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Abstract

This paper focuses on efficient non-clausal resolution-based automated reasoning methods and algorithms
for a lattice-ordered linguistic truth-valued logic, which corresponds to extensions of α-lock resolution.
Firstly, α-generalized lock resolution is proposed for lattice-valued propositional logic and first order
logic, respectively, along with their concepts, soundness and completeness. Then, α-generalized lock res-
olution for first order linguistic truth-valued lattice-valued logic LV(n×2)F(X) is equivalently transformed
into that for propositional logic LnP(X), which can greatly reduce the complexity of the resolution pro-
cedure. Finally, α-generalized linear semi-lock resolution is discussed, and its general algorithm is also
contrived. This work provides more efficient and natural resolution automated reasoning scheme in lin-
guistic truth-valued logic based on lattice implication algebra with the aim at establishing formal tools for
symbolic natural language processing.

Keywords: Non-clausal resolution; α-Generalized lock resolution; α-Generalized linear semi-lock reso-
lution; Linguistic truth-valued lattice-valued logic; Lattice implication algebras

1. Introduction

In mathematical logic and automatic theorem prov-
ing, resolution principle, proposed by Robinson 19,
is a rule of inference leading to a refutation theorem-
proving technique for sentences in first order logic.
Most conventional resolution methods 3,4 convert a
theorem into its clausal form before attempting to
find a proof, such a translation often obscures the
structure of original formula, and may even increase
the length of the formula by an exponential amount

in the worst case 17,24. Generalized resolution 10,11

is one of non-clausal resolution methods to describe
and deal with the complex problems more naturally,
which attempts to reason by using formulae directly
without translating them to clausal forms. Simi-
lar ideas for non-clausal resolution have also been
proposed by Murray 13, and further developed in
1,2,8,14,17,20,21,22, as well as some refined resolution
methods for improving the efficiency of non-clausal
resolution investigated and reported in 23,25. Mean-
while, the completeness of these methods has been
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purposed in classical first order logic. Therefore, it
increases the attractiveness of resolution based au-
tomated reasoning for practical applications such
as program verification, query-answering system,
problem of solving, programming, etc.

Uncertainty is often associated with human’s in-
telligent activities, it is rather difficult to represent
and reason it only by numbers or symbols in classi-
cal logic. Inspired with the idea of generalized res-
olution and by combining it with α-resolution 28,29,
Xu et al. 30,32,34 proposed α-generalized resolution
in lattice-valued logic 18,27 based on lattice impli-
cation algebra (LIA) 26, which extends the chain
type truth-valued field to general lattice in which the
truth-values are incompletely comparable with each
other. Hence, it provides a naturally formal frame-
work 9 to represent and reason uncertain knowledge
especially for incomparability. However, the pro-
cess of α-generalized resolution is level saturated if
no refined strategy is restricted, and many redundant
clauses inevitably generate, thus it prevents provid-
ing a universal procedure for finding the refutation
faster.

α-Lock resolution 5,6,7 is a simple, but effective
refinement on α-resolution, it is an α-resolution of
locked generalized clauses in which the generalized
literals resolved upon have the minimal indices in
their respective generalized clauses, and the general-
ized literals of resolvent inherit the indices they had
in their parents. It can significantly reduce the pro-
duction of redundant generalized clauses. In this pa-
per, we intend to restrict lock resolution strategy on
α-generalized resolution, and propose α-generalized
lock resolution method. Compared with α-lock res-
olution 7, α-generalized lock resolution can validate
α-unsatisfiability of logical formulae without con-
verting them to according generalized clausal forms,
this simplification avoids the clausal transforming
process. More remarkably, it is a dynamic resolu-
tion, i.e., the number of resolved literals is not lim-
ited to 2, but allowed to resolve in batch. In fact,
in most cases, many generalized literals can be α-
resolved simultaneously, but not α-resolved if only
two generalized literals are taken from its subsets.
The resolution of the generalized form is much eas-
ier to preserve its completeness and therefore makes

its procedures be applicable to more logical formu-
lae. Also, bathing resolution makes many general-
ized clauses be involved and more generalized lit-
erals be deleted in one resolution step, hence it en-
hances the efficiency of α-generalized resolution to
some extent. Furthermore, for improving the effi-
ciency of α-generalized lock resolution, we propose
α-generalized linear semi-lock resolution by com-
bining it with α-generalized linear resolution. How-
ever, such a combination does not preserve its com-
pleteness, hence we discuss it in a practical logic
system and under some conditions for lock index as-
signments.

Linguistic truth-valued lattice-valued first order
logic (LV(n×2)F(X)) 16,30 is an appropriate logic
system for qualitatively representing and reason-
ing linguistic-values based information in natural
language 35,36. Its valuation field, linguistic truth-
valued LIA 30, is a logical algebraic structure par-
tially ordered with linguistic truth values. It has
many unique characters such as linguistic truth val-
ues adopted having apparent distinguish ability, in
accordance with the meaning of commonly used nat-
ural language and covering commonly used natural
linguistic expressions in real life. Hence, it provides
a formalism for the development of logic system
based on linguistic truth values and resolution based
automated reasoning in linguistic truth-valued logic
system as well. Properties of α-resolution fields,
weak completeness and equivalent transformations
have been highlighted in 30,33, as well as applica-
tions investigated in 12,31.

For studying resolution methods in LV(n×2)F(X),
two potential ways need to be considered. One
is performing reasoning directly in this logic sys-
tem. Of course, it is a natural way to process the
linguistic-values based information without losing
any information, but the operations in its valuation
field LV(n×2) are defined by means of isomorphic
mappings and different results for different meta
truth values, and its elements are binary arrays with
linguistic truth values, hence it is relatively complex
to get the truth-values of formulae in LV(n×2)F(X).
The other is equivalently or conditionally transform-
ing the resolution methods from LV(n×2)F(X) into
those in some simpler logic systems, and therefore

Published by Atlantis Press 
      Copyright: the authors 
                  1121



α-Generalized lock resolution method in LV(n×2)F(X)

the operations in them are easier to performed, then
the computational complexity can be simplified ac-
cordingly. Meanwhile, to preserve their complete-
ness, the structures of logical formulae should not
be changed in the transformations. Hence, it should
be a good alternative for researching the resolution
methods in LV(n×2)F(X). With this in mind, this
paper transforms α-generalized lock resolution in
LV(n×2)F(X) into that in LnP(X) whose truth-valued
domain is a Łukasiewicz implication algebra on a
finite chain Ln, and discusses α-generalized linear
semi-lock resolution in LnP(X), which can further
improve the efficiency of α-generalized resolution.

The paper is organized as follows. Section 2
gives some preliminary relevant concepts about α-
resolution and α-generalized resolution principle in
lattice-valued logic based on LIA. In Section 3, α-
generalized lock resolution method is introduced,
and its soundness and completeness are obtained.
In Section 4, α-generalized lock resolution is trans-
formed between LV(n×2)F(X) and LnP(X). Section
5 discusses the α-generalized linear semi-lock res-
olution method which can further improve the effi-
ciency of α-generalized lock resolution. The paper
concludes in Section 6.

2. Preliminaries

2.1. α-Resolution principle in lattice-valued
logic based on LIA

Definition 1. 26,30 Let (L,∨,∧,O, I) be a bounded
lattice with an order-reversing involution “′”, I and
O the greatest and the smallest element of L, re-
spectively, and →: L × L −→ L a mapping. L =

(L,∨,∧,′ ,→,O, I) is called a lattice implication al-
gebra (LIA) if the following conditions hold for any
x,y,z ∈ L:

(I1) x→ (y→ z) = y→ (x→ z),

(I2) x→ x = I,

(I3) x→ y = y′→ x′,

(I4) x→ y = y→ x = I implies x = y,

(I5) (x→ y)→ y = (y→ x)→ x,

(L1) (x∨ y)→ z = (x→ z)∧ (y→ z),

(L2) (x∧ y)→ z = (x→ z)∨ (y→ z).

