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Abstract

We introduce the concept of a fuzzy total preorder. Then we analyze its numerical representability through
a real-valued order-preserving function defined for each α-cut.
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1. Introduction

Suppose that we consider different kinds of order-
ings on a set in order to establish some sort of com-
parison between its elements. When we formalize
this setting, several classical kinds of binary rela-
tions (e.g. total preorders, interval orders, etc.) ap-
pear in a natural way. Usually, when dealing with
these classes of relations, if we analyze if an element
a is related to another element b, it happens that the
relationship is either void (= 0) or total (= 1): Ei-
ther the elements are not related at all, or they are
fully related. No intermediate situation is allowed.

This is the crisp setting.
Nevertheless, a common feature arising in many

models (e.g.: in Economics, Decision Making,
etc.) is the consideration of comparisons or suit-
able binary relations –that constitute or represent the
preferences of agents or decision-makers– that are
graded. This is done in order to describe an inten-
sity in the relationship between two given elements.
In this case, two elements could be related at any
level between 0 and 1. Of course, now the binary
relation becomes fuzzy.

Typical kinds of binary relations established for
the crisp setting should be extended to the fuzzy set-
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ting, in some appropriate way. However, it is indeed
true that many equivalent definitions that appear in
the crisp setting (e.g.: a total preorder, an interval
order or a semiorder) fail to be equivalent when ex-
tended (in a natural way) to the fuzzy setting1,2,3,4.

In the crisp setting, classical studies on order-
ings deal with the key question of numerical rep-
resentability. Roughly speaking, by means of some
sort of numerical representation, if any, we trans-
late the idea of comparing things or elements of
a set through qualitative scales into the compari-
son of real numbers or quantitative scales. Thus,
for instance, given a total preorder - defined on a
nonempty set X we may look for the existence of a
real-valued function u : X → R such that a - b⇔
u(a) 6 u(b) for every a,b ∈ X .

In the present paper we analyze this kind of ques-
tions for graded preferences, in the fuzzy setting.
First we explain what we will understand for a rep-
resentable fuzzy structure of a certain type. This
discussion is important because, as mentioned be-
fore, a large variety of equivalent definitions of some
kind of ordering in the crisp setting (e.g.: a crisp
semiorder) could give rise to non-equivalent defini-
tions in the fuzzy setting3,4.

As a matter of fact, in order to capture in a suit-
able way the idea of a representable fuzzy preference
structure, a good election among those possible non-
equivalent definitions of the concept to be analyzed
is compulsory. In other words, not all the possible
extended (non-equivalent) definitions of a concept
in the fuzzy setting fit well with the analysis of nu-
merical representability.

We establish the suitable definitions, that lean on
the concept of representable α-cut of a fuzzy bi-
nary relation. Then, the subsequent problem is the
search for necessary and sufficient conditions that
could characterize the existence of a numerical rep-
resentation for the fuzzy preference structure.

In the present paper we analyze the numerical
representability of fuzzy total preorders, extending
some classical result that arises in the crisp setting.

The structure of the paper goes as follows:
After the Introduction, the notation and prelimi-

naries are presented in Section 2. Preparatory results
on α-cuts are presented in Section 3. In Section 4 we

introduce the key concept of a fuzzy total preorder.
In Section 5 we analyze properties of representable
additive fuzzy preference structures without incom-
parability. In Section 6 we study sufficient condi-
tions for the representablity of a fuzzy total preorder.
A Section 7 of further comments closes the paper.

2. Notation and preliminaries

2.1. Basic concepts coming from the crisp setting

When a crisp binary relation Q defined on a set X
connects two alternatives a and b we usually denote
it by aQb. However, we can also consider a different
notation. A crisp binary relation Q can be identified
with a function Q : X ×X → {0,1} that assigns the
value 1 to the pair (a,b) if and only if aQb holds.
Thus, it leads to the value 0 if and only if ¬(aQb)
holds. We will interchangeably use both notations
for crisp relations along the paper, namely: aQb or
Q(a,b) = 1 will stand for a being connected to b by
the relation Q, whereas ¬(aQb) or Q(a,b) = 0 will
stand for a not being connected to b by Q.

Definition 1. 5 Let X be a (nonempty) set and P be
an asymmetric binary relation defined on X . Linked
to P , we define the binary relations R and I given
by aRb ⇐⇒ ¬(bPa), and aI b ⇐⇒ aRb∧bRa
for every a,b ∈ X . The binary relation R (respec-
tively, I ) is said to be the weak preference relation
(respectively, the indifference relation) associated to
P .

(It is obvious that if P is asymmetric, then it is
in particular irreflexive. Moreover, in this case I is
reflexive.)

Given a nonempty set X and an asymmetric bi-
nary relation P defined on X , the pair (P,I ) is
said to be a preference structure on X , the given set5.

(In the spirit of the ideas issued in a recent pa-
per by Dı́az, De Baets and Montes, we only deal
with preference structures without incomparabil-
ity. Otherwise the definition should be changed
accordingly)2.

We immediately observe that, given a nonempty
set X , a pair (P,I ) of binary relations defined on
X is a preference structure if and only if it satisfies
the following two conditions:
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(i) Given a,b ∈ X , exactly one of aPb, bPa,
aI b obtains.
(ii) aI a for every a ∈ X .

(Notice that the fact of P being asymmetric di-
rectly follows from part (i) of this characterization.)

A crisp relation Q defined on a set X is said to
be total (also known as complete) if for every pair
a,b ∈ X it holds that aQb or bQa.

Definition 2. 5 A binary relation -, defined on an
arbitrary nonempty set X , is said to be a preorder if
it is reflexive and transitive.

An antisymmetric preorder is said to be an order.
If a preorder - defined on X is a total binary re-

lation on X , then it is said to be a total preorder.
(Notice that this is equivalent to say that - is

transitive and total, because, by definition, a total
binary relation is in particular reflexive.)

If - is a preorder on X , then as usual we denote
the associated asymmetric relation by ≺ and the as-
sociated equivalence relation by ∼ and these are de-
fined, respectively, by [a≺ b ⇐⇒ (a - b)∧¬(b -
a)] and [a ∼ b ⇐⇒ (a - b)∧ (b - a)]. Also, the
associated dual preorder -d is defined by [a -d
b ⇐⇒ b - a].

