

Safety and Availability Checking for User Authorization Queries in RBAC

Jian-feng Lu*, Jian-min Han, Wei Chen
School of Mathematics-Physical & Information Engineering, Zhejiang Normal University

Jinhua, 321004, China

Jin-Wei Hu
Department of Computer Science, College of Engineering, QatarUniversity

Doha, 2713, Qatar

Abstract

This paper introduces the notion of safety and availability checking for user authorization query processing, and
develop a recursive algorithm use the ideas from backtracking-based search techniques to search for the optimal
solution. For the availability checking, we introduce the notion of max activatable set (MAS), and show formally
how MAS can be determined in a hybrid role hierarchy. For the safety checking, we give a formal definition of
dynamic separation-of-duty (DSoD) policies, and show how to reduce the safety checking for DSoD to a SAT
instance.

Keywords: safety, availability, authorization, separation-of-duty.

*
Corresponding author: lujianfeng@zjnu.edu.cn

1. Introduction

Handling the user authorization query1 processing in an
efficient way is a key issue related to the enforcement of
access control policies in RBAC systems2-3. In RBAC,
permissions are associated with roles, and users are
granted membership in appropriate roles, thereby
acquiring the roles’ permissions. This simple user
authorization model in RBAC is sufficient in well
organized systems when a user is typically assigned to a
small number of roles. However, in a hybrid hierarchy,
maintaining permission acquisition and role activation
semantics can become quite challenging, especially in
complex and collaborative systems. When a user
requests a particular set of permissions, the
authorization system should be able to determine
whether to grant that request or not. When determining
which set of roles should be activated in a single session

for a particular set of permissions requested by a user,
safety and availability checking should be concerned.
 Safety checking determines whether the set of roles

satisfy all constraints governing role activation,
such as dynamic separation-of-duty (DSoD)
policies. DSoD can be implemented in a natural
and efficient way has been recognized as one of
RBAC’s great advantages4. Furthermore, the safety
checking should follow the least privilege principle,
which makes it more complex.

 Availability checking determines whether the
requested permissions are covered by the set of
roles and hence are available to the session.
Furthermore, the presence of hybrid hierarchies
makes it more complex.

Previous work for this problem can be found in
reference 5, Zhang and Joshi introduced the User
Authorization Query (UAQ) Problem. They proposed a
two-step algorithm for the UAQ problem. In the first

International Journal of Computational Intelligence Systems, Vol. 5, No. 5 (September, 2012), 860-867

Published by Atlantis Press
 Copyright: the authors
 860

Administrateur
Texte tapé à la machine
Received 27 November 2011

Administrateur
Texte tapé à la machine
Accepted 15 June 2012

Jian-feng Lu, et al

step, the algorithm uses a greedy search to find a role set
that cover the desired permissions while following the
least privilege principle. They referred to this as the role
mapping problem. The safety and availability checking
are considered in the second step. The algorithm checks
whether the set of roles selected in the first step is
available and satisfies all the DSoD and cardinality
constraints. They referred to this as the activation
checking problem. Obviously, this algorithm has some
false negatives, such as falsely rejecting some legal
success. For example, the algorithm finds a role set in
the step 1, but it may violate the safety and availability
checking in the step 2. In fact, there exists a set of roles
that satisfies the safety and availability checking, but
cannot be found in the step 1 by the two-step algorithm.

In order to address the above false negative,
Wickramaarachchi et al.6 introduced a recursive
algorithm that uses the constraints to guide the search.
The algorithm’s ideas come from DPLL algorithm for
SAT7, it considers the effect of DSoD constraints and
can choose a set of roles satisfying the safety checking.
They assumed that issues of hybrid hierarchies are
handled in the generation of the UAQ instances, and
there is no availability checking. Moreover, the DSoD
constraints were considered in reference 6 is actually
dynamic mutually exclusive role (DMER) constraints,
the distinction between DSoD policies as objectives and
DMER constraints as a mechanism is not clearly 8.