In order to deal with quantifiers, in what follows,
we suppose that L is a complete lattice.

Proposition 1. 26,30 (Łukasiewicz implication alge-
bra on a finite chain Ln) Let Ln be a finite chain,
Ln = {ai|1 6 i 6 n} and a1 < a2 < . . . < an, define for
any ai,a j ∈ Ln, ai ∨ a j = amax(i, j), ai ∧ a j = amin(i, j),
(ai)′ = an−i+1, ai → a j = amin(n−i+ j,n), then Ln =

(Ln,∨,∧,′ ,→,a1,an) is an LIA.
All elements in Łukasiewicz implication algebra

are completely comparable.

Proposition 2. 16,31 Let Ln = {a1, . . . ,an}, a1 < a2 <
. . . < an, L2 = {b1,b2}, b1 < b2, (Ln,∨,∧,′ ,→,a1,an)
and (L2,∨,∧,′ ,→,b1,b2) be two Łukasiewicz impli-
cation algebras. The Hasse diagram of Ln × L2 is
depicted in Figure 1, and for any (ai,b j), (ak,bl) ∈
Ln × L2, define (ai,b j) ∨ (ak,bl) = (ai ∨ ak,b j ∨
bl), (ai,b j) ∧ (ak,bl) = (ai ∧ ak,b j ∧ bl), (ai,b j)′ =

(a′i ,b
′
j), (ai,b j)→ (ak,bl) = (ai → ak,b j → bl), then

Ln×2 = (Ln × L2,∨,∧,′ ,→, (a1,b1), (an,b2)) is an
LIA.

(a1,b1)

(a2,b1)

(ai−1,b1)
(ai,b1)

(an−1,b1)

(an,b1)

(a1,b2)

(a2,b2)

(ai−1,b2)
(ai,b2)

(an−1,b2)

(an,b2)

Figure 1: Hasse Diagram of Ln×L2

Definition 2. 16,31 Let ADn = {h1,h2, . . . ,hn} be a set
with n linguistic modifiers and h1 < h2 < . . . < hn,
MT = { f , t} be a set of meta truth values, and f < t.
Denote LV(n×2) = ADn×MT . Define a mapping g as
g : LV(n×2) −→ Ln×L2,

g((hi,mt)) =

{
(a′i ,b1), mt = f ,
(ai,b2), mt = t.
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Then g is bijection, denote its inverse mapping
as g−1. For any x,y ∈ LV(n×2), define x ∨ y =

g−1(g(x) ∨ g(y)), x ∧ y = g−1(g(x) ∧ g(y)), x′ =

g−1(g(x)′), x→ y = g−1(g(x)→ g(y)), then LV(n×2) =

(LV(n×2),∨,∧,′ ,→, (hn, f ), (hn, t)) is called a linguis-
tic truth-valued LIA generated by ADn and MT , its
elements are called linguistic truth values, and g is
an isomorphic mapping from LV(n×2) to Ln×2.

Definition 3. 28 Let X be a set of propositional vari-
ables, T = L∪{′,→} be a type with ar(′) = 1, ar(→)
= 2 and ar(a) = 0 for every a ∈ L. The propositional
algebra of the lattice-valued propositional calculus
on the set X of propositional variables is the free T
algebra on X and is denoted by LP(X).

Remark 1. Specially, when the field with valu-
ation of LP(X) is an LV(n×2), this specific LP(X),
i.e., LV(n×2)P(X), is a linguistic truth-valued lattice-
valued propositional logic system. Similarly, the
truth-valued domain of LnP(X) is a Łukasiewicz im-
plication algebra Ln.

Definition 4. 28 A valuation of LP(X) is a proposi-
tional algebra homomorphism γ: LP(X) −→ L.

Definition 5. 28 Let F be a logical formula in LP(X),
α ∈ L. If there exists a valuation γ0 of LP(X) such
that γ0(F) > α, F is satisfiable by a truth-value level
α, in short, α-satisfiable. If γ(F) > α for every valu-
ation γ of LP(X), F is valid by the truth-value level
α, in short, α-valid. If γ(F)6 α for every valuation γ
of LP(X), F is always false by the truth-value level
α, in short, α-false.

Definition 6. 28 A logical formula F in LP(X) is
called an extremely simple form, in short ESF, if a
logical formula F∗ obtained by deleting any constant
or literal or implication term appearing in F is not
equivalent to F.

Definition 7. 28 A logical formula F in LP(X) (i.e.,
F ∈ LP(X)) is called an indecomposable extremely
simple form, in short IESF, if

(1) F is an ESF containing connectives → and ′ at
most.

(2) For any G ∈ LP(X), if G ∈ F in LP(X), then G is
an ESF containing connectives→ and ′ at most.

Definition 8. 28 All the constants, literals and IESFs
in LP(X) are called generalized literals. A disjunc-
tion of finite generalized literals is called a general-
ized clause.

The truth-value domain of lattice-valued first-
order logic LF(X) is an LIA. This logic system can
be used to deal with propositions with quantifiers
29,30.

Remark 2. Similar to the notation of LV(n×2)P(X),
the truth-valued domain of first order logic systems
LV(n×2)F(X) and LnF(X) are LV(n×2) and Ln, re-
spectively.

Definition 9. 29 A logical formula G in LF(X) is a
g-literal, if

(1) G is a literal, or

(2) G is constructed only by some literals and some
implication connectives with the condition that
G can not be represented by ∨ or ∧ or decom-
posed into a simpler form (G is called an inde-
composable implication form).

A disjunction of finite g-literals in LF(X) is
called a g-clause.

More detailed notations, concepts and results
about α-resolution principle in LP(X) and LF(X) can
be found in 28,29,30.

2.2. α-Generalized resolution in lattice-valued
logic based on LIA

Definition 10. 34 Let g1,g2, · · · ,gn be generalized
literals in LP(X). A logical formula Φ is called a
general generalized clause if these generalized lit-
erals are connected by ∧,∨,→,′ and↔, denoted by
Φ(g1,g2, · · · ,gn).

Definition 11. 34 A general generalized clause G in
LP(X) is called a constant clause if only constants
exist in G. Particularly, if for any valuation γ, such
that γ(G) = α, then G is called an α-constant clause.

Definition 12. 34 Let Φ be a general generalized
clause in LP(X). A generalized literal g of Φ is called
a local extremely complex form, if

(1) g can not be expanded to a more complex gen-
eralized literal in Φ by adding→ and ′.
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(2) If g is connected by ↔, then g is the local ex-
tremely complex form as a whole.

All the generalized literals mentioned in this pa-
per are the local extremely complex forms in their
corresponding general generalized clauses.

Definition 13. 34 Let Φ1,Φ2, · · · ,Φn be general gen-
eralized clauses in LP(X), Hi(i = 1,2, · · · ,n) the set
of generalized literals in Φi, respectively. α ∈ L. If
there exists gi ∈ Hi, such that ∧n

i=1gi 6 α, then

G = ∨n
i=1Φi(gi = α)

is called an α-generalized resolvent of
Φ1,Φ2, · · · ,Φn, denoted by G = R(g−α)−g(Φ1(g1),Φ2(g2),
· · · ,Φn(gn)).

Definition 14. 34 Suppose S is a set of general
generalized clauses in LP(X), α ∈ L. Then w =

{D1,D2, · · · ,Dm} is called an α-generalized resolu-
tion deduction from S to the general generalized
clause Dm, if

(1) Di ∈ S (i = 1,2, · · · ,m), or

(2) There exist r1,r2, · · · ,rk < i, such that
R(g−α)−g(Dr1 ,Dr2 , · · · ,Drk ) = Di.