Let (X ,-) be a totally preordered set and let
X/ ∼ be the set of equivalence classes. If a ∈ X
we denote the equivalence class of a by [a]. The
preorder - on X induces a natural linear order � on
X/∼ defined by [a]� [b] ⇐⇒ a - b.

Remark 1. In terms of Definition 1, and using the
notation introduced there, it is straightforward to see
that calling P = ≺ , it follows that R = - and
I = ∼.

Definition 3. 5 A total preorder - defined on a
nonempty set X is said to be representable if there
exists a real-valued order-preserving map u : X →R
such that a - b ⇐⇒ u(a) 6 u(b), for every a,b∈ X .
The map u is said to be a numerical representation
(also known as utility function) for the total preorder
-.

2.2. Fuzzy binary relations

Definition 4. 6 A fuzzy binary relation defined on a
nonempty set X is a function Q : X×X → [0,1].

Definition 5. 7 A map T : [0,1]× [0,1]→ [0,1] is
said to be a triangular norm (t-norm) if it satisfies
the following conditions:

(i) Associativity: T (T (x,y),z) = T (x,T (y,z)) for ev-
ery x,y,z ∈ [0,1].

(ii) Commutativity: T (x,y) = T (y,x) (x,y ∈ [0,1]).
(iii) Monotonicity: T (y,x) 6 T (z,x) for every x,y,z∈

[0,1] such that y 6 z.
(iv) Boundary conditions: T (x,1) = x ; T (0,0) =

0 (x ∈ [0,1]).

Similarly, a map S : [0,1]× [0,1] → [0,1] is said
to be a triangular conorm (t-conorm) if it satis-
fies the conditions of associativity, commutativity,
and monotonicity, as well as the following boundary
conditions: S(1,1) = 1 ; S(x,0) = x (x ∈ [0,1]).

If T is a t-norm, then the map S : [0,1]× [0,1]→
[0,1]given by S(x,y) = 1−T (1− x,1− y) for every
x,y∈ [0,1] is a t-conorm, called dual or complemen-
tary of T and it is usually denoted S = T d . In the
same way, if S is a t-conorm then the map T : [0,1]×
[0,1]→ [0,1] defined by T (x,y) = 1−S(1−x,1−y)
for every x,y ∈ [0,1] is a t-norm, called dual of S.

A t-norm T is said to have zero-divisors if there
exist two values x,y ∈ (0,1) such that T (x,y) = 0.
(In this situation, (x,y) is said to be a pair of zero
divisors of the t-norm T ).

It is necessary to recall that for fuzzy relations
the definition of intersection and union are based on
t-norms and t-conorms respectively.

Therefore also the composition of fuzzy rela-
tions depends on a t-norm T , so that given two
fuzzy relations Q1 and Q2 defined on a set X ,
its composition as regards the t-norm T , denoted
by Q1 ◦T Q2, is given by Q1 ◦T Q2(a,b) =
supc∈X T (Q1(a,c),Q2(c,b)); a,b ∈ X .

There are multiple ways for defining the nega-
tion of a fuzzy relation. We consider the standard
negation defined as follows: given a fuzzy binary
relation Q on a nonempty set X , the negation N Q
of Q is given by N Q(a,b) = 1−Q(a,b) for every
a,b ∈ X .

Definition 6. 6 For any t-norm T , a fuzzy relation Q
is said to be:

(i) reflexive if Q(a,a) = 1, for every a ∈ X .

Published by Atlantis Press 
      Copyright: the authors 
                  998



L. Agud et al.

(ii) T -asymmetric if T (Q(a,b),Q(b,a)) = 0; a,b ∈
X .

(iii) T -transitive if Q ◦T Q ⊆ Q, that is, if
T (Q(a,c),Q(c,b)) 6 Q(a,b), for every a,b,c ∈
X ,

(iv) T -negatively transitive if its negation N Q is T -
transitive.

Let us observe that if a t-norm T has no pair of
zero-divisors, then a T -asymmetric fuzzy relation Q
may satisfy that there exist two alternatives a and
b ∈ X such that min(Q(a,b),Q(b,a)) > 0.
Notice also that a fuzzy relation Q cannot
be simultaneously reflexive and T -asymmetric,
since the fact Q(a,a) = 1 is incompatible with
T (Q(a,a),Q(a,a)) = 0. (Indeed, T (1,1) = 1 be-
cause T is a t-norm).

Definition 7. 6 For any t-conorm S, a fuzzy relation
Q defined on a nonempty set X is called S-complete
if S(Q(a,b),Q(b,a)) = 1 for every a,b ∈ X . The
two most important notions of S-completeness are
the strong completeness (when S = SM is the max-
imum t-conorm defined by SM(x,y) = max{x,y}
for every x,y ∈ [0,1]), and the weak completeness
(when S = SL is the Łukasiewicz t-conorm defined
by SL(x,y) = min{1,x+ y} for every x,y ∈ [0,1]).

(Further information about the concept of S-
completeness in the fuzzy setting may be seen in
the paper by I. Montes et al. mentioned in the
references)1.

2.3. Additive fuzzy preference structures

Several authors have debated about the notion of
preference structure in the setting of fuzzy relations
until Van de Walle et al. introduced the notion of an
additive fuzzy preference structure.

Definition 8. 8,9 An additive fuzzy preference struc-
ture on a nonempty set X is a triplet of fuzzy binary
relations (P,I ,J ) satisfying that I is reflexive
and symmetric (I (a,a) = 1; I (a,b) = I (b,a) for
every a,b ∈ X) and P(a,b)+P t(a,b)+I (a,b)+
J (a,b) = 1 for any a,b ∈ X , where P t denotes
the transpose (or converse) of P (P t(a,b) =
P(b,a); a,b ∈ X) and J denotes the binary re-
lation of incomparability.