Based on the above discussion, in this paper, we
present an efficient approach for solving the problem of
safety and availability checking for user authorization
query processing in RBAC systems. Firstly, we
compute the set of roles that can be activated by a user.
This work can prune the search space and hence
enhance the search efficiency, and make sure the
availability be satisfied. Secondly, we develop a
recursive algorithm use the ideas from backtracking-
based search techniques that use the DSoD policies to
search for the optimal solution, and the safety checking
during the search process. We recognize that make sure
the safety checking during the search process is very
important to address the false negatives that falsely
rejecting some legal success. The contributions of this
paper include the following:
 We introduce the notion of safety and availability

checking for user authorization query (SAC-UAQ)
processing in RBAC systems extended with hybrid
role hierarchy.

 We introduce the notion of max activatable set
(MAS) and show formally how MAS can be
determined in a hybrid role hierarchy.

 We give a set-based specification of DSoD policies,
the problem of safety checking for DSoD policies
(SC-DSoD) in the context of RBAC systems, and
show that it is intractable (coNP-complete) for

directly enforcing DSoD policies in RBAC. We
then show how to reduce the SC-DSoD to a SAT
instance, thus to use SAT solvers to produce
accurate results efficiently.

 We present a recursive algorithm use the ideas
from backtracking-based search techniques that
use the DSoD policies to find a role set that cover
the desired permissions while following the least
privilege principle, and satisfying the DSoD
policies.

The rest of this paper is organized as follows. In
Section 2, we formally define the SAC-UAQ problem.
In Section 3 we introduce our approach to SAC-UAQ
problem. The evaluation and illustration of our
approaches are given in Section 4. Section 5 discusses
related work, and Section 6 concludes and discusses the
future work.

2. The Main Text Problem Definition

When a user requests a particular set of permissions Preq
to carry out a particular task, the authorization system
takes Preq as input, and tries to find an optimum set of
roles Rsat to be activated in a single session, Rsat should
satisfies the user’s permission request and the safety and
availability checking. This means that Rsat contains the
minimal number of permission such that at least the
permissions in Preq are activated, the extra permissions
than Preq should be minimized. Inspired by the
definition of the UAQ problem by references 5 and 6,
we define the notion of safety and availability checking
for user authorization query (SAC-UAQ) process in
RBAC systems extended with hybrid role hierarchy.
SAC-UAQ takes three groups of inputs: one is the
permission request information Preq, another is the
RBAC state information (UA, PA, RH), and the other is
DSoD policies.

Definition 1. SAC-UAQ (safety and availability
checking for user authorization queries). Given the
request permission Preq, an RBAC state ε, and the DSoD
policy set D. The SAC-UAQ problem output a role set
RsatR such that the following conditions hold:
 Preq perm(Rsat).
 Activation of Rsat satisfies all the DSoD policies in

D.
 for any R’ R that also satisfies the above two

conditions, we have perm(Rsat)  perm(R’).
where R denotes the set of all roles, perm(R) denotes the
set of all permissions for which R is a member.

An RBAC state determines the set of roles of which
a user is a member and the set of permissions for which
a user is authorized.

Definition 2. An RBAC state is a 3-tuple (UA, PA,
RH)

Published by Atlantis Press
 Copyright: the authors
 861

 Safety and Availability Checking

 U, R, P denote the set of all users, the set of all
roles, the set of all permissions respectively.

 UA U × R, a user-role assignment relation.
 PA P×R, a permission-role assignment relation.
 RH  R×R is a partial order on R called the

inheritance relation, written as i , a and  .

As pointed out by Li et al. 8, it is very danger with
equating DMER constraints with DSoD policies. A
DSoD policy states that in order to have all permissions
necessary to complete a sensitive task in a single session,
the cooperation of at least a certain number of users is
required. Inspired by reference 8, we give a formally
definition of DSoD policies that consider the total
number of available users as a limitation factor through
referring to the Jason’s work9. The definition of DSoD
policy is based on following three requirements: (1) a
DSoD policy must be a high-level requirement; (2) a
DSoD policy must be expressed in terms of restrictions
on permissions; (3) a DSoD policy must capture
restrictions on user set involved in the task.