If there exists an α-generalized resolution deduc-
tion from S to an α-constant clause, then w is called
an α-generalized refutation.

Theorem 3. 34 Let S be a set of general general-
ized clauses in LP(X), α ∈ L, {D1,D2, · · · ,Dm} an α-
generalized resolution deduction from S to the gen-
eral generalized clause Dm. If Dm = α, then S 6 α.

Theorem 4. 34 Let S be a set of general generalized
clauses Φ1,Φ2, · · · ,Φn in LP(X), Hi the set of gen-
eralized literals in Φi(i = 1,2, · · · ,n). Suppose there
exist quasi-normal generalized literals gi ∈ Hi, such
that ∧n

i=1gi 6 α, gi and S ∗ are independent of each
other if gi < S ∗, where S ∗ ⊆ S . If S 6 α, then there
exists an α-generalized refutation of S .

Definition 15. 34 Let g1,g2, · · · ,gn be g-literals, a
logical formula in LF(X) is called a general g-clause
if these g-literals are connected by ∧,∨,→,′ and↔,
denoted by Φ(g1,g2, · · · ,gn).

The general generalized clause in LP(X) is the
ground form of general g-clause in LF(X).

Definition 16. 34 Let Φ be a general g-clause in
LF(X). If there exists a most general unifier σ of g-
literals g1,g2, · · · ,gm in Φ, then Φσ is called a factor
of Φ.

Definition 17. 34 Let Φ1,Φ2, · · · ,Φn be general g-
clauses in LF(X), Φ

σ1
1 a factor of Φ1 for g-literals

g11,g12, · · · ,g1r1 , Φ
σ2
2 a factor of Φ2 for g-literals

g21,g22, · · · ,g2r2 , · · · , and Φ
σn
n a factor of Φn for g-

literals gn1,gn2, · · · ,gnrn , α ∈ L. If ∧n
i=1gσi

i1 6 α, then

G = ∨n
i=1Φ

σi
i (gσi

i1 = α)

is called an α-generalized resolvent of
Φ1,Φ2, · · · ,Φn, denoted by G = R(g−α)−g(Φ1,Φ2, · · · ,Φn).

Definition 18. 34 Suppose S is a set of general g-
clauses in LF(X), α ∈ L. w = {D1,D2, · · · ,Dm} is
called an α-generalized resolution deduction from S
to the general g-clause Dm, if

(1) Di ∈ S (i = 1,2, · · · ,m), or

(2) There exist r1,r2, · · · ,rk < i, such that
R(g−α)−g(Dr1 ,Dr2 , · · · ,Drk ) = Di.

Theorem 5. 34 Let S be a set of general g-clauses
in LF(X), α ∈ L, {D1,D2, · · · ,Dm} an α-generalized
resolution deduction from S to the general g-clause
Dm. If Dm = α, then S 6 α.

Theorem 6. 34 Let S be a set of general g-clauses
Φ1,Φ2, · · · ,Φn in LF(X), Hi the set of g-literals in
Φi(i = 1,2, · · · ,n). Suppose there exist quasi-normal
g-literals gi ∈ Hi, such that ∧n

i=1gi 6 α, gi and S ∗ are
independent of each other if gi ∈ S ∗, where S ∗ ⊆ S . If
S 6 α, then there exists an α-generalized refutation
of S .

3. α-Generalized lock resolution in
lattice-valued logic

3.1. α-Generalized lock resolution in LP(X)

Definition 19. Let Φ be a general generalized
clause in LP(X). Φ is said to be locked if and only if
for each generalized literal g in Φ, there exists a pos-
itive integer i such that i is the index of g. This spe-
cific general generalized clause Φ is called a locked
general generalized clause.
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Definition 20. Let Φ1,Φ2, · · · ,Φn be locked general
generalized clauses in LP(X), Hi the set of gener-
alized literals in Φi, α ∈ L. If there exists gi with
the minimal index in Hi(i = 1,2, · · · ,n), such that
∧n

i=1gi 6 α, then

Φ = ∨n
i=1Φi(gi = α)

is called an α-generalized lock resolvent
of Φ1, Φ2, · · · ,Φn, denoted by Φ =

Rα−g−L(Φ1(g1),Φ2(g2), · · · ,Φn(gn)).
α-Generalized lock resolution is α-lock resolu-

tion if the general generalized clause set is taken by
its conjunctive normal form.

Definition 21. Suppose S is a set of locked gen-
eral generalized clauses in LP(X), α ∈ L. Then
w = {D1,D2, · · · ,Dm} is called an α-generalized lock
resolution deduction from S to the general general-
ized clause Dm, if

(1) Di ∈ S (i = 1,2, · · · ,m), or

(2) There exist r1,r2, · · · ,rk < i, such that
Rα−g−L(Dr1 ,Dr2 , · · · ,Drk ) = Di.

Remark 3.

(1) In α-generalized lock resolution, the indices
of the generalized literals in resolvents are the
same with those in their parents. If the resolu-
tion level α is generated by substitution in α-
generalized lock resolution, then α does not re-
solve in any next step. Hence, the new generated
constant α does not inherit the lock index of re-
solved literal gi, and has no index. Moreover,
if α is generated as a unit generalized clause,
then α can be deleted which does not affect its
α-unsatisfiability.

(2) In α-generalized lock resolution deduction, bath
resolution can guarantee its completeness and
improve the efficiency of α-lock resolution.
Sometimes, only resolving on two generalized
literals may not derive an α-generalized lock
refutation for some α-unsatisfiable formulae. A
simple counterexample is: Let L9 = {ai|1 6 i 6
9} be a Łukasiewicz implication algebra, x, y
propositional variables in L9P(X), S = {x, x →

y,y→ a2}. If we take resolution level α = a6,
then S = x∧(x→ y)∧(y→ a2)6 a6, i.e., one res-
olution step can lead to α-generalized lock refu-
tation. However, any two generalized literals in
S are not α-resolved, hence we can not get an
α-generalized lock refutation if the number of
resolved literals is limited to 2.

Theorem 7. (Soundness of ground α-generalized
lock resolution) Suppose S is a set of locked general
generalized clauses in LP(X), {D1,D2, · · · ,Dm} is an
α-generalized lock resolution deduction from S to
the general generalized clauses Dm. If Dm = α, then
S 6 α.

Proof. It follows directly by Theorem 3.

Proposition 8. Let S be a set of locked general
generalized clauses S = Φ1∧Φ2∧· · ·∧Φn in LP(X),
and g1 a generalized literal of Φ1. If S 6 α, then
S 1 = {Φ1(g1 = α)|Φ1 ∈ S } 6 α.

Proof. We only convert Φ1 into its conjunctive nor-
mal form, i.e., Φ1 = G1 ∧G2 ∧ · · · ∧Gm, where Gi is
a generalized clause, and Gi = gi1 ∨gi2 ∨· · ·∨gim , gi j

is a generalized literal (1 6 i 6 m;1 6 j 6 m). With-
out loss of generality, suppose only the generalized
clause G1 includes g1, we denote S = ((g1 ∨G0

1)∧
G2 ∧ · · · ∧Gm)∧Φ2 ∧ · · · ∧Φn, where G0

1 is the dis-
junction of generalized literals in G1 except for g1.
Hence, S = (g1∨G0

1)∧G2∧· · ·∧Gm∧Φ2∧· · ·∧Φn.
Let S 0 = G2 ∧ · · · ∧Gm ∧Φ2 ∧ · · · ∧Φn, then S =

(g1∨G0
1)∧S 0 = (g1∧S 0)∨ (G0

1∧S 0). Since S 6 α,
then G0

1 ∧ S 0 6 α. Therefore, S 1 = {Φ(g1 = α)|Φ ∈
S } = (α∧S 0)∨ (G0

1∧S 0) 6 α∨ (G0
1∧S 0) 6 α.