Throughout this paper, we will only deal with
additive fuzzy preference structures without incom-
parability (i.e. J (a,b) = 0 for any a,b ∈ X , so
that accordingly we use the notation (P,I ) to deal
with an additive fuzzy preference structure without
incomparability). These fuzzy preference structures
have a very important property (that remind us Defi-
nition 1 given in the crisp setting). Namely, in an ad-
ditive fuzzy preference structure without incompa-
rability the relation P immediately determines the
relation I . As a matter of fact, for any pair of alter-
natives a,b ∈ X we have that:

I (a,b) = 1−P(a,b)−P t(a,b)
= 1−P(a,b)−P(b,a).

The relation P is said to be a fuzzy strict pref-
erence relation and it shows the degree with which
the decision maker strictly prefers a to b. The rela-
tion I is called the fuzzy indifference relation and
shows the level with which a and b are considered
indifferent.

Every additive fuzzy preference structure has as-
sociated a fuzzy weak preference relation R given
by R(a,b) = P(a,b)+I (a,b) for every a,b ∈ X .
The value R(a,b) expresses the degree of truth of
the assertion “a is at least as good as b”.

Observe that if we are dealing with an additive
fuzzy preference structure without incomparability,
then we can recover P and I from R as fol-
lows: P(a,b) = 1−R(b,a); I (a,b) = R(a,b)+
R(b,a)− 1, for every a,b ∈ X . Observe also that
R(a,a) = P(a,a)+I (a,a) = 0+1 = 1, for every
a ∈ X .

Remark 2. Needless to say that other possible
definitions of the notions of a fuzzy preference, or
of a fuzzy utility function, may undoubtedly de-
serve interest10,11,12,13,14,15,16,17,18,19,20. A compar-
ison between those settings and the one we fol-
low here, namely the approach introduced by Van
de Walle et al., could be appealing and illuminate
the panorama. However, in our opinion, this could
be material for new pieces of research, because of
the wide sort of variations and nuances in the cor-
responding key concepts, whose study in depth, if
made in the present paper, would unnecessarily en-
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large the manuscript, perhaps concealing the main
ideas we have in mind.

To summarize, we will follow the approach that,
we think, fits better the highlight intended for this
article, namely the analysis of the problem of a nu-
merical representation in the fuzzy setting in terms
of α-cuts.

3. The α-cuts of a fuzzy binary relation

The results of this preparatory Section 3 deal with
compatibility between additive fuzzy preference
structures without incomparability and their α-cuts.
Proposition 3 has already been stated and proved in
the subsection 4.1 of the paper by E. Induráin et al.
mentioned in the references4. Proposition 4 follows
directly from definitions. Similar results appear also
in a recent paper by S. Dı́az, B. De Baets and S.
Montes21.

Definition 9. Given a fuzzy relation Q on a
nonempty set X , and a real number α ∈ [0,1], we
define the α-cut of Q, denoted Qα , as the crisp
binary relation on X given by Qα = {(a,b) ∈ X2 :
Q(a,b) > α}.

The set of all the fuzzy binary relations on X is
denoted QX .

A fuzzy binary relation Q defined on a nonempty
set X , can be identified with the family of its α-cuts,
that are crisp binary relations. Actually, a nested
family of (crisp) binary relations, indexed in [0,1],
may also be identified to a fuzzy binary relation, in
a way that each element of the family corresponds
to an α-cut. Let us formalize all this through the
following Definition 10 and Proposition 1.

Definition 10. A family {Qα : α ∈ [0,1]} of crisp
binary relations defined on a nonempty set X is said
to be fuzzy generating if it satisfies the following two
conditions:

(i) For every 0 6 β 6 α 6 1, G(Qα) = {(a,b)∈ X×
X : Qα(a,b) = 1} ⊆ G(Qβ ) = {(a,b) ∈ X ×X :
Qβ (a,b) = 1}.

(ii) For every (a,b) ∈ X × X there exists α ∈ [0,1]
with Qα(a,b) = 1, and satisfying also that α <
1⇒Qβ (a,b) = 0, for every β > α .

The set of fuzzy generating families on X is denoted
FX .

The next straightforward Proposition 1 estab-
lishes the relationship between QX and FX : They
can be identified, so that a fuzzy generating family
can be interpreted, directly, as the collection of α-
cuts of a fuzzy binary relation.

Proposition 1. Let X be a nonempty set. The fol-
lowing assertions hold true:

(a) The map γ : QX →FX given by γ(Q) = {Qα :
α ∈ [0,1]} is well-defined and injective.

(b) The map µ : FX → QX given by µ({Qα :
α ∈ [0,1]})(a,b) = max{α ∈ [0,1] : Qα(a,b) =
1} (a,b ∈ X) is well-defined and injective.

(c) µ = γ−1.

Therefore QX can be identified with FX in a natural
way.

Proof.
(a) The map γ is well-defined since for any fuzzy

relation Q, the collection {Qα : α ∈ [0,1]} is a
fuzzy generating family:

(i) For all 0 6 β 6 α 6 1, Qα(a,b) = 1 implies
Q(a,b) > α > β . And this implies Qβ (a,b) =
1, so G(Qα)⊆ G(Qβ ).

(ii) Obviously, for every (a,b) ∈ X , calling α =
Q(a,b) it holds that if α < 1 then Qβ (a,b) = 0
for every β > α .
(This follows from the definition of the α-cuts
of the fuzzy binary relation Q).

On the other hand, the map γ is injective. If we
consider two fuzzy relations Q and R defined
on X such that they are different, i.e., such that
there are two alternatives a,b ∈ X satisfying that
Q(a,b) 6= R(a,b), then γ(Q) 6= γ(R):
Assume without loss of generality that α =
Q(a,b) < R(a,b) = β , then Rβ (a,b) = 1 but
Qβ (a,b) = 0, so Rβ 6= Qβ and therefore γ(Q) 6=
γ(R).

