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Abstract 

The population migration algorithm is a very effective evolutionary algorithm for solving single-objective 
optimization problems, but very few applications are available for solving multi-objective optimization problems 
(MOPs). The current study proposes an improved population migration algorithm for solving MOPs based on the 
vector evaluated method and the dynamic weighted aggregation. The local search ability of the improved algorithm 
is greatly increased by using the population flow mode. The convergence of the improved algorithm is also proven. 
Performance metrics and experimental test results show that the improved algorithm is very feasible and effective 
for solving MOPs. 

Keywords: population migration algorithm; multi-objective optimization; vector-evaluated method; dynamic 
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1. Introduction 

A multi-objective optimization problem (MOP) is a 
very common optimization problem, especially in 
science and engineering applications. In many real-
world optimization problems, several conflicting 
objectives have to be optimized simultaneously. In 
business problems, for instance, a trade-off is usually 
made among the objectives, time, cost, and quality. 
Thus, the MOP is extremely significant. 

 In an MOP, a single optimal solution cannot be 
obtained when objectives conflict with one another 
because of the mutual constrain and conflict of each 
objective with the dominated variables1. Multi-objective 
optimization methods aim to find a set of equivalent 
solutions. These solutions are considered as equivalents 
when they are Pareto optimal2, i.e., if no other solution 

could be found in the feasible region that performs 
better in at least one objective and equivalent or better 
in the rest. According to the criterion, an MOP has a set 
of Pareto optimal solutions2. The image of this set of 
solutions in the feasible objective space is called the 
Pareto front2, which displays the objective trade-off 
characteristics for the problem. 

The evolutionary algorithm (EA) seems to be 
especially suited for solving MOPs because of its 
abilities of simultaneously searching for multiple 
optimal solutions and performing better global searches 
in the search space. The genetic algorithm (GA) and the 
particle swarm optimization (PSO) are common EAs 
that can effectively solve MOPs. Schaffer proposed the 
first multi-objective GA, called the vector-evaluated 
genetic algorithm (VEGA)3. VEGA is easy to converge 
to the “beginning” and the “end” of the Pareto front, and 
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it may not produce uniform distribution and abundant 
solutions in the Pareto front curve or surface. The 
defects of VEGA are also its advantages; some 
algorithms have difficulties in finding the “beginning” 
and the “end” of the Pareto front. After the development 
of VEGA, several multi-objective evolutionary 
algorithms (MOEAs) have been developed. The 
construction of a Pareto-rank, or domination-rank, 
which expresses the extent of domination of candidate 
solutions in a population, is a common practice in 
MOEAs. The selection in the solutions with identical 
Pareto-ranks is conducted based on a crowding measure. 
Moreover, the Pareto-rank promotes convergence to the 
Pareto front, and the crowding measure promotes 
diversity at the front. For example, the NPGA24, 
NSGA-||5, SPEA26, and MOPMA7 algorithms are some 
of the more recent representatives of MOEAs that are 
designed based on the principles above, but these are 
widely recognized as computationally expensive 
procedures.   

The population migration algorithm (PMA) is a new 
global optimization EA proposed by Yonghua Zhou and 
Zongyuan Mao8. It has been successfully applied in 
some fields, but still meets difficulties in solving MOPs. 
The desired solution should not only converge to the 
Pareto front, but the diversity of the population should 
also be highly protected because of the diversity of the 
solutions of MOPs.     

The current study proposes an improved population 
migration algorithm (IPMA) for solving MOPs based on 
the vector-evaluated method and dynamic weighted 
aggregation (DWA)9,10. First, the DWA is introduced to 
increase the diversity of the solution. The DWA is 
difficult to control at the “beginning” and “end” of the 
Pareto front, and thus, the vector-evaluated method is 
also introduced. The effectiveness and low 
computational cost of the new algorithm are shown in 
the following experiments. 

2. Multi-objective optimization problem 

An MOP is generally described as follows: 
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where x  is the decision vector that represents a solution, 
)1( nifi   is the thi  objective function, and 
)1( Jjg j   and )1( Hkhk  are the inequality 

and equality constraint conditions, respectively.  
The following basic concepts need to be introduced 

early on11: 
Definition 1. (Pareto dominance): a vector 21,( uuu   

),, nu  is said to dominate ),,( 21 nvvvv   if 

and only if u is partially less than v , i.e., ,2,1{i  

jjii vunjvun  },,2,1{},  . 