Theorem 9. (Weak completeness of ground α-
generalized lock resolution) Suppose S is the set
of locked general generalized clauses Φ1,Φ2, · · · ,Φn
in LP(X), where the same generalized literals have
the same indices. If S 6 α, then there exists an α-
generalized lock refutation of S .

Proof. Let K(S ) denote the differences of the num-
ber of generalized literals which are locked minus
the number of general generalized clauses in S .

If K(S ) = 0, then all the locked general gener-
alized clauses of S are unit, in this case, the indices
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play no roles in α-generalized lock resolution deduc-
tion. Hence, by Theorem 4, S has an α-generalized
resolution refutation, which is just an α-generalized
lock refutation.

Suppose that Theorem 9 is true for K(S )< n, then
there exists at least a general generalized clause in S
which is not locked and unit. Since S 6 α, then there
exist generalized literals g1,g2, · · · ,gm(m 6 n) such
that g1∧g2∧ · · · ∧gm 6 α, where gi ∈ Φi(1 6 i 6 m).
Let gi be a generalized literal with the largest index
in Φi, denote S 1 = {Φ1(g1 = α)|Φ1 ∈ S }. By Propo-
sition 8, we have S 1 6 α. Since the new substituted
constant α has no index, then K(S 1) < n. By the
induction hypothesis, there exists an α-generalized
lock refutation D0

1 of S 1.
Now we renew D0

1 by adding g1 to Φ1(g1 = α)
where g1 is substituted by α in Φ1, then we get a new
α-generalized lock resolution deduction D1 from S
to a general generalized clause Φ0

1. If all the gen-
eralized literals in Φ1 are not involved in D0

1, then
Φ0

1 is an α-constant clause. Hence D1 is also an
α-generalized lock refutation of S , i.e., Theorem 9
holds. Otherwise, g1 has the largest index in Φ1,
and the same generalized literals have the same in-
dices, hence g1 does not resolve on in D1. There-
fore, Φ0

1 only includes the generalized literal g1, and
Φ0

1(g1 = α) is an α-constant clause.
Denote S 2 = {Φ2(g2 =α)|Φ2 ∈ S }. By Proposition

8, we have S 2 6 α. Obviously, K(S 2) < n. By the
induction hypothesis, there exists an α-generalized
lock refutation D0

2 of S 2. We renew D0
2 to D2 by

adding g2 to Φ2(g2 = α), where g2 is substituted by
α in Φ2, then D2 is an α-generalized lock resolution
deduction from S to a general generalized clause
Φ0

2. For Φ0
2, two cases follow. If Φ0

2 is an α-constant
clause, then D2 is also an α-generalized lock refuta-
tion of S , i.e., Theorem 9 holds. Otherwise, Φ0

2 is a
general generalized clause, which only includes g2,
and Φ0

2(g2 = α) is an α-constant clause.
Repeating the above steps from S 3 to S m, we de-

note S m = {Φm(gm = α)|Φm ∈ S }. Similarly, we have
S m 6 α and K(S m) < n. By the induction hypothesis,
there exists an α-generalized lock refutation D0

m of
S m. We renew D0

m to Dm by adding gm to Φm(gm =

α), where gm is substituted by α in Φm, then Dm is
an α-generalized lock resolution deduction from S

to a general generalized clause Φ0
m. If Φ0

m is an α-
constant clause, then Dm is also an α-generalized
lock refutation of S , i.e., Theorem 9 holds. Oth-
erwise, Φ0

2 is a general generalized clause, which
only includes gm, then Φ0

m(gm = α) is an α-constant
clause. Since Φ0

i (1 6 i 6 m) only includes gi, then
gi has the minimal index of Φ0

i . Furthermore, from
g1 ∧ g2 ∧ · · · ∧ gm 6 α, it follows that ∨m

i=1Φ0
i (gi =

α) = α is an α-generalized lock resolvent of Φ0
1, Φ0

2,
· · · ,Φ0

m. Therefore, we connect the α-generalized
lock resolution branches D1,D2, · · · ,Dm, and denote
D = D1 ∪D2 ∪ · · · ∪Dm, then D is an α-generalized
lock refutation of S .

Example 1. Let L9 = {ai|16 i6 9} be a Łukasiewicz
implication algebra, x,y propositional variables in
L9P(X), S = {(x→ a7)∧(x→ y), x∧((x→ y)′∨((x→
y)→ a2)), (z→ a7)∨ (x→ (x→ a7)), (w→ z)′, x→
y}. If we take α = a6, then S 6 a6. Then we assign
the indices to each generalized literal in S , and get
an α-generalized lock refutation of S as follows.

(1) 1(x→ a7)∧ 2(x→ y)

(2) 3x∧ ( 4(x→ y)′∨ 5((x→ y)→ a2))

(3) 6(z→ a7)∨ 7(x→ (x→ a7))

(4) 8(w→ z)′

(5) 2(x→ y)

——————————

(6) (a6∧ 2(x→ y))∨ (a6∧ ( 4(x→ y)′∨ 5((x→ y)→
a2)))

(7) a6∨ 7(x→ (x→ a7))

——————————

(8) a6∧ ( 4(x→ y)′∨ 5((x→ y)→ a2))

——————————

(9) a6∧ 2(x→ y)∨ 5((x→ y)→ a2)

(10) a6∧ 5((x→ y)→ a2)

——————————

(11) a6∨ 5((x→ y)→ a2)

(12) a6
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However, 34 generalized clauses are generated
for α-generalized resolution. In this case, α-
generalized lock resolution improves the efficiency
of α-generalized resolution.

3.2. α-Generalized lock resolution in LF(X)

Definition 22. Let Φ be a general g-clause in
LF(X). Φ is said to be locked if and only if for each
g-literal g in Φ, there exists a positive integer i such
that i is the index of g. This specific general g-clause
Φ is called a locked general g-clause.

The locked general g-clause in LF(X) is the gen-
eral form of locked general generalized clause in
LP(X).

Definition 23. Let Φ be a locked general g-clause
in LF(X). If there exists a most general unifier σ of
g-literals g1, g2, · · · , gm in Φ, then Φσ is called a
locked factor of Φ.

Definition 24. Let Φ1,Φ2, · · · ,Φn be locked general
g-clauses in LF(X), Φ

σ1
1 a factor of Φ1 for g-literals

g11,g12, · · · ,g1r1 , Φ
σ2
2 a factor of Φ2 for g-literals

g21,g22, · · · ,g2r2 , · · · , and Φ
σn
n a factor of Φn for g-

literals gn1,gn2, · · · ,gnrn , α ∈ L. If there exists gi1
with the minimal index in Φ

σi
i (i = 1,2, · · · ,n), such

that ∧n
i=1gi1 6 α, then

Φ = ∨n
i=1Φ

σi
i (gi1 = α)

is called an α-generalized lock resolvent
of Φ1, Φ2, · · · ,Φn, denoted by Φ =

Rα−g−L(Φ1(g11),Φ2(g21), · · · ,Φn(gn1)).

Definition 25. Suppose S is a set of locked
general g-clauses in LF(X), α ∈ L. Then w =

{D1,D2, · · · ,Dm} is called an α-generalized lock res-
olution deduction from S to the general g-clause Dm,
if

(1) Di ∈ S (i = 1,2, · · · ,m), or

(2) There exist r1,r2, · · · ,rk < i, such that
Rα−g−L(Dr1 ,Dr2 , · · · ,Drk ) = Di.

Note that Lifting Lemma for α-lock resolution
6 does not rely on the structure of the generalized

clauses, hence it still holds for generalized form al-
though the number of resolved literals is extended
from 2 to n.