(b) First of all observe that for all {Qα : α ∈ [0,1]} ∈
FX and for all a,b ∈ [0,1], the set {α ∈ [0,1] :
Qα(a,b) = 1} admits a maximum. This follows
from part (ii) of Definition 10. Then the relation
Q defined on X×X such that for all a,b∈ X takes
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the value max{Qα : α ∈ [0,1]} ∈ FX is well-
defined since it takes values on [0,1].
The map µ is injective. If we consider two differ-
ent sets {Qα : α ∈ [0,1]}, {Rα : α ∈ [0,1]}∈FX ,
then there is a value α ∈ [0,1] such that Qα 6= Rα ,
that is, there are two alternatives a,b ∈ X such
that Qα(a,b) 6= Rα(a,b). Assume now with-
out loss of generality that Qα(a,b) = 0 6= 1 =
Rα(a,b). In this case, by Definition 10 (i), we
have that Qβ (a,b) = 0 for all β > α . Hence
µ({Qα : α ∈ [0,1]})(a,b) < α , whereas µ({Rα :
α ∈ [0,1]})(a,b) > α , so that the images are ac-
tually different.

(c) This follows from the construction of both func-
tions γ and µ .

Remark 3. When considering an additive
fuzzy preference structure without incomparability
(P,I ), whose associated fuzzy weak preference
relation is R, defined on a nonempty set X , the
pair (Pα ,Iα) may fail to be a crisp preference
structure. To see this, consider the example X =
{a,b}, endowed with the additive fuzzy preference
structure (P,I ) given by P(a,a) = P(b,b) =
0; I (a,a) = I (b,b) = 1; P(a,b) = P(b,a) =
I (a,b) = I (b,a) = 1

3 . In this case, for α = 1
2 it

is plain that Pα(a,b) = Pα(b,a) = Iα(a,b) = 0,
so that (Pα ,Iα) is not a preference structure in the
sense of Definition 1.

As a matter of fact, the situation shown in Re-
mark 3 is the expected one when dealing with addi-
tive fuzzy preference structures without incompara-
bility. The only exception occurs when (P,I ) is
indeed a crisp preference structure.

Theorem 2. 4 An additive fuzzy preference struc-
ture without incomparability (P,I ), defined on a
nonempty set X, satisfies that all its α-cuts for α > 0
are crisp preference structures if and only if it is a
crisp preference structure.

Due to the fact stated in Remark 3 and Theorem
2, in what follows we systematically consider as α-
cut of an additive fuzzy preference structure without
incomparability (P,I ), defined on a nonempty set
X , the α-cut (namely, Rα ) of the fuzzy weak prefer-
ence relation R corresponding to (P,I ).

With respect to the relationship between the α-
cuts Rα and the behavior of the the fuzzy weak pref-
erence relation R, the following results complete the
panorama.

Proposition 3. 4 Let (P,I ) be an additive fuzzy
preference structure without incomparability, de-
fined on a nonempty set X. The following statements
are equivalent:

(a) The α-cut Rα is total for every α ∈ [0,1].
(b) min{P(a,b),P(b,a)}= 0 for every a,b ∈ X.
(c) R is strongly complete.

Proposition 4. Let (P,I ) be an additive fuzzy
preference structure without incomparability, de-
fined on a nonempty set X. The following statements
are equivalent:

(a) The α-cut Rα is transitive for every α ∈ [0,1].
(b) R is TM-transitive, where TM stands for the min-

imum t-norm.

Proof. (a)⇒ (b) For any three alternatives a,b,c ∈
X , let α = min{R(a,b),R(b,c)}. It follows that
Rα(a,b) = 1 = Rα(b,c). Moreover, since Rα is
transitive we get Rα(a,c) = 1. This implies that
R(a,c) > α = min{R(a,b),R(b,c)}.
(b) ⇒ (a) Fix a value α ∈ [0,1]. If Rα(a,b) = 1
and Rα(b,c) = 1, then R(a,b) > α and R(b,c) >
α . Hence R(a,c) > min{R(a,b),R(b,c)} > α .
Therefore Rα(a,c) = 1, so that Rα is transitive.

4. Fuzzy total preorders

When dealing with total preorders in the crisp set-
ting, it is well known that if - is a total preorder
defined on a nonempty set X then its associated bi-
nary relation ≺ is asymmetric and negatively tran-
sitive. The converse is also true: If ≺ is asym-
metric and negatively transitive, and we define - as
a - b⇔¬(b ≺ a) for every a,b ∈ X , then - is ac-
tually a total preorder on X .

Moreover, the existence of a utility function u :
X → R representing - is equivalent to the exis-
tence of a real-valued map v : X → R such that
a≺ b⇔ v(a) < v(b) for every a,b ∈ X . (Indeed, we
may take u = v). In other words, the representability
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of - immediately carries a “representability” of its
corresponding asymmetric part ≺, and viceversa.

Let us see what happens when these ideas are ex-
tended to the fuzzy setting.

Definition 11. 6 Let (P,I ) be an additive fuzzy
preference structure without incomparability, de-
fined on a nonempty set X . Let T be a t-norm and
S = T d its dual t-conorm. The structure (P,I )
is said to be a fuzzy total T -preorder if the cor-
responding fuzzy relation R, given by R(a,b) =
P(a,b) + I (a,b) for every a,b ∈ X , is reflexive,
T -transitive and S-complete.

Given an additive fuzzy preference structure
without incomparability (P,I ), defined on a
nonempty set X , it is clear that the α-cut Rα , of
the associated fuzzy weak preference relation R, is
reflexive for every α ∈ [0,1]. So, the following re-
sult is now a direct consequence of Proposition 3 and
Proposition 4.

Corollary 5. Let (P,I ) be an additive fuzzy pref-
erence structure without incomparability, defined on
a nonempty set X, and R its associated fuzzy weak
preference relation. Let TM be the minimum t-norm.
The following assertions are equivalent:

(a) The α-cut Rα is a total preorder, for every α ∈
[0,1].

(b) The structure (P,I ) is a fuzzy total TM-
preorder.

Through the following Proposition 6, in its sub-
sequent Corollary 7 we obtain a characterization of
the concept of a fuzzy total preorder.

Proposition 6. Let T be a t-norm and S = T d its
dual t-conorm. Let (P,I ) be an additive fuzzy
preference structure without incomparability, de-
fined on a nonempty set X. The following statements
hold:

(a) R is S-complete if and only if P is T -
asymmetric.