Definition 3. A DSoD policy ensures that at least k
users from a user set {u1,…,un} are required to perform
a task that requires all these permissions in {p1,…,pm}
in a single session. Formally,

   1 1, , , , , ,m ndsod p p u u k 

where each pi is a permission that needed to complete a
sensitive task, each uj is a user that authorized to
complete the task, m, n and k are integers, such that 2≤
k≤min(m,n), min returns the smaller value of the two.

3. Approach for SA-UAQ

In this section we propose an approach for solving the
SAC-UAQ problem.

3.1. Max Activatable Set

We introduce the notion of MAS associated with a
hybrid role hierarchy that indicates the access
capabilities of a user resulting from his membership to
the roles in the hierarchy. MAS is similar to the notion
of uniquely activatable set (UAS) in reference 1, which
requires that each role set in UAS can be activated by a
user in a single session, the permission set in each
element of the UAS is uniquely, and the role set has the
smallest cardinality for the same permission set. Thus,
UAS is mainly relevant from the perspective of the
principle of least privilege. MAS is less restrictive than
UAS, the uniquely and least privilege semantics will be
ensured in Section 3.3.

Definition 4. MAS (max activatable set). Let H=(R,

[f]), where [f]  { i , a ,  }, be a hybrid role

hierarchy. Then MAS(H, u) is the max activatable set

with largest cardinality, such that

ir R  , (, ,) (,)i j iactive u r s r MAS H u 

Where active(u,ri,sj) denotes that ri can be activated in
the single session sj by user u .

Fig.1. An example of monotype decomposition of a hybrid

hierarchy.
Identifying MAS is essential, while making an

authorization decision about whether or not a user
should be allowed to activate a particular combination
of roles in a single session. Since in a hierarchy that
allows coexistence of the multiple hierarchy types, the
permission-inheritance and role-activation semantics
can be complex, thus making administration and
management of large hierarchies difficult. In order to
computing the MAS, one should consider the union of
the A-hierarchy and the IA-hierarchy. When computing
the permissions available to each role in MAS, one
should consider the union of the I-hierarchy and IA-
hierarchy. Therefore, when computing the MAS, one
should decompose of a hybrid role hierarchy into its
monotype components. We now reproduce the
definitions of monotype decomposition of a hybrid
hierarchy from reference 1.

Definition 5. (Monotype decomposition of H): Let H
be a hybrid hierarchy, then we define I and A-
decomposition of H as follows
 The monotype hierarchy HI is said to be the I-

Published by Atlantis Press
 Copyright: the authors
 862

Jian-feng Lu, et al

Decomposition of H if the following holds: ∀r1, r2
(r1≥i r2) ∈ H∨(r1≥r2)∈ H→(r1≥i r2)∈HI.

 The monotype hierarchy HA is said to be the A-
Decomposition of H if the following holds: ∀ r1, r2,
(r1≥a r2)∈ H∨(r1≥r2)∈H→(r1≥a r2)∈HA.

Fig. 1 shows an example of monotype
decomposition of a hybrid hierarchy. We assume that
the user u is assigned to the roles r1 and r2, it can be
straightforwardly to calculate the MAS(H,u) and the
permissions available to each role in MAS(H,u) by the
monotype decomposition.

3.2. Safety Checking for DSoD policies

Not all the roles in MAS(H,u) can be activated by the
user u, since the DSoD policies that may prevent the
user from activating some roles in MAS(H,u). E.g., in
Fig.1, MAS(H,u)={r1,r2,r3,r4,r5,r6,r7}, assume that there
is a DSoD policy d= dsod<{p7, p8},{u, u’},k>, where u’
is another user. Then u is prevented to active {r4, r7} or
{r6,r7} in a single session. We now introduce the
problem of safety checking for DSoD policies.