Theorem 10. Suppose Φ1,Φ2, · · · ,Φn are locked
general g-clauses in LF(X), Φ0

1,Φ
0
2, · · · ,Φ0

n are in-
stances of general g-clauses Φ1,Φ2, · · · ,Φn, respec-
tively. Let τ be a substitution, the index of g-literal
gτ in Φτ

i be the index of g in Φi(i = 1,2, · · · ,n). If P0

is an α-generalized lock resolvent of Φ0
1, Φ0

2, · · · ,Φ0
n,

then there exists an α-generalized lock resolvent P
of Φ1,Φ2, · · · ,Φn, and a substitution λ such that
Pλ = P0.

Proof. Since any general g-clauses Φ1,Φ2, · · · ,Φn
can always become two general g-clauses without
common variables by a substitution of rename, then
we assume that Φ1,Φ2, · · · ,Φn have no common
variables.

Since Φ0
1,Φ

0
2, · · · ,Φ0

n are the instances of locked
general g-clauses Φ1,Φ2, · · · ,Φn, respectively, then
there exists a substitution ε, such that Φ0

1 = Φε
1,

Φ0
2 = Φε

2, · · · ,Φ0
n = Φε

n, and all the generalized lit-
erals in Φε

i have the same indices with those in
Φi(i = 1,2, · · · ,n). Let (Φ0

1)σ1 , (Φ0
2)σ2 , · · · , (Φ0

n)σn be
locked factors of Φ0

1,Φ
0
2, · · · ,Φ0

n, respectively, where
σ1 is a most general unifier gε11, gε12, · · · , gε1r in
Φ0

1, σ2 is a most general unifier gε21, gε22, · · · , gε2r
in Φ0

2, · · · , σn is a most general unifier gεn1, gεn2,
· · · , gεnr in Φ0

n with gεi1 having the minimal index
in Φ0

i (i = 1,2, · · · ,n). Hence, (gε11)σ1 = (gε12)σ1 =

· · · = (gε1r)
σ1 , (gε21)σ2 = (gε22)σ2 = · · · = (gε2r)

σ2 , · · · ,
(gεn1)σn = (gεn2)σn = · · · = (gεnr)

σn . If ∧n
i=1(gεi1)σi 6 α,

then P0 = Rα−g−L(Φ0
1,Φ

0
2, · · · ,Φ0

n) =∨n
i=1Φ

ε·σi
i (gε·σi

i1 =

α).
Since ε · σi is a unifier of gi1,gi2, · · · ,gir, then

there exists a most general unifier λi, such that
gλi

i1 = gλi
i2 = · · · = gλi

ir . Hence, there exists a substi-
tution βi such that ε ·σi = λi ·βi, where i = 1,2, · · · ,n.
From the hypothesis that Φ1,Φ2, · · · ,Φn have no
common variables, it follows that λ1,λ2, · · · ,λn have
no common variables, and β1,β2, · · · ,βn have no
common variables. Let λ = λ1 ∪ λ2 ∪ · · · ∪ λn, β =

β1 ∪ β2 ∪ · · · ∪ βn, by the properties of substitution,
λ ·β = (λ1 ·β1)(λ2 ·β2)∪· · ·∪ (λn ·βn). Hence, for any
i ∈ {1,2, · · · ,n}, gλ·βi1 = gλ·βi2 = · · · = gλ·βir . In this case,
∧n

i=1gλi1 6 α. Furthermore, all the generalized liter-
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als in Φε
i have the same indices with those in Φi(i =

1,2, · · · ,n), hence gi1 has the minimal index in Φi(i =

1,2, · · · ,n). Therefore, P = Rα−g−L(Φ1,Φ2, · · · ,Φn) =

∨n
i=1Φλ

i (gλi1 = α).
Moreover,

P0 = Rα−g−L(Φ0
1,Φ

0
2, · · · ,Φ0

n)
= ∨n

i=1Φ
ε·σi
i (gε·σi

i1 = α)

= ∨n
i=1Φ

λ·β
i (gλ·βi1 = α)

= (∨n
i=1Φλ

i (gλi1 = α))β

= (P)β

Theorem 11. (Soundness of α-generalized lock res-
olution) Let S be a set of locked general g-clauses in
LF(X), α ∈ L, {D1,D2, · · · ,Dm} an α-generalized lock
resolution deduction from S to the general g-clause
Dm. If Dm = α, then S 6 α.

Proof. It follows directly by Theorem 5.

Theorem 12. (Weak completeness of α-generalized
lock resolution) Suppose S is a set of locked general
g-clauses in LF(X), where the same g-literals have
the same indices. If S 6 α, then there exists an α-
generalized lock refutation of S .

Proof. By Theorem 4.5 in 34 and S 6 α, there
exists a finite ground instances set S 0 of S such
that S 0 6 α. By Theorem 9, there exists a ground
α-generalized lock refutation of S 0. From Lifting
Lemma of α-generalized lock resolution (Theorem
10), there exists an α-generalized lock refutation of
S .

4. Equivalent transformation of α-generalized
lock resolution

Theorem 13. Suppose S is a set of locked gen-
eral g-clauses in LF(X), α ∈ L. There exists
an α-generalized lock resolution deduction w =

{D1,D2, · · · ,Dm} from S to Dm in LF(X) if and only if
there exists an α-generalized lock resolution deduc-
tion w0 = {D0

1,D
0
2, · · · ,D0

m} from S 0 to D0
m in LP(X),

where each of the locked generalized literals in S 0

and D0
i are the ground instances of locked g-literals

in S and Di(1 6 i 6 m), respectively.

Proof. (Necessity) All of the locked generalized lit-
erals of S 0 are the ground instances of correspond-
ing locked g-literals in S . For each α-generalized
lock resolvent Di(1 6 i 6 m) in LF(X), there exist
locked general g-clauses Φ1,Φ2, · · · ,Φn, such that
Di = Rα−g−L(Φ1,Φ2, · · · ,Φn), where g1,g2, · · · ,gn
are the α-generalized lock resolved g-literals in
Φ1,Φ2, · · · ,Φn, respectively. Hence, g1 ∧ g2 ∧ · · · ∧
gn 6α, and gi has the minimal index in Φi(16 i6m).
Since g1 ∧ g2 ∧ · · · ∧ gn 6 α, then for any interpreta-
tion ID =< D,µD, νD > in LF(X), such that νD(g1 ∧
g2 ∧ · · · ∧ gn) 6 α. Let g0

1,g
0
2, · · · ,g0

n be the ground
instances of g1,g2, · · · ,gn, respectively, for any valu-
ation function νH of g0

1,g
0
2, · · · ,g0

n in LP(X), there ex-
ists a corresponding H-interpretation IH , such that
νH(g0

1 ∧ g0
2 ∧ · · · ∧ g0

n) = νH(g1 ∧ g2 ∧ · · · ∧ gn) 6 α.
Moreover, the indices of generalized literals in Φ0

i
are the same with those of g-literals in Φi, hence g0

i
has the minimal index of Φ0

i (1 6 i 6 n). Hence, D0
i =

Rα−g−L(Φ0
1,Φ

0
2, · · · ,Φ0

n) is an α-generalized lock re-
solvent of Φ1,Φ2, · · · ,Φn,D0

i is the ground instance
of Di.

(Sufficiency) It can be proved by Theorem 10
(Lifting Lemma of α-generalized lock resolution).

Theorem 14. Suppose S is a set of locked gen-
eral generalized clauses in LV(n×2)P(X), α = (hk, t).
There exists a (hk, t)-generalized locked resolu-
tion deduction w = {D1,D2, · · · ,Dm} from S to
Dm in LV(n×2)P(X) if and only if there exists
a (ak,b2)-generalized locked resolution deduction
w∗ = {D∗1,D∗2, · · · ,D∗m} from S ∗ to D∗m in Ln×2P(X),
where each of the locked generalized literals in S ∗
and D∗i denote the restrictions of locked generalized
literals in S and Di(1 6 i 6 m) on Ln×2P(X), respec-
tively.