(b) R is T -transitive if and only if P is T -negatively
transitive.

Proof. (a) (Notice that this generalizes the equiv-
alence (b) ⇔ (c) of Proposition 3, since in Propo-
sition 3 the equivalence only concerns the minimum

t-norm and in this item the equivalence is assured for
any t-norm T ). For every a,b ∈ X we have that R is
S-complete⇔ S(R(a,b),R(b,a)) = 1⇔ 1−T (1−
R(a,b),1 − R(b,a)) = 1 ⇔ T (1 − R(a,b),1 −
R(b,a)) = 0.⇔ T (P(b,a),P(a,b)) = 0⇔P is
T -asymmetric. (Observe here that (P,I ) is an ad-
ditive fuzzy preference structure without incompa-
rability, so that P(a,b)+P(b,a)+I (a,b) = 1 =
P(b,a) + R(a,b). In other words, 1−R(a,b) =
P(b,a) for every a,b ∈ X).

(b) This part has already been proved in the lit-
erature: see Theorem 1 in the paper by S. Dı́az et al.
(2012) mentioned in the references21.

Remark 4. Part b of Proposition 6 has not an ana-
logue for α-cuts. That is, if (P,I ) is an additive
fuzzy preference structure without incomparability,
defined on a nonempty set X , and its fuzzy weak
preference relation is R, for some α ∈ [0,1] it may
happen that Rα is transitive but Pα fails to be neg-
atively transitive. (See Example 2 in next section).
The reason is that given a fuzzy binary relation Q on
a nonempty set X , and fixed α ∈ [0,1], it is not true,
in general, that the α-cut (N Q)α of the negation of
Q coincides with the (crisp) negation ¬(Qα) of the
α-cut Qα .

Corollary 7. Let T be a t-norm and S = T d its
dual t-conorm. An additive fuzzy preference struc-
ture without incomparability (P,I ), defined on a
nonempty set X, is a fuzzy total T -preorder if and
only if P is T -asymmetric and T -negatively transi-
tive.

Proof. Notice that since R is obtained from the
given additive fuzzy preference structure without in-
comparability, as R(a,b) = P(a,b) + I (a,b), it
follows that P is already reflexive, since by Defini-
tion 8, I is reflexive. Thus, to conclude it is enough
to prove that R is T -transitive and S-complete if and
only if P is T -asymmetric and T -negatively transi-
tive. But this follows from Proposition 6.

Corollary 8. If an additive fuzzy preference struc-
ture without incomparability (P,I ), defined on a
nonempty set X, is a fuzzy total TM-preorder, then it
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is also a fuzzy total T -preorder for any t-norm T .

Proof. Notice that TM is the biggest t-norm, so that
if P is TM-asymmetric and TM-negatively transitive,
it is also T -asymmetric and T -negatively transitive
for any t-norm T , by definition. Then use Corollary
7 to conclude.

The converse of Corollary 8 is not true as can be
seen in the next Example 1:

Example 1. Consider the following additive
fuzzy preference structure without incomparability
(P,I ), with associated fuzzy weak preference re-
lation R, defined on the set X = {a,b} as follows:

P a b
a 0 0.5
b 0.5 0

I a b
a 1 0
b 0 1

R a b
a 1 0.5
b 0.5 1

An easy checking shows that (P,I ) is a fuzzy to-
tal TL-preorder with respect to the Łukasiewicz t-
norm given by TL(x,y) = max{0,x + y− 1}(x,y ∈
[0,1]). However it is not a fuzzy total TM-
preorder with respect to the minimum t-norm, since
min{P(a,b),P(b,a)} = 0.5 6= 0, so that P is not
TM-asymmetric.

5. Representability of additive fuzzy preference
structures without incomparability

In the present section we introduce the concepts of
representability and quasi-representability of addi-
tive fuzzy preference structures without incompara-
bility (see Definition 12 below). In our approach,
we will deal with the representability of an addi-
tive fuzzy preference structure (P,I ) whose fuzzy
weak preference relation is R, in terms of repre-
sentability of the corresponding α-cuts Pα (respec-
tively, Rα ) as crisp binary relations that are asym-
metric (hence irreflexive, in particular) and neg-
atively transitive (respectively, that are total pre-
orders). The representations considered use a single
real-valued utility function uα . These ideas could

be extended to study another kinds of representabil-
ity of additive fuzzy preference structures (P,I )
in terms of the representability of its α-cuts Rα by
means of two real-valued functions uα ,vα such that
xRαy⇔ uα(a) 6 vα(b), for every a,b ∈ X (as inter-
val orders). We may also consider representations
by means of a function uα and a positive threshold
of discrimination k > 0 such that aRαb⇔ uα(a) 6
uα(b)+ k, for every a,b ∈ X (now as semiorders, in
the sense of Scott and Suppes)22,23,24,4.

These new possibilities that we point out here are
left for future research: in the present paper we will
study only the case in which the representations of
the α-cuts use a single real valued function. We will
be working mainly with the α-cuts Rα , but provid-
ing also some result on the representability of the
α-cuts Pα . This will allow us to understand bet-
ter the concept of a fuzzy total preorder, through its
representability properties.

Definition 12. Let T be a t-norm and S = T d its
dual t-conorm. An additive fuzzy preference struc-
ture without incomparability (P,I ), defined on a
nonempty set X , is said to be:

(i) representable if for every α ∈ [0,1] the α-cut Rα

of the associated fuzzy binary relation R is a rep-
resentable (crisp) total preorder, in the sense of
Definition 3.

(ii) quasi-representable if for every α ∈ (0,1] the α-
cut Pα of the fuzzy relation P satisfies that there
exists a real-valued map uα : X → R such that
aPαb⇔ uα(a) < uα(b) for every a,b ∈ X .

Remark 5. Notice that, in particular, if (P,I ) is
quasi-representable, then the α-cut Pα of the fuzzy
relation P is a (crisp) negatively transitive relation,
for every α ∈ (0,1]. The converse is not true in gen-
eral: there exist crisp total preorders whose asym-
metric part, that is negatively transitive, can not be
represented in the real line through a utility func-
tion. An example is the asymmetric part of the lexi-
cographic order defined on the real plane25,26.