Definition 2. (Pareto Optimal solution): in 
mnm RxxRRf  ,,: *

, solution
*x is 

called the Pareto optimal solution if and only if no 

x  where },,{)( 21 nuuuuxf  dominates 

(use Definition 1’s scheme) ,,,()( 21
* vvvxf   

}nv . 
Definition 3. (Pareto front): the set of all Pareto 

optimal decision vectors is called the Pareto optimal 

solution set of the problem, and the corresponding set of 

objective vectors is called the Pareto front. 

3. Improved population migration algorithm 

3.1. Population migration algorithm 

The PMA simulates population migration mechanisms. 
Migration mechanisms mainly include three aspects, 
namely, population flow, population migration, and 
population spread. On the one hand, people flow into 
their respective regions. On the other hand, a beneficial 
region attracts the population, and then the population 
migrates into the beneficial region. Finally, the 
population moves out of the beneficial region after 
accumulation and undergo spreading. Therefore, the 
algorithm has an ideal ability of global optimization. 
Zongben Xu provided improved algorithm steps of the 
PMA12 that are more concise and convenient to describe. 
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3.2.  Approach of population flow 

The current study proposes a new way of population 
flow to enable the individual to excel in local search in 
the beneficial region. If ,),(),(()( 21 txtxtx iii   

))(tx i

m , ],[)( batx i

j   and ),(),(()( 21 tytyty iii   
))(, ty i

m  are the individual vectors before and after 
population flow, respectively. Therefore, its approach of 
population flow can be shown as follows:  

.,,2,1,)(2)()()( mirtttxty i

j

i

j   ,       (2) 

where 



N

i

randNrandr
1

(),/() is a random 

number that distributes uniformly within (0,1). )(t  is 
the radius of flow domains, and N  is the population 
size. This way of population flow is not only helpful for 
local searching, but also ensures the convergence of the 
algorithm. 

3.3.  Selecting the excellent individual 

The vector-evaluated method was inspired by the 
concept of VEGA3, in which fractions of the next 
generations or subpopulations are selected from the 
previous generations according to each objective. The 
vector-evaluated method shows that if an MOP has n  
objective functions, then the problem will produce n  
subpopulations using VEGA. Moreover, each 
subpopulation size is nN / , where N  is the population 
size. VEGA can find the “beginning” and “end” of the 
Pareto front. Therefore, the current study not only 
selects the Pareto optimal solution, but also takes part in 
providing solutions produced using the vector-evaluated 
method. This method improved the performance of the 
algorithm. 

In ))(,),(),(()( 21 txtxtxtx N as the 
individual vector before population flow, )(ty  is the 
individual vector after l  times population flow, which 
includes Nl  individuals, with l as the population flow 
scale and N  as the population size. 

The method of selecting excellent individuals is 
described as follows: 

In )()( tytx  , nN /  excellent individuals are 
selected and then put into )(1 tp  for each objective 
function. Simultaneously, the Pareto optimal solution is 
selected to put into )(2 tp . 

Therefore, after the population flow, obtaining the 
excellent individual set is given by )()( 1 tptpop   

)(2 tp . 

3.4. Dynamic weighted aggregation  

The conventional weighted aggregation (CWA)9 is a 
simple weighted sum of the different objective functions 
converted into a single function. Even though CWA is 
the simplest approach for evolutionary multi-objective 
optimization, it has been severely criticized because it 
can only provide one Pareto solution in one 
optimization run. Thus, the current study introduces the 
DWA9,10 to eliminate the said problem. 

In the DWA, the constant weights are changed to 
time varying weights, )(1 tw  and )(2 tw , where t  is the 
“time” measured in generation. )(1 tw  and )(2 tw can be 
expressed as follows: 

)(1)(|,)/2sin(|)( 121 twtwTttw   , 

where T  is the period, which is a user-defined 
parameter that controls how rapidly the weights cycle 
from 0 to 1 and back again. 

Therefore, in using the DWA, the objective 
functions are summed into a weighted combination as 
follows:  

)(*)()(*)()( 2211 xftwxftwxF  .             (3) 

3.5.  An improved population migration 

algorithm based on the vector-evaluated and 

dynamic weighted aggregation approaches   

The current study presents an IPMA based on the 
vector-evaluated and dynamic weighted aggregation 
techniques for solving MOPs. The steps of the IPMA 
are proposed based on the steps of PMA given by 
Zongben Xu12. 

The steps of the IPMA are as follows: 
Step 1. In the initial step, the following should be 

keyed in: population size N , radius of initialized area 
)0( , population pressure vigilance parameters )0( , 

and the size of floating population l . N individuals are 
then randomly generated, and ,),0(),0(()0( 21 xxx   

))0(Nx should be noted. The living area of the initial 
population should be formed as follows: 
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
N

i

i ttxB
1

))(),(()0(


  , where ),( rxB  indicates a 

sphere with x  as the center and r as the radius, 
Ni ,,2,1  , and 0t . 