Proof. We only prove the necessity, the sufficiency
can be obtained similarly.

Let φ be an isomorphic mapping as φ:
LV(n×2) −→ Ln×2, then φ can be expanded to an
isomorphic mapping from LV(n×2)P(X) to Ln×2P(X),
denoted by φ1. Hence, for any formula Φ

in LV(n×2)P(X), Φ∗ = φ1(Φ), and Φ∗ belongs to
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Ln×2P(X). Furthermore, for a valuation γ1 in
LV(n×2)P(X), construct γ = φ · γ1 · φ−1

1 , then it is
easy to validate γ is a valuation in Ln×2P(X), and
γ1 = φ−1 ·γ ·φ1.

For each (hk, t)-generalized lock resolvent Di(16
i 6 m) in LV(n×2)P(X), there exist locked general
generalized clauses Φ1,Φ2, · · · ,Φn such that Di =

Rα−g−L(Φ1,Φ2, · · · ,Φn). Let g1,g2, · · · ,gn be (hk, t)-
generalized lock resolved literals in Φ1,Φ2, . . . ,Φn,
respectively, then g1 ∧ g2 ∧ · · · ∧ gn 6 (hk, t), and gi
has the minimal index in Φi(1 6 i 6 n). Hence, for
any valuation γ1 in LV(n×2)P(X), we have γ1(g1 ∧
g2 ∧ · · · ∧ gn) 6 (hk, t), that is, φ−1 · γ · φ1(g1 ∧ g2 ∧
· · ·gn) 6 (hk, t). Since φ1 is monotonic increas-
ing in LV(n×2)P(X), then γ · φ1(g1 ∧ g2 ∧ · · · ∧ gn) 6
φ((hk, t)) = (ak,b2). So γ(φ1(g1 ∧ g2 ∧ · · · ∧ gn)) 6
(ak,b2), i.e., γ(g∗1 ∧ g∗2 ∧ · · · ∧ g∗n) 6 (ak,b2). By the
arbitrariness of γ1 in LV(n×2)P(X), γ is arbitrary in
Ln×2P(X). Therefore, g∗1∧g∗2∧· · ·∧g∗n 6 (ak,b2). Fur-
thermore, the indices of g∗i in Φ∗i are the same with
gi in Φi, hence g∗i has the minimal index in Φ∗i (1 6
i 6 n). Therefore, D∗i = Rα−g−L(Φ∗1,Φ

∗
2, · · · ,Φ∗n) is an

α-generalized lock resolvent of Φ∗1,Φ
∗
2, · · · ,Φ∗n, and

D∗i is the restrictions of Di on Ln×2P(X).

Corollary 15. Suppose S is a set of locked
general generalized clauses in LV(n×2)P(X), α =

(hk, f ). There exists a (hk, f )-generalized lock res-
olution deduction w = {D1,D2, · · · ,Dm} from S to
Dm in LV(n×2)P(X) if and only if there exists a
(a′k,b1)-generalized lock resolution deduction w∗ =

{D∗1,D∗2, · · · ,D∗m} from S ∗ to D∗m in Ln×2P(X), where
each of locked generalized literals in S ∗ and D∗i de-
note the restrictions of those in S and Di(1 6 i 6 m)
on Ln×2P(X), respectively.

Theorem 16. Suppose S is a set of locked general
generalized clauses in Ln×2P(X), α = (ak,b2). There
exists a (ak,b2)-generalized lock resolution deduc-
tion w = {D1,D2, · · · ,Dm} from S to Dm in Ln×2P(X)
if and only if there exists an ak-generalized lock res-
olution deduction w∗ = {D∗1,D∗2, · · · ,D∗m} from S ∗ to
D∗m in LnP(X), where each of locked generalized lit-
erals in S ∗ and D∗i denote the restrictions of those in
S and Di(1 6 i 6 m) on LnP(X), respectively.

Proof. We only prove the necessity, the sufficiency
can be obtained similarly.

For each α-generalized lock resolvent Di(1 6
i 6 m) in Ln×2P(X), there exist general gen-
eralized clauses Φ1,Φ2, · · · ,Φn, such that Di =

Rα−g−L(Φ1,Φ2, · · · ,Φn). Let g1,g2, · · · ,gn be (ak,b2)-
generalized lock resolved literals in Φ1,Φ2, · · · ,Φn,
respectively, then g1 ∧ g2 ∧ · · · ∧ gn 6 (ak,b2), and
g1,g2, · · · ,gn are generalized literals with the mini-
mal indices in Φ1,Φ2, · · · ,Φn, respectively. Hence,
for any valuation γ = γ1 × γ2 in Ln×2P(X), we have
γ(g1 ∧ g2 ∧ · · · ∧ gn) 6 (ak,b2), where γ1 and γ2
are valuations in LnP(X) and L2P(X), respectively,
so we have (γ1 × γ2)(g1 ∧ g2 ∧ · · · ∧ gn) 6 (ak,b2).
Then, we have (γ1(g1∧g2∧· · ·∧gn),γ2(g1∧g2∧· · ·∧
gn)) 6 (ak,b2), and γ1(g1 ∧ g2 ∧ · · · ∧ gn) 6 ak, that
is, γ1(g1)∧ γ1(g2)∧ · · · ∧ γ1(gn) 6 ak. Denote g∗i =

γ1(gi), Φ∗i = γ1(Φi)(1 6 i 6 m), i.e., g∗i and Φ∗i are
the restrictions of gi and Φi on LnP(X), respectively,
then there exist generalized literals g∗1,g

∗
2, · · · ,g∗n in

Φ∗1,Φ
∗
2, · · · ,Φ∗n, such that g∗1 ∧ g∗2 ∧ · · · ∧ g∗m 6 ak.

Moreover, Φi is syntactically equal to Φ∗i except
for constants, hence all generalized literals of Φi
have the same indices with generalized literals of
Φ∗i , that is, g∗i has the minimal index of Φ∗i (1 6 i 6
m). Hence, D∗i = Rα−g−L(Φ∗1,Φ

∗
2, · · · ,Φ∗n) is an α-

generalized lock resolvent of Φ∗1,Φ
∗
2, · · · ,Φ∗n, and D∗i

is the restriction of Di on LnP(X).

Remark 4.

(1) Similarly equivalent transformations still hold
for α-generalized resolution deduction, i.e., α-
generalized resolution can be transformed from
LV(n×2)F(X) into Ln×2P(X), which can also sim-
plify the complexity of α-generalized resolu-
tion.

(2) For α-generalized lock resolution in
LV(n×2)F(X), we can equivalently transform it
into that in LV(n×2)P(X) by Theorem 13, and
further to that in Ln×2P(X) by Theorem 14, and
finally to LnP(X) by Theorem 16 which takes
truth-values in a Łukasiewicz implication alge-
bra on a finite chain Ln, that is, for discussing
α-generalized lock resolution in LV(n×2)F(X),
we only need to discuss that in LnP(X).
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5. Compatibilities of α-generalized lock
resolution

5.1. α-Generalized linear semi-lock resolution
method in LnF(X)

Restricted strategies on resolution methods can re-
duce the deduction trees, but do not affect their
semantic properties. Hence, the soundness of α-
generalized linear semi-lock resolution holds, we
only need to discuss its completeness.

Definition 26. Suppose S is a set of general g-
clauses in LF(X), α ∈ L, Φ0 is a general g-clause
in S . An α-generalized resolution deduction w =

{D1,D2, · · · ,Dm} is called an α-generalized linear
resolution deduction from S with the top general g-
clause Φ0 to the general g-clause Dm if it satisfies

(1) Di+1 is the α-generalized resolvent of Di
(center g-clause) and Bi (side g-clause), i =

0,1,2, · · · ,m−1.