Observe also that, in the definition of quasi-
representability, we always take α 6= 0. The rea-
son is that, by definition, P0(a,b) = 1 for every
a,b ∈ X , so that the existence of the corresponding
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real-valued map u0 for P0 would immediately lead
to the contradiction u0(a) < u0(b) < u0(a).

Finally, observe that if (P,I ) is representable
by means of a family of real-valued functions
{uα}α∈[0,1] such that aRαb⇔ uα(a) 6 uα(b) (a,b∈
X), then, for any a,b ∈ X , it holds that R(a,b) =
β ⇒ uα(a) 6 uα(b) for every α 6 β and also
uα(a) > uα(b) for every α > β .

In the same way, if (P,I ) is quasi-
representable by means of a family of real-valued
functions {vα}α∈(0,1] such that aPαb ⇔ vα(a) <
vα(b) (a,b ∈ X), then, for any a,b ∈ X , it holds that
P(a,b) = β ⇒ vα(a) < vα(b) for every α 6 β and
also vα(a) > vα(b) for every α > β .

Remark 6. By the equivalence (a) ⇔ (c) in
Proposition 3, a necessary condition for an addi-
tive fuzzy preference structure without incompara-
bility (P,I ), defined on a nonempty set X , to be
representable is the strong completeness (i.e.: SM-
completeness, where SM stands for the maximum t-
conorm) of the associated fuzzy relation R. (Ob-
serve that indeed this does not depend on the t-norm
T considered).

By Theorem 2, given an α-cut, in general
{Pα ,Iα} fails to be a (crisp) preference structure,
so that, in particular Pα will not coincide with the
negation of the transpose of Rα , as next Example 2
shows.

The existence of a real-valued map uα : X → R
such that aRαb ⇐⇒ uα(a) 6 uα(b)+ 1, for every
a,b ∈ X , immediately forces the crisp binary rela-
tion Rα to be total. As a matter of fact, for every
a,b ∈ X we have that if aRαb does not hold, then
uα(b) + 1 < uα(a). Hence uα(b) < uα(a)− 1 <
uα(a)+ 1, so that bRαa holds. Anyways, as a con-
sequence of Proposition 3, we already knew that the
α-cuts Rα are total whenever (P,I ) is a fuzzy to-
tal T -preorder, for some t-norm T .

When Rα is a total binary relation, if we define
new binary relations Sα ,Tα on X by aSαb ⇐⇒
¬(bRαa), and aTαb ⇐⇒ (aRαb∧bRαa), for ev-
ery a,b ∈ X , it is straightforward to see that Sα

is asymmetric, and (Sα ,Tα) is a crisp preference
structure whose associated weak preference relation
is Rα . Finally, observe that (Sα ,Tα) has nothing
to do, in general, with the ordered pair (Pα ,Iα)

that comes from the given additive fuzzy preference
structure (P,I ) after taking its α-cut. Indeed, by
Theorem 2, (Sα ,Tα) and (Pα ,Iα) only coincide
when the given preference structure (P,I ) is crisp.
(Example 2 below also shows that they are different
in general: consider e.g. the 0.75-cut).

Example 2. Consider the following additive
fuzzy preference structure without incomparability
(P,I ), with associated fuzzy weak preference re-
lation R, defined on the set X = {a,b,c,d} as fol-
lows:

P a b c d
a 0 0 0.8 0.7
b 0 0 0.3 0.9
c 0 0 0 0
d 0 0 0 0

I a b c d
a 1 1 0.2 0.3
b 1 1 0.7 0.1
c 0.2 0.7 1 1
d 0.3 0.1 1 1

R a b c d
a 1 1 1 1
b 1 1 1 1
c 0.2 0.7 1 1
d 0.3 0.1 1 1

Notice that (P,I ) is a fuzzy total TM-preorder. If
we take α = 0.75 we have that

Rα a b c d
a 1 1 1 1
b 1 1 1 1
c 0 0 1 1
d 0 0 1 1

Pα a b c d
a 0 0 1 0
b 0 0 0 1
c 0 0 0 0
d 0 0 0 0

Here Pα(a,d) = 0 6= 1−Rα(d,a) = 1−0 = 1.
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Let T be a t-norm and S = T d its dual t-conorm.
We wonder if an additive fuzzy preference struc-
ture without incomparability (P,I ), defined on a
nonempty set X , is a fuzzy total T -preorder or not.
When T = TM is the minimum t-norm, the answer is
positive as next Proposition 9 shows.

Proposition 9. If an additive fuzzy preference struc-
ture without incomparability (P,I ), defined on a
nonempty set X, is representable, then it is a fuzzy
total TM-preorder. In particular, it is a fuzzy total
T -preorder for every t-norm T .

Proof. This follows directly from Corollary 5 and
Corollary 8.

Remark 7. The converse of Proposition 9 is not
true, in general. As a matter of fact, there exist crisp
total preorders that fail to be representable. Suit-
able examples are the lexicographic order on the real
plane, or the linear order of the long line27,25,28.

Proposition 10. The concepts of representabil-
ity and quasi-representability of additive fuzzy pref-
erence structures without incomparability, are not
equivalent.

Proof. A glance at Example 2 shows that the addi-
tive fuzzy preference structure (P,I ) introduced
there is representable. To see this, observe that
(P,I ) is a fuzzy total TM-preorder, so that Rα is a
(crisp) total preorder for every α ∈ [0,1], by Corol-
lary 5. Since X is finite, it is straightforward to see
that each Rα is representable25. Moreover, (P,I )
is not quasi-representable because the relation Pα

fails to be negatively transitive when α = 0.75. (See
also Remark 5).

Remark 8. As a matter of fact, if X is a count-
able set and (P,I ) is an additive fuzzy preference
structure without incomparability defined on X , then
the quasi-representability of (P,I ) implies its rep-
resentability. In other words, if we deal with count-
able sets, the concept of quasi-representability of
additive fuzzy preference structures without incom-
parability is indeed more restrictive than the corre-
sponding concept of representability. The proof of
this fact will appear in next section. (See Theorem
12 below.)