Definition 6. We say that an RBAC state ε is safe
with respect to a DSoD policy d=
dsod<{p1,…,pm},{u1,…,un}, k>, which we denote by
safed(ε), if and only if in state ε no k-1 users from
{u1,…,un} together active all the permissions in
{p1,…,pm} in a single session. Formally,

      1' ' '
1 1 1 11
, , , , () , ,

k

k n i mi
u u u u active u p p



 
    
 Observe that if no k-1 users together active all the
permissions in a single session, then no set of fewer
than k users together active all the permissions. An
RBAC state ε is safe with respect to a set D of DSoD
policies, which we denote by safeD(ε), if and only if ε is
safe with respect to every DSoD policies in D. If the
security administrator wants to specify a DSoD policy,
he should first identify a sensitive task, and then identify
the permissions in {p1,…,pm} are needed to carry out a
sensitive task, the constraint set of user set {p1,…,pm},
and determine the minimum number k of collaborating
users should be actived to complete it.

Definition 7. SC-DSoD (safety checking for a DSoD
policy). Given an RBAC state ε and a DSoD policy d,
determine whether safed(ε) is true.

Theorem 1. SC-DSoD is coNP-complete.
Proof. Consider the complement of SC-DSoD, i.e.,

given a state ε and a DSoD policy d, determine if safed(ε)
is false, which is denoted by SC-DSoD .

We first show that SC-DSoD is in NP. If an access
control state ε is not safe with respect to a DSoD policy
d=dsod<{p1,…,pm},{u1,…,un},k>, there must exist k-1
users in {u1,…,un} that together active all the m

permissions in {p1,…,pm}. If one correctly guesses the
k-1 users that together have all the m permissions in the
policy, verifying that the guess is correct can be done in
polynomial time: compute the union of the k-1 users’
permissions and check whether it is a superset of the set
of permissions in the DSoD policy. But when verifying
safed(ε) is true, one must compute the set of permissions
of every size-(t-1) user sets in {u1,…,un}, and check
whether it is a superset of {p1,…,pm}. The running time
for this straightforward algorithm grow polynomially in
the number of users and permissions and exponentially
only in k. Therefore, SC-DSoD is in NP.

We now show that SC-DSoD is NP-hard by
reducing the NP-complete set covering problem10 to it.
In the set covering problem, the inputs are a finite set S,
a family F={S1,…,Sl} of subsets of S, and a budget B.
The goal is to determine whether there exist B sets in F
whose union is S. This problem is NP-complete. The
reduction is as follows. Given S, F and B, construct a
DSoD policy d as follows: for each element in S, we
create a permission for it, let k be B+1 and let m be the
size of S. We construct a DSoD policy
dsod<S,{u1,…,un},B+1>, and construct an access
control state as follows. For each different subset
Si(1≤i≤l) in F, create a user ui∈{u1,…,un}, to which all
permissions in Si are assigned. The resulting safed(ε) is
false if and only if B sets in F cover S. Therefore,

SC-DSoD is NP-hard. □
The facts that SC-DSoD is intractable and SAT

solvers can produce accurate results efficiently appear
to provide a justification for using SAT solvers to
enforce the SC-DSOD problem. We now show how the
SC-DSoD problem can be reduced to a SAT instance.
The SAT solver we use is SAT4J11. The translation
works as follows.

Reduction to SAT: Given a DSoD policy
d=dsod<P,U,k> and an RBAC state ε=(UA, PA, RH),
for each ui∈U, we have a propositional variable vi. This
variable is true if ui is a member of size-(k-1) user set
U’ U to active all the permissions in P. Then we have
the following two kinds of constraints. For each pj∈P,
let ui1,ui2,…,uix be the users who are authorized for the
permission p. We add the first constraint vi1,vi2,…,vix≥1,
which ensures that all the permissions in P are covered
by U’. There are |P| such constraints. Then we add the
second constraint v1+v2+ …+vn≤1(n=|U|), which ensures
that |U’|≤k-1. There is only one such constraint. If the
return for the algorithm is “true”, then we know that
safed(ε) is false, otherwise, safed(ε) is true.