(2) For i ∈ {0,1,2, · · · ,m − 1}, Bi ∈ S , or Bi = D j,
where j < i, D0 = Φ0.

Definition 27. Suppose S is a set of locked gen-
eral g-clauses in LF(X), α ∈ L, Φ0 is a locked gen-
eral g-clause in S . An α-generalized linear resolu-
tion deduction w = {D1,D2, · · · ,Dm} is called an α-
generalized linear lock resolution deduction from S
with the top general g-clause Φ0 to the general g-
clause Dm if it satisfies: For each center g-clause
Di+1(i = 0,1,2, · · · ,m−1), Di+1 is the α-generalized
lock resolvent of Di (center g-clause) and Bi (side
g-clause). w is called an α-generalized linear semi-
lock resolution deduction from S with the top g-
clause Φ0 to the g-clause Dm if the α-generalized
resolved g-literals in Di(i = 1,2, · · · ,m− 1) have the
minimal indices.

Theorem 17. Suppose S is the set of locked general
generalized clauses Φ1,Φ2, · · · ,Φn in LnP(X), where
the same generalized literals have the same indices
in Φi(1 6 i 6 n), all the indices of generalized liter-
als in Φi are less than those in Φ j(i < j). If S 6 α,
and S − {Φ1} is α-satisfiable, then there exists an α-
generalized linear semi-lock refutation of S with the
top clause Φ1.

Proof. If S only includes a general generalized
clause Φ0, then Φ0 6 α by S 6 α. Hence, Φ0 has
an α-generalized linear semi-lock refutation by re-
solved on itself.

Suppose there exist at least two general gener-
alized clauses in S . Let m(S ) denote the number
of generalized literals which are locked in S . If
m(S ) = 2, then there exist two generalized literals
g1,g2 in S , i.e., S = g1 ∧ g2. Obviously, there ex-
ists an α-generalized linear semi-lock refutation of
S with the top clause g1.

Suppose Theorem 17 is true for m(S ) < n.
Since S 6 α, then there exist generalized literals
g1,g2, · · · ,gm in Φ1,Φ2, · · · ,Φm, respectively, such
that g1 ∧ g2 ∧ · · · ∧ gm 6 α(m 6 n). Without loss of
generality, let gi have the largest index of Φi(1 6 i 6
m), and S the minimum α-unsatisfiable set which in-
cludes Φi. Denote S 1 = {Φ1(g1 = α)|Φ1 ∈ S }, Φ0

1 =

Φ1(g1 = α). By Proposition 8, we have S 1 6 α. Ob-
viously, m(S 1) < n. From S 1 − {Φ0

1} = S − {Φ1}, it
follows that S 1−{Φ0

1} is α-satisfiable. By the induc-
tion hypothesis, there exists an α-generalized linear
semi-lock refutation D0

1 of S 1 with the top clause Φ0
1.

We renew D0
1 to D1 by adding g1 to Φ0

1, where g1 is
substituted by α, then D1 is an α-generalized lin-
ear semi-lock resolution deduction from S with the
top clause Φ1 to the general generalized clause Ψ1.
For Ψ1, two cases follow. Ψ1 is either an α-constant
clause, or a general generalized clause which only
includes g1, and Ψ1(g1 = α) = α.

Similar to S 1, we denote S i = {Φi(gi = α)|Φi ∈
S }, Φ0

i = Φi(gi = α), then S i 6 α and S i − {Φ0
i } is

α-satisfiable (2 6 i 6 m). Furthermore, m(S i) <
n. By the induction hypothesis, there exists an α-
generalized linear semi-lock refutation D0

i of S i with
the top clause Φ0

i . We only renew D0
i to Di by adding

gi to Φ0
i , where gi is substituted by α in side clauses

of D0
i , then Di is an α-generalized linear semi-lock

resolution deduction from S with the top clause Φi
to Ψi. For Ψi, two cases follow. Ψi is either an
α-constant clause or a general generalized clause
which only includes gi, and Ψi(gi = α) = α.

For the resolvent Ψ1 in D1, if Ψ1 is an α-constant
clause, then D1 is also an α-generalized linear semi-
lock refutation of S with the top clause Φ1, i.e., The-
orem 17 holds. Otherwise, Ψ1 is a general gener-
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alized clause, which only includes g1, and Ψ1(g1 =

α) = α. In this case, resolve on Ψ1, Φ2, · · · , Φm,
and get Ψ∗1 = R(g−α)−g(Ψ1(g1),Φ2(g2), · · · ,Φm(gm)) =

Ψ1(g1 = α)∨Φ2(g2 = α)∨ · · · ∨Φm(gm = α), hence
we get an α-generalized linear semi-lock deduc-
tion D∗1 of S with the top clause Φ1 to Φ2(g2 =

α) ∨ · · · ∨ Φm(gm = α). Hence, we add Φ3(g3 =

α)∨ · · · ∨Φm(gm = α) to the top clause Φ2(g2 = α)
in D2. Since the indices of all generalized liter-
als in Φi are less than those of Φ j(i < j), then
Φ3(g3 = α)∨ · · · ∨Φm(gm = α) can not be resolved
in D2. Hence, we get an α-generalized linear semi-
lock resolution deduction D∗2 of S with the top clause
Φ2(g2 =α)∨· · ·∨Φm(gm =α) to the general general-
ized clause Ψ∗2 = Ψ2∨Φ3(g3 = α)∨· · ·∨Φm(gm = α).

Similarly, if Ψ2 is an α-constant clause, then
Ψ∗2 = Φ3(g3 = α) ∨ · · · ∨ Φm(gm = α). Other-
wise, Ψ2 is a general generalized clause which
only includes g2, and Ψ2(g2 = α) = α. In this
case, resolve on Ψ1,Ψ2,Φ2, · · · ,Φm, and get Ψ∗2 =

R(g−α)−g(Ψ1(g1),Ψ2(g2), · · · ,Φm(gm)) = Ψ1(g1 = α)∨
Ψ2(g2 = α) ∨ · · · ∨ Φm(gm = α), it is also an α-
generalized linear semi-lock deduction D∗2 of S with
the top clause Φ2(g2 = α)∨ · · · ∨Φm(gm = α) to Ψ∗2.
Hence, we add Φ4(g4 = α) ∨ · · · ∨Φm(gm = α) to
Φ3(g3 = α) in D3. Since all the indices of gener-
alized literals in Φi are less than those of Φ j(i < j),
then Φ4(g4 = α)∨ · · · ∨Φm(gm = α) can not be re-
solved in D3. Hence, we get an α-generalized linear
semi-lock resolution deduction D∗3 of S with the top
clause Ψ∗2 to the general generalized clause Ψ∗3 =

Ψ3∨Φ4(g4 = α)∨ · · ·∨Φm(gm = α). Similarly, if Ψ3
is an α-constant clause, then Ψ∗3 = Φ4(g4 = α)∨· · ·∨
Φm(gm = α). Otherwise, Ψ3 is a general generalized
clause, which only includes g3, and Ψ3(g3 = α) = α.
Hence, we resolve on Ψ1,Ψ2,Ψ3,Φ4, · · · ,Φm, and
get Ψ∗3 = R(g−α)−g(Ψ1,Ψ2,Ψ3,Φ4, · · · ,Φm) = Ψ1(g1 =

α) ∨Ψ2(g2 = α) ∨Ψ3(g3 = α) ∨Φ4(g4 = α) ∨ · · · ∨
Φm(gm = α), it is also an α-generalized linear semi-
lock deduction D∗3 of S with the top clause Ψ∗2 to Ψ∗3.