The analogous of Proposition 9, assuming quasi-
representability instead of representability, is also
true, as next Proposition 11 shows.

Proposition 11. If an additive fuzzy preference
structure without incomparability (P,I ), defined
on a nonempty set X, is quasi-representable, then
it is a fuzzy total TM-preorder. In particular, it is a
fuzzy total T -preorder for every t-norm T .

Proof. First we prove that P is TM-
asymmetric. If for every a,b ∈ X we have that if
min{P(a,b),P(b,a)} = α 6= 0, then Pα(a,b) =
Pα(b,a) = 1. But this is a contradiction since, by
hypothesis, Pα is assumed to be asymmetric.

Let us prove now that P is TM-negatively
transitive, where TM stands for the minimum t-
norm. To see this, take a,b,c ∈ X and call
α = max{P(a,b),P(b,c)}. Then 1 − α =
1−max{P(a,b),P(b,c)}= min{1−P(a,b),1−
P(b,c)}. Hence (1 − P)1−α(a,b) = (1 −
P)1−α(b,c) = 1. This implies that (1 −
P)1−α(a,c) = 1, since Pα is negatively transi-
tive. Therefore (1−P)(a,c) > 1−α = min{1−
P(a,b),1−P(b,c)}, so that P is TM-negatively
transitive.

By Corollary 7 we conclude that (P,I ) is a
fuzzy total TM-preorder, so that by Corollary 8 it is
also a fuzzy total T -preorder for any t-norm T .

6. Representability of fuzzy total preorders

A classical result by G. Cantor shows that ev-
ery crisp total preorder - defined on a countable
set X is representable through a real-valued utility
function29,30,31,32,33,25. (As a matter of fact, it can
be proved that any total preorder on a countable set
is isomorphic to the natural order on some suitable
subset of the set Q of rational numbers: see Theo-
rem 23 in the seminal book by Garret Birkhoff men-
tioned in the references33).

The generalization of Cantor’s result to the fuzzy
setting appears now as a direct consequence of pre-
vious facts. In particular, we recall that a neces-
sary condition for the representability of an additive
fuzzy preference structure without incomparability
(P,I ), defined on a nonempty set X , is that of
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(P,I ) being a fuzzy total TM-preorder, where TM
denotes the minimum t-norm. (See Proposition 9).
When the set X is countable, that condition is also
sufficient, as next Theorem 12 states.

Theorem 12. Let X be a (nonempty) countable set.
Let (P,I ) be an additive fuzzy preference struc-
ture, without incomparability, defined on X. The fol-
lowing statements are equivalent:

(a) The structure (P,I ) is a fuzzy total TM-
preorder.

(b) The structure (P,I ) is representable.

Proof. The implication (a)⇒ (b) is, actually, a di-
rect consequence of Cantor’s classical theorem. The
reason is that each α-cut Rα of the fuzzy weak pref-
erence relation R associated to (P,I ) is a total
preorder by Corollary 5. And, by Cantor’s theorem,
any total preorder on a countable set is representable
through a real-valued utility function. Incidentally,
it is indeed possible to represent the fuzzy prefer-
ence structure (P,I ) by means of a collection of
rational-valued functions {uα : X → Q}α∈[0,1] such
that aRαb⇔ uα(a) 6 uα(b) (a,b ∈ X)29,30,33.

The implication (b) ⇒ (a) has been already
stated in Proposition 9.

Remark 9. If X is a nonempty countable set and
(P,I ) is an additive fuzzy preference structure
without incomparability, defined on X , then by Re-
mark 8 and Theorem 12 we have that if (P,I )
is quasi-representable then (P,I ) is representable.
This is equivalent to say that (P,I ) is a fuzzy total
TM-preorder. The converse of the first implication is
not true, in general.

Let us provide now some characterization of the
representability in the general case of a fuzzy total
preorder defined on a nonempty set.

To do so, we first observe what happens in the
crisp setting, where the question was solved by G.
Debreu31,32 among others. Thus, in the crisp ap-
proach, it is well-known that a condition that char-
acterizes, in the general case (i.e.: the nonempty set
X may be uncountable), the representability through
a real-valued utility function of a total preorder -
defined on X , is the so-called perfect separability.

Namely, if X is a nonempty set endowed with a
total preorder -, then - is representable through
a real-valued utility function u : X → R such that
a - b⇔ u(a) 6 u(b) (a,b ∈ X) if and only if there
exists a countable subset D ⊆ X such that for ev-
ery a,b ∈ X with a ≺ b there exists d ∈ D such that
a - d - b. (See e.g. the first chapters of the book
by D.S. Bridges and G.B. Mehta mentioned in the
references)25.

Accordingly to the later result, we obtain a char-
acterization of the representability of a fuzzy total
TM-preorder (P,I ) defined on a nonempty set X .
If R denotes the fuzzy weak preference relation as-
sociated to (P,I ), then we need to express some
condition that is equivalent to the representability of
all the crisp total preorders Rα induced by the α-
cuts of R (α ∈ [0,1]). If we impose the perfect
separability condition on each α-cut Rα , we imme-
diately obtain the desired result, as stated in the next
Proposition 13.

Proposition 13. Let X be a nonempty set and
(P,I ) a fuzzy total TM-preorder defined on X.
Let R denote its corresponding fuzzy weak pref-
erence relation. The fuzzy total preorder (P,I )
is representable if and only if, for every α ∈ [0,1]
there exists a countable subset Dα ⊆ X such that
for each pair (a,b) ∈ X ×X with R(b,a) < α we
can find an element dα(a,b) ∈ Dα such that α 6
min{R(a,dα(a,b)),R(dα(a,b),b)}
Remark 10. Obviously, the sufficient condition in-
troduced in Proposition 13 is, so-to-say, inelegant,
because, as a matter of fact, it immediately splits
as an uncountable collection of conditions (one for
each α-cut Rα ). Unfortunately, and roughly speak-
ing, this does not seem to be too operative in prac-
tice. In other words, the subset

⋃
α∈[0,1] Dα could be

too big, even uncountable. Next Theorem 14 and
Theorem 15 avoid this difficulty.