Step 2. The following evolutionary steps are 
undertaken: 

(2.1) As preparation, )0()(  t should be made. 
(2.2) Population flow is calculated as follows: 
(2.2.1) In every ))(),(( ttxB i  , l individuals must 

be generated using Equation (2), and then the generated 
Nl individuals should be used as component population 

)(ty  in )(t . 
(2.2.2) In )()( tytx  , nN /  excellent individuals 

should be selected and put into )(1 tp  for each 
objective function; simultaneously, the Pareto optimal 
solutions should be selected for application into )(2 tp  
and )()()( 21 tptptpop  . 

(2.3) For population migration, the following are 
considered: 

(2.3.1) According to Equation (3), using the DWA 
construct function )(xF  for selecting N  best 
individuals makes up the middle population as follows: 

))(,),(),(()( 21 tytytyty N

bestbestbestbest  . 
(2.3.2) The formed N  beneficial region can be 

expressed as follows:  
},,2,1)),(),(({ NittyB i

best  . 
(2.3.3) After proceeding with population flow in 

every beneficial region, namely, in every 
))(),(( ttyB i

best  , l  individuals should be obtained 
using Equation (2), and Nl  individuals are generated 
for component population )(tz . 

(2.3.4) In )()( tytz best , nN /  excellent 
individuals are selected; these are put into and replace 

)(1 tp  for each objective function. Simultaneously, the 
Pareto optimal solutions are selected for application; 
these replace )(2 tp  and )()()( 21 tptptpop  . 
Then, individuals are obtained from )(tpop  and are 
deposited into )(tp .   

(2.3.5) Shrinking the beneficial region involves the 
following:  

)()1()( tt   should be set among 
10  . 

(2.3.6) If )()( tt   , then step (2.3) may be 
followed; otherwise, (2.3.7) should be taken. 

(2.3.7) The dominated solution in )(tp may be 
removed, and then )(tp   is archived in bestq . 

(2.3.8) bestbest qtp )( is set. 
(2.4) In population spread, a new population should 

be defined, and then the system randomly produces N  
individuals. )1( tx should be noted.  

))1(,),1(),1(()1( 21  txtxtxtx N .   
Step 3. In the termination step, if the iteration time 

t  is shorter than the pre-assigned time, 1 tt is set. 
Afterward, step 2 may be retaken; otherwise, the 
algorithm ends. )(tpbest

 is the final Pareto optimal 
solution set for this algorithm. 

4. Solving constrained multi-objective 

optimization problems 

An MOP with constraint conditions is different from a 
non-constrained optimization problem. The feasible 
region of an MOP is less than the solution space; 
distinguishing feasible and infeasible solutions in the 
search space is necessary. Thus, according to the 
leading constraint principle presented by Deb13, the 
current study introduces an infeasible degree (IFD)14,15 
and a threshold14,15 of IFD to solve the problem above 
and to guide the search direction into the feasible 
optimum solution. 

 The IFD of a candidate solution x  is defined as 
follows: 

.)]([)}](,0[min{)( 2

1

2

1
xhxgx

HJ

Jk

k

J

j

j 




      (4) 

where )(),( xhxg kj  are inequality constraints (larger 
than or equal to the format) and equality constraints of 
the constrained optimization problem, respectively. J  
and H are the numbers of the inequality and equality 
constraints, respectively. 

The IFD of the solution can be regarded as the 
distance between the solution and the feasible region. 
The IFD of the feasible solution is zero, but the IFD of 
the infeasible solution is greater than zero, and its 
violation becomes more severe as its IFD becomes 
larger. 

According to the rules, the pressure of rejection on 
infeasible solutions should be increased as the iteration. 
The increase can be implemented using a threshold 
value crit  , which is designed based on two parts, 
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namely, the coefficient decrease with the iteration and 
the average IFD of the population. crit can be 
expressed as follows:  

Nx
T

N

i

icrit /))((1
1



 ,                                     (5) 

where temperature T  is a coefficient that increases 
from startT  to endT  along the iterations of the algorithm 
to control the acceptable bound of the infeasible 
solutions. N is the size of the population. 

crit  is a threshold value that determines whether 
an infeasible solution is accepted or rejected. An 
infeasible solution is accepted if its IFD is less than or 
equal to crit , otherwise, it is rejected. The scales of the 
feasible solutions are sometimes smaller in the process 
of searching the population. Thus, some accepted 
infeasible solutions in the current population could be 
chosen to keep the size of the population fixed, which, 
in turn, could guide the population to converge to the 
feasible region gradually. 