Repeat the similar steps above, we get Ψ∗m−1 =

R(g−α)−g(Ψ1,Ψ2, · · · ,Ψm−1,Φm) = Ψ1(g1 = α) ∨
Ψ2(g2 = α)∨ · · · ∨Ψm−1(gm−1 = α)∨Φm(gm = α), it
is also an α-generalized linear semi-lock deduction
D∗m−1 of S with the top clause Ψ∗m−2 to Ψ∗m−1. Since
Ψ∗m−1 = Φ0

m and Dm is an α-generalized linear semi-

lock resolution deduction from S with the top clause
Φ0

m to Ψm. If Ψm is an α-constant clause, then con-
necting the deductions D∗1,D

∗
2, · · · ,D∗m−1,Dm, we get

an α-generalized linear semi-lock refutation of S
with the top clause Φ1, i.e., Theorem 17 holds. Oth-
erwise, Ψm is a general generalized clause which
only includes gm, and Ψm(gm = α) = α. In this case,
we resolve on Ψ1,Ψ2,Ψ3, · · · ,Ψm−1,Ψm, and get
Ψ∗m = R(g−α)−g(Ψ1,Ψ2,Ψ3, · · · ,Ψm−1,Ψm) = Ψ1(g1 =

α) ∨Ψ2(g2 = α) ∨Ψ3(g3 = α) ∨ · · · ∨Ψm−1(gm−1 =

α)∨Ψm(gm = α) = α, hence we get an α-generalized
linear semi-lock refutation of S with the top clause
Φ1. Therefore, we connect the α-generalized linear
semi-lock resolution branches D∗1,D

∗
2, · · · ,D∗m, and

denote D∗ = D∗1 ∪D∗2 ∪ · · · ∪D∗m, then D∗ is an α-
generalized linear semi-lock refutation of S with the
top clause Φ1.

Theorem 18. Suppose S is the set of locked general
g-clauses Φ1,Φ2, · · · ,Φn in LnF(X), where the same
g-literals have the same indices in Φi(1 6 i 6 n), all
the indices of g-literals in Φi are less than those of
Φ j(i < j). If S 6 α, and S − {Φ1} is α-satisfiable,
then there exists an α-generalized linear semi-lock
refutation of S with the top clause Φ1.

Proof. Similar to the proof of Theorem 12, the com-
pleteness of α-generalized linear semi-lock resolu-
tion in LnF(X) follows.

5.2. An algorithm for α-generalized linear
semi-lock resolution in LnP(X)

In α-generalized resolution, the number of resolved
literals is dynamic, hence it is vital to give a method
to judge whether the given generalized literals are
resolved or not.

Definition 28. Let g1,g2, · · · ,gm be generalized
literals in LP(X). g1,g2, · · · ,gm are α-minimum re-
solved in α-generalized resolution if it satisfies

(1) g1∧g2∧ · · ·∧gm 6 α.

(2) For any {gi1,gi2, · · · ,gik} ⊂ {g1,g2, · · · ,gm}, gi1 ∧
gi2∧ · · ·∧gik � α.

Example 2. Let L9 = {ai|16 i6 9} be a Łukasiewicz
implication algebra, x, y propositional variables in
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L9P(X), g1 = x, g2 = x → y, g3 = y → a2. If we
take resolution level α = a6, then g1 ∧ g2 ∧ g3 6 a6.
Moreover, for any i, j ∈ {1,2,3}, gi∧g j � a6. Hence,
g1,g2,g3 are a6-minimum resolved in a6-generalized
resolution.

Algorithm 1

Step 0. Given generalized literals g1,g2, · · · ,gm in
LnP(X), α = ak.

Step 1. Judge g1∧g2∧· · ·∧gm 6 ak. If it does not sat-
isfy, then stop, Resm(g1,g2, · · · ,gm,ak) = 0.

Step 2. k = 1.

Step 3. For any k generalized literals {gi1,gi2, · · · ,gik} ⊂
{g1,g2, · · · ,gm}, judge gi1 ∧ gi2 ∧ · · · ∧
gik 6 ak, if it satisfies, then stop,
Resm(g1,g2, · · · ,gm,ak) = 0.

Step 4. If k 6 m−1, then k = k + 1, go to Step 3. Oth-
erwise, stop, Resm(g1,g2, · · · ,gm,ak) = 1.

Algorithm 1 can be seen as a function, i.e., Func-
tion Resm(g1,g2, · · · ,gm,ak). Let g1,g2, · · · ,gm be
generalized literals in LnP(X). g1,g2, · · · ,gm are
ak-minimum resolved if Resm(g1,g2, · · · ,gm,ak) = 1.
Otherwise, it returns 0.

According to Algorithm 1, an algorithm for α-
generalized linear semi-lock resolution follows.

Algorithm 2

Step 0. (Initiation) Let S be a set of locked general
generalized clauses Φ1,Φ2, · · · ,Φn. Assign to
each occurrence of generalized literal a posi-
tive integer in Φi, the same generalized liter-
als have the same indices, and all the indices
of generalized literals in Φi are less than those
of Φ j(i < j). c = 1,α = ak. S − {Φ1} be ak-
satisfiable. Φ = Φ1.

Step 1. Let g be the generalized literal with the mini-
mal index in Φ, H the set of generalized liter-
als in S −{Φ}.

Step 2. Let n0 be the number of generalized liter-
als in H. For i0 = 1 to n0, If there exist
i0 generalized literals g j1,g j2, · · · ,g ji0 (g ji ∈

Φ j), such that Resm(g,g j1,g j2, · · · ,g ji0 ,ak) =

1, then Φm = Rα−g−L(Φ,Φ j1,Φ j2, · · · ,Φ ji0). If
Φm = ak, then stop, S 6 ak. Otherwise, stop,
S is ak-satisfiable.

Step 3. S = S ∪Φm, c = c + 1. Set Φ = Φm.

Step 4. If c 6 c0, then go to Step 1. Otherwise, stop,
S is ak-satisfiable.

Remark 5. c0 can be chosen according to the com-
plexity of Algorithm 2 and the numbers of general-
ized literals in S .

Theorem 19. (Soundness) If Algorithm 2 termi-
nates, then the ak-unsatisfiability of S can be judged
in LnP(X).

Proof. By Algorithm 2, if it terminates, then two
cases follow. One is in Step 2, if there exist some ak-
generalized lock resolvent Φm, such that Φm = ak,
then by the soundness of ak-generalized linear semi-
lock resolution in LnP(X), we have S 6 ak. Oth-
erwise, if no ak-generalized lock resolvents exists,
then S is ak-satisfiable. Another is in Step 5, if
c> c0, then S can be seen to be ak-satisfiable. There-
fore, the ak-unsatisfiability of logical formulae can
be judged if it terminates.

Theorem 20. (Completeness) If S 6 ak in LnP(X),
then Algorithm 2 terminates in Step 2.

Proof. If S 6 ak, then by Algorithm 2 and the com-
pleteness of ak-generalized linear semi-lock resolu-
tion in LnP(X), there exists an ak-generalized lin-
ear semi-lock refutation of S . Hence, an ak-constant
clause generates in this deduction, that is, Algorithm
2 can terminate in Step 2.

6. Conclusion

In this paper, we presented refined non-clausal res-
olution methods in linguistic truth-valued lattice-
valued first-order logic (LV(n×2)F(X)), i.e., α-
generalized lock resolution and α-generalized lin-
ear semi-lock resolution including their con-
cepts, soundness and completeness. We equiva-
lently transformed α-generalized lock resolution in
LV(n×2)F(X)) to that in LnP(X), it greatly simplifies
its complexity for LV(n×2)F(X). In order to further
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improve the efficiency of α-generalized lock reso-
lution, we discussed α-generalized linear semi-lock
resolution by combining it with α-generalized linear
resolution. The further research will be concentrated
on discussing how to assign appropriate indices to
the generalized literals in α-generalized lock reso-
lution, and exploring some theoretical or practical
applications for α-generalized resolution based au-
tomated reasoning.
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