhibits at least
that level of cooperation. This approach facilitates co-
operation in decentralized systems where repeated bilat-
eral transactions are required. However, peer-to-peer sys-
tems in general are characterized by large populations

and asymmetries of interest, resulting in few, if any, re-
peated transactions between any given pair of peers. The
authors in?’ use a point-based mechanism to assign a
global contribution (GC) value to the participants. The
GC value characterizes the cooperation policy of a peer
and reflects its resource (bandwidth) contribution to the
entire network. The participating peers set their cooper-
ation policy through transacting with each other. Based
on the proposed rules for the calculation of the GC value,
a peer may prefer transacting with a node with which the
loss of GC is minimum or the gain of GC is maximum. In
this approach, each peer needs to keep the history of its
upload and download transactions with other peers and
their GC values to calculate its GC value. Furthermore,
to set a new cooperation policy through transacting with
another node, a peer needs to know how they impact its
GC. Thus, it should exchange a large amount of informa-
tion (with reference to Eq.(13) in?’) with the other peer
before making decision on doing transaction.

The authors in* analyze the problem of designing op-
timal cooperation policies for individual peers in the pres-
ence of constraints, represented by an imposed upload-
download fraction or sharing ratio. The constraints are
enforced by a decentralized coalition of peers. However,
to this end, they assume that the goal of the coalition is to
maximize the efficiency of the system (the total amount
of uploads and downloads in the system), which is not
commonly assumed for rational participants of a peer-
to-peer system. Then stochastic inventory management
techniques are used to formulate cooperation policy set-
ting as an optimization problem. The cooperation pol-
icy of individual peers is determined based on their de-
sired service level in'!, through a peer selection mech-
anism. The proposed mechanism promotes higher con-
tribution level of participants through differentiated qual-
ity of service using rank-order tournaments. Specifically,
the cooperation policy of a participant is characterized as
a score which in turn is mapped into a percentile rank,
based on the global distribution of scores, so that a peer
determines whether its rank among all participating peers
in the system is sufficient to obtain an acceptable quality
of service. Utility of a participating peer is a function of
the quality of service it receives and the contribution cost.
The quality of service depends on the rank ordering and
hence the utility function takes into account the relative
level of contributions of the participants.

As opposed to all the aforementioned works, we ad-
dress the process of cooperation policy setting in peer-to-
peer system where the participating peers have to decide
on how to share their limited-capacity resources between
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upload and download simultaneously. The only work, to
the best of our knowledge, that has taken into account the
adjustment of the ratio between upload and download re-
sources of individual peers as a main concern is'2. The
authors propose an incentive mechanism through which
rational decisions of the peers are led to the operational
point of system in which peers offer half of their re-
sources for upload and they use the rest for download.
However, the total upload and download in the system
do not necessarily need to be in equilibrium for the sys-
tem to operate efficiently*. Hence as opposed to!%, we
explicitly define the ratio between upload and download
resources of the peers as their cooperation policies to ad-
just them according to inherent dynamics of the system.
Finally, our previous work?® also dealt with the general
problem of self-organized resource allocation, yet with a
totally different approach. As opposed to?® that totally
depends on Reinforcement Learning to adjust peer coop-
eration policies based on reward values received from the
environment, the developed approach in this present work
is based on a stochastic direct search of the policy space,
aiming to speed up the adaptation of the resource alloca-
tion to highly dynamic environments. While the approach
in?® is suitable for loosely coupled environments, our cur-
rent approach is more applicable in tightly-coupled peer-
to-peer systems.

6. Conclusion

To improve the performance of a peer-to-peer system
which is highly dependent on the resource contributions
from the participating peers, cooperation policies of the
individual peers should be set and coordinated in a self-
organized manner. Although many different mechanisms
of resource allocation and policies of server selection
have been proposed to coordinate rational decisions of
the peers in this respect, they are specifically focused
on the upload capacity as the only possible bottleneck.
While, in many peer-to-peer systems, the adjustment of
the sharing ratio of the peers (the ratio between their up-
load and download resources) in accordance with the in-
herent dynamics, can be a challenge that is not explicitly
considered yet.

To this end, we devise a self-organized mechanism
for cooperation policy setting of the interacting peers
based on decision-theoretic analysis. More specifically,
the cooperation policy setting is formulated as a pro-
cess by which individual peers, observe the other partic-
ipants behavior, learn from these observations, and make
the best decision in response to what they have learned;

Self-organized Resource Allocation in P2P Systems

then, through their interactions, the rational decisions of
the peers are led into the optimal policies (that maxi-
mize their utilities) based on a swarm-based optimiza-
tion method. We demonstrate that the results of the pro-
posed decision-analytic approach is in line with the so-
cial welfare of the system; since the constructed dynamic
model converges to a Pareto optimal equilibrium, and this
equilibrium emerges from fairly coordinated cooperation
policies of the participating peers.
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