Therefore, as long as the IFD and the threshold of 
the IFD are used to choose excellent individuals in steps 
(2.2.2) and (2.3.4) of the IPMA, the IPMA can be used 
to solve constrained MOPs. 

5. Convergence analysis of improved population 

migration algorithm 

Theorem 1
16

. Let a Genetic Algorithm fulfill the 

following conditions: 

(1) ',,' xIxx  is reachable from x by means of 

mutation and recombination, and 

(2) the population sequence )(),1(),0( tPPP   is 

monotone, tei .. : 

)}()(|))((min{
)}1()1(|))1((min{

tPtxtx

tPtxtx




 

Then,  1)}(lim{ 


tPxp
t

. 

In setting F as the search space, which is searched 
by the IPMA, )(tp  is the t iterative 
population, )(tpbest

 is the archiving set, and *F is the 
Pareto optimal solution set in F . 
Theorem 2. In the case of unlimited iteration numbers, 

the IPMA can converge to the global Pareto optimal 

solution set at a probability of 1. 

Proof. According to theorem 1, the IPMA must be 
proven to fulfill the follow conditions: 
(1) The IPMA can reference to an arbitrary individual in 
the search space F . 
(2) In the population sequence ),1(),0( bestbest pp , 

)(tpbest
 is monotone. 

First, the population flow of the population 
migration algorithm indicates that the algorithm can 
generate N  individuals randomly and independently in 
the search space. Then, the divided areas are formed 
with the individual as the center at the same size. 
Random searches are conducted in each area. However, 
the IPMA proposes improved ways using population 
flow, but its idea of population flow remains the same. 
Given Fxx  ,' , if )(X  is the divided area 

with x  as the center, then 


)})(lim({ ' XxP
t

 1, 

which has been proven in literature 17. Therefore, along 
with infinite increase in iterations, the IPMA can refer 
to arbitrary individuals in the search space, and thus 
condition (i) can be satisfied. 

Second, if )1()()1(  tptptp bestbest  , 
)(tpbest  is non-decreasing. Once solutions ** Fx   

are searched on )(tp , this solution will be kept 
in )(tpbest

. However, if a solution ** Fx   is a non-
dominated solution, then it will always be kept 
in )(tpbest

. Thus, the individual in *F will be searched 
continually and will be kept in )(tpbest

to ensure that 
the 1t  iterative best fitness is equal to the t  iterative 
best fitness at the least. It can obtain better fitness 
in )1()()1(  tptptp bestbest   because it will 
produce the better non-dominated solution in )1( tp . 
At the least, a result worse than the t  iterative will not 
appear. Thus, the IPMA meets the monotonicity 
requirement, and condition (ii) is satisfied. 

Therefore, the IPMA can converge to the global 
Pareto optimal solution set at a probability of 1. 

6.  Experiment results and performance metrics 

6.1. Performance metrics of the algorithm 

The Pareto optimal solution set can be obtained after 
executing the IPMA for MOPs. However, the 
performance of the IPMA is usually difficult to analyze 
and evaluate. Thus, the current study looks at this 
problem from three sides18, namely, the convergence, 
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the distribution, and the error ratios. Thus, three 
quantitative standards are used. The generational 
distance (GD) indicator evaluates the convergence of 
the algorithm, the spacing (SP) indicator evaluates the 
dispersion of the algorithm, and the error ratio (ER) 
evaluates the error rates of the algorithm. 

knownPF  is the Pareto front obtained using the 
IPMA. 

truePF  is the true Pareto front. 
Definition 4. GD. This metric may be effective in 

gauging the performance of the algorithm. GD is a 

value representing how “far” 
knownPF  is from 

truePF . 

GD is defined as follows:     

  
N

d

GD

N

i

i



1

2

,                                                            (6)

                  

where N is the number of vectors in
knownPF , and id  

is the distance (in objective space) between each of 

these and the nearest number of 
truePF . If GD=0, the 

non-dominated solution of using this algorithm belongs 

to the true Pareto optimal solution set. 

Definition 5. SP. This metric measures the distribution 

of vectors throughout knownPF . SP is defined as follows:  








N

i

idd
N

SP
1

2)(
1

1
,                              (7) 

where N  is the quantity of vectors at the Pareto front 

resolved using the algorithm, jixfxfd j

k

i

kji ,),)()((min   

ijN  ,,,2,1  . d  is the average value of resolved 
id , 

as shown in 



N

i

id
N

d
1

1
. SP=0 indicates that the 

algorithm has an ideal distribution capacity. 