Published by Atlantis Press
 Copyright: the authors
 863

 Safety and Availability Checking

3.3. A Recursive Algorithm for SAC-UAQ

We present a recursive algorithm for SAC-UAQ as
shown in Algorithm 1, the ideas of this algorithm comes
from backtracking-based search techniques that use the
DSoD policies to find a role set that cover the desired
permissions while following the least privilege principle.
In Algorithm 1, the request permission by the user is
denoted as Preq, the extra permissions than Preq is
denoted as Pextra, the permissions that have not been
covered by the selected roles is denoted as Prem, the set
of roles which can satisfy the three conditions in
Definition 1 is denoted as Rsat, the set of roles which can
be active by the user is denoted as Ractive, and denote the
set of solutions and the current solution as Rsel and Rsol
respectively, the set of all DsoD policies as D.
Algorithm 1. SAC-UAQ (Preq, Ractive, D)
Input: Preq, Ractive, D
Output: Rsat
1: Rsat,Rsol,Rsel,Pextra←
2: Prem←Preq
3: if Preq  perm(Ractive) then

4: return 
5: end if
6: for each

activer R do

7: if (
r() P eqperm r  ) then

8: \active activeR R r

9: end if
10: end for
11: selectRoles (

r, , , , Prem sel extra active eqP R P R);

12: selectRoles (r, , , , Prem sel extra active eqP R P R){

13: if
remP  then

14: if
sat selR R then

15: sat selR R

16: else if | () | | () |sat selperm R perm R and | | | |sat selR R

then
17:

sat selR R

18: sol sol selR R R 

19: end if
20: return
21: end if
22: for each d D do
23: if(SC-DSoD(d, )) then
24: \sel solR R r

25: end if
26: end for
27: if | | | () |extral satP perm R and | () | 0 |satperm R  then

28: return
29: end if

30: if
activeR  then

31: return
32: end if
33: select next

activer R that maximize r

r

| () P |

| () \ P \ |
em

eq extral

perm r

perm r P



34: selectRoles (
rP \ ()em perm r ,

selR r ,

rP \ (() \ P)extral eqperm r , \activeR r ,
rP eq

)

35: selectRoles (
r, , , \ ,Prem sel extra active eqP R P R r)}

Algorithm 1 performs the following steps:
(1) Make a simple decision that if the request

permission Preq beyond the availability checking,
that means such a matching role set doesn’t exist.

(2) Prune the search space that remove from the
candidate set Ractive any role that does not include
any permission in Preq.

(3) Do a backtracking based search where the search
tree is traversed recursively, and performs the
following four steps:

a) Check whether the current set of selected roles
Rsol is a solution, such as covers all the
requested permissions Preq. If so, check
whether it is a better solution than the stored
current best solution Rsat . If so, record Rsol as
the new best solution Rsat.

b) Safety checking for each DSoD policies. The
input includes a DSoD policy and the new
RBAC state, we reduce it to a SAT problem,
when the SAT solver returns false, then remove
the new role from the current solution Rsol.

c) Return if there is no role in Ractive.
d) Heuristically select the next role from the

candidate roles. We prefer to select the role
whose permission sets overlap the most with
Prem, and the least with extra permissions than
Pextra.

e) Recursively call itself with the next role
selected.

f) Recursively call itself with the next role not
selected and removed from the candidate set
Ractive.

We now show that the output Rsat for Algorithm 1 is
the best solution for the problem of SAC-UAQ.

Theorem 2. Let Rsat denotes the output of the
algorithm SAC-UAQ (Rsat, Ractive, D), then the following
conditions hold:
(1)

satR  if and only if SAC-UAQ(Preq,Ractive,D) is

a non-solution problem.
(2) There does not exist another solution for SAC-

UAQ (Preq,Ractive,D), and R’ is better than Rsat .
Proof. (1)For the “only if part”, suppose, for the sake

of contradiction that there exists a solution

Published by Atlantis Press
 Copyright: the authors
 864

Jian-feng Lu, et al

Rsol={r1,…,rs} for SAC-UAQ(Preq,Ractive,D), and Rsol≠

 . Then {r1,…,rs} cannot be removed from the
candidate set Ractive in step 1 and 2. Since all the roles in
{r1,…,rs} be active by the user will not violate any
DSoD policies, and perm(Rsol)=Preq, then all the roles
will be selected by recursively in step 3. If there does
not exist another better resolution, Rsat ={r1,…,rs}. This
would contradict the assertion that Rsat= . Therefore, if

Rsat= , then SAC-UAQ(Preq,Ractive,D) is a non-solution
problem. For the “if part”, if SAC-UAQ(Preq,Ractive,D) is
a non-solution problem, there are two cases. The first
case is that availability checking is false, such as Preq
 perm(Ractive), which will return a empty set by step i

in Algorithm 1. The second case is that safety checking
is false, that means any set that cover the request
permissions be active by the user will violate the DSoD
policy set. Ofcource return the empty set. Therefore, if
SAC-UAQ(Preq,Ractive,D) is a non-solution problem,
Rsat= .