Theorem 14. Let X be a nonempty set and (P,I )
a fuzzy total TM-preorder defined on X. The follow-
ing assertions are equivalent:

(a) There exists a countable subset D ⊆ X such that
for each pair (a,b) ∈ X × X with R(b,a) < α

we can find an element d(a,b) ∈ D such that
α 6 min{R(a,d(a,b)),R(d(a,b),b)}.
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(b) The additive fuzzy preference structure, with-
out incomparability, (P,I ), defined on the
nonempty set X, is representable.

Proof. The implication (a)⇒ (b) is a direct con-
sequence of Proposition 13: just take Dα = D for
every α ∈ [0,1].

Following Proposition 13, to prove the converse
implication (b) ⇒ (a), first we consider, for ev-
ery α ∈ [0,1], a countable subset Dα ⊆ X such
that for each pair (a,b) ∈ X ×X with R(b,a) < α

we can find an element dα(a,b) ∈ Dα such that
α 6 min{R(a,dα(a,b)),R(dα(a,b),b)}. Let D =⋃

q∈Q∩[0,1] Dq. This subset D is obviously count-
able, since Q is. Let us prove now that D induces
the perfect separability of all the α-cuts Rα (α ∈
[0,1]). To see this, let a,b ∈ X be such that
¬(bRαa) holds. Equivalently, we have R(b,a) <
α . Fix a rational number q ∈ [0,1]∩Q such that
α 6 q. Since R(b,a) < q, by hypothesis there ex-
ists an element dq(a,b) ∈ Dq ⊆ D such that q 6
min{R(a,dq(a,b)),R(dq(a,b),b)}. Since α 6 q,
we get α 6 min{R(a,dq(a,b)),R(dq(a,b),b)}.

Coming back again to the statement of Proposi-
tion 13, we may look at the crisp total preorders Rα

induced by the α-cuts of R (α ∈ [0,1]) as a nested
family of binary relations (in fact, total preorders) on
X . Thus, if α 6 β then Rα is coarser than Rβ (i.e.:
Rβ ⊆Rα ) and consequently (Rα)c⊆ (Rβ )c, where
Rc stands for the complement of a binary relation R
defined on X . Having this in mind, we notice that the
countable subset D that meets condition (a) in The-
orem 14 can actually be taken to be the set D1 (see
Proposition 13). Therefore (P,I ) is representable
if and only if R1 is. This fact obviously improves
Proposition 13 and Theorem 14, as stated in the next
Theorem 15.

Theorem 15. Let X be a nonempty set and (P,I )
a fuzzy total TM-preorder defined on X. Then

(a) There exists a countable subset D ⊆ X such that
for every a,b ∈ X such that R(b,a) < 1 it holds
that min{R(a,d),R(d,b)}= 1 for some d ∈D⊆
X.

(b) The fuzzy total TM-preorder (P,I ) is repre-
sentable.

Proof. To prove the implication (a)⇒ (b), just ob-
serve that for each α and each (a,b) ∈ X ×X such
that R(b,a) < α , it holds that R(b,a) < α 6 1, then
R(b,a) < 1. By the hypothesis (a), there exists some
d ∈D such that min{R(a,d),R(d,b)}= 1 in partic-
ular, min{R(a,d),R(d,b)} > α . This proves part
(a) in the statement of Theorem 14, so that (P,I )
is representable.

The converse implication (b) ⇒ (a) is a direct
consequence of Theorem 14.

Example 3. Let X = [0,1]. Given (x,y) ∈ X ×X
define P(x,y) = y if x < y, and P(x,y) = 0 if
x > y. Also, define I (x,y) = 1−y if x < y, whereas
I (x,y) = 1− x if y < x, and finally I (x,x) =
1 (x,y ∈ X = [0,1]). Thus, the pair (P,I ) be-
comes an additive fuzzy preference structure with-
out incomparability, defined on X = [0,1]. The
corresponding fuzzy weak preference relation R is
given by R(x,y) = 1− x if y < x and R(x,y) = 1
if x 6 y. Given α ∈ [0,1] its α-cut Rα is given
by Rα(x,y) = 1⇔ (x 6 y)∨ (y < x 6 1−α). It
is straightforward to see that (P,I ) is a fuzzy to-
tal TM-preorder, so that by Corollary 5, each Rα

is a (crisp) total preorder defined on X . For every
α ∈ [0,1], take Dα = Q∩ [0,1], which is obviously
countable. (Observe that here all the Dα coincide).
Given x,y ∈ X such that Rα(y,x) = 0, it follows that
x < y and 1−α < y hold. We may find a rational
number d ∈ D such that x < d < y and 1−α < d.
Thus Rα(y,d) = Rα(d,x) = 0. Therefore the fuzzy
total TM-preorder (P,I ) is representable by Propo-
sition 13.

7. Further comments

In the crisp case some characterizations of the rep-
resentability of a total preorder have been stated in
topological terms: for instance, if the order topol-
ogy associated to - satisfy the second countability
axiom, then - is representable, and viceversa. (For
further details, see the first chapters in the book by
D. S. Bridges and G. B. Mehta mentioned in the
references)25. Thus, it could also be interesting to
look for topological conditions to characterize the
representability of fuzzy total preorders. As far as
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we know this would constitute an open line for fu-
ture research.

Another possible line for future research could
be the consideration of techniques based on measure
theory in order to get suitable numerical representa-
tions of additive fuzzy preference structures with-
out incomparability, and, in particular of fuzzy total
T -preorders with respect to some t-norm T . In the
crisp case, some studies on the representability of
certain kinds of orderings, in terms of measure the-
ory, have already been considered in the specialized
literature34,35,36,25,22.
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sentability of binary relations through fuzzy numbers,
Fuzzy Sets and Systems 157, 1-19 (2006).

24. D. Scott and P. Suppes, Foundational aspects of the-
ories of measurement, J. Symbolic Logic 23, 113-128
(1958).

25. D. S. Bridges and G.B. Mehta, Representations of
Preference Orderings, Springer, Berlin, 1995.

26. J. C. Candeal and E. Induráin, Lexicographic be-
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