Definition 6. ER. The algorithm reports a finite number 

of solutions. These solutions are or are not members of 

truePF . They define this metric as follows: 

  
N

e

ER

N

i

i
 1 ,                                                             (8) 

where N is the number of vectors in knownPF . If vector 

i  is a member of truePF , then ER=0, otherwise, ER=1.  

ER=0 indicates that every vector reported  in 
knownPF  

using the proposed algorithm is actually in 
truePF . 

6.2. Test functions and test results 

Eight test functions were used and calculated using the 
MATLAB program to test the performance of the IPMA. 
Test function 1 is a classical function in MOP proposed 
by Schaffer. Test functions 2 and 3 are used in reference 
2. Test functions 4, 5, and 6 are ZDT1, ZDT2, and 
ZDT3, respectively, which were proposed by Deb18. 
Test functions 7 and 8 are constrained multi-objective 
test functions. Test functions and experiment results are 
shown below: 
 Test function 1 (MOP1): 
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The Pareto front of MOP1 is convex. Figure 1 
shows the curve of the Pareto front obtained using the 
IPMA. 
 Test function 2 (MOP2): 
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The Pareto front of MOP2 is discontinuous. Figure 2 
shows the curve of the Pareto front obtained using the 
IPMA. 
 Test function 3 (MOP3): 

].10,5[,
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,)(),(min
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The Pareto front of MOP3 is concave. Figure 3 
shows the curve of the Pareto front obtained using the 
IPMA. 
 Test function 4 (MOP4): 
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MOP4 is a high-dimensional test function, and its 
Pareto front is both convex and continuous. Figure 4 
shows the curve of the Pareto front obtained using the 
IPMA. 
 Test function 5 (MOP5): 
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MOP5 is a high-dimensional test function, and its 
Pareto front is concave. Figure 5 shows the curve of the 
Pareto front obtained using the IPMA. 
 Test function 6 (MOP6): 

,)(min 11 xxf   
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MOP6 is a high-dimensional test function, and its 
Pareto front is discontinuous. Figure 6 shows the curve 
of the Pareto front obtained using the IPMA. 
 Test function 7 (MOP7): 

,)2()(min

,)(min
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.1010
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x

xx  

The objective functions MOP7 are similar to those 
of MOP1. The Pareto front of MOP7 is discontinuous 
because of the increase in constrained conditions. Figure 
7 shows the curve of the Pareto front obtained using the 
IPMA. 
 Test function 8 (MOP8): 
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The Pareto front of MOP8 is convex. Figure 8 
shows the curve of the Pareto front obtained using the 
IPMA. 
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Fig.1 Pareto front  of MOP1 
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Fig.2 Pareto front  of MOP2 
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Fig.3 Pareto front  of MOP3 
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Fig.4. Pareto front of MOP4 
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In addition, the current study analyzes the 
performance of the Pareto optimal solution set of test 
functions produced using the IPMA in the three aspects, 
namely, GD, SP, and ER. The results are shown in 
Table 1. 

Table 1. Performance metrics 

          
   GD SP ER 

MOP1 2.5019E-017 0.0044 0 

MOP2 6.6055E-004 0.0094 0.0019 

MOP3 3.9402E-005 0.0073 0.0100 

MOP4 0.0014 6.3129E-004 0.0059 

MOP5 0.0011 9.7212E-004 0.0088 

MOP6 0.0033 0.0037 0.0321 

MOP7 4.6030E-006 0.0068 3.8100E-004 

MOP8 0.0198 0.0179 0.0548 

 
As seen in the experiment results in Figs. 1-8, the 

Pareto front curve can be accurately obtained for the 
eight test functions using the IPMA. Compared with 
reference 2, the IPMA can solve the high dimension and 
discontinuous unconstrained optimization problem. 
Moreover, the results of the constrained MOP are better 
than those of reference 15. As seen in the experimental 
data obtained using the performance metrics of the 
IPMA, the values of GD and SP are lesser and are also 
better than the performance metrics of the NPGA24, 
NSGA||5, SPEA26, and MOPMA7 algorithms. These 
results show that the convergence of the IPMA and the 
dispersion of the Pareto optimal solution set are very 
strong. The curve of the Pareto front is properly 
distributed, and thus, the IPMA is proven feasible and 
effective in solving MOPs. 

7. Conclusion 

The current study proposed an IPMA for solving MOPs. 
Compared with the standard PMA, the IPMA not only 
adopts the vector-evaluated method, but also introduces 
the DWA. Moreover, the IPMA is an improved 
approach in population flow. The convergence of the 
IPMA was proven. Based on the visual graphics and 
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performance metrics of the Pareto optimal solution set 
in the experimental results, the IPMA was shown to be 
feasible and effective for solving MOPs. 
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