(2)For the sake of contradiction, we assume that
there exists another solution R’ for SAC-UAQ(Preq,
Ractive,D), and R’ is better than Rsat . By the Definition
1, we have (i) Preq perm(Rsat), Preq perm(R’); (ii)
Activation of Rsat or R’ satisfies all the DSoD policies
in D. (iii) perm(R’)  perm(Rsat). Algorithm 1 do a
backtracking based search for better solution. Assume
that the stored current best solution is Rsat , and the
current selected solution is R’. In step 3.1, checking
whether R’ is a better solution than the stored current
best solution Rsat . If so, record Rsol as the new best
solution Rsat . where the case (iii) perm(R’) 
perm(Rsat) is false. Therefore, There does not exist
another solution R’ for SAC-UAQ(Preq, Ractive,D), and R’
is better than Rsat .
□

4. Evaluation and Illustration

In reference 5, Zhang and Joshi introduced two
approaches for the UAQ problem. The first approach is
a two-step algorithm for the UAQ problem based on
greedy approach. As discussed in Section 1, this
approach has some false negatives, such as falsely
rejecting some legal success. The second approach is a
naive brute-force algorithm that goes through ever
subset of the set of all roles available to the user. In this
section, we implement our proposed approach for SAC-
UAQ problem. We first compare our results with those
from the greedy approach introduce in reference 5. We
second compare our results with those from the brute-
force approach introduce in reference 5. The
implementation of the three algorithms was written in

Java. Experiments were carried out on a notebook with
an Intel Core i7 2630QM running at 2.0GHz, and with
DDR3 2GB 1066MHz, running Microsoft Windows 7
Home Basic. The methodology that we use in
generating test instances is as follows.
 The ratio of roles to users is 5:1
 The ratio of roles to DSoD policies is5:1
 The ratio of roles to permissions is1:5
 The ratio of roles to permission request is 2:1

4.1. Comparison with Greedy Approach

In order to compare our results with the greedy
approach proposed in reference 5, we first give a
running example to show the greedy approach may
produce a solution satisfies the “role mapping” module
but fails the “activation checking module”, and
ultimately the user request get rejected.

Example 1. Consider the role set R in an RBAC
system, the role-permission relationships, the role set
available for a user u, the role activation of another user
u’, and DSoD policies considered for this example.
 R={r1,r2,r3,r4,r5,r6,r7,r8,r9,r10}

 perm(r1)={p1,p3,p6}
 perm(r2)={p1,p5,p9,p12,p14}
 perm(r3)={p2,p3,p4,p8,p11}
 perm(r4)={p1,p6,p13,p14,p16,p19,p20}
 perm(r5)={p3,p6,p7,p9,p10}
 perm(r6)={p5,p7,p10,p15,p17,p18,p20}
 perm(r7)={p1,p4,p15}
 perm(r8)={p3,p7,p16,p18,p19}
 perm(r9)={p2,p5}
 perm(r10)={p7,p9,p11, p20}

 MAS(H,u)={r1,r3,r7,r9,r10}
 Active_Role(u’)={r1,r4,r5,r8}
 DSoD policy: d=ssod<{ p8,p11},{u,u’},2>

Table 1. Comparison greedy approach with ours

Permission Request Greedy Approach Our Approach

{p1,p3,p5,p7,p9}
{r2,r5}

Reject:un-available
{r1,r9,r10}

Grant

{p1,p3,p4,p5,p9,p11}
{r1,r3,r10}

Reject: un-safe
{r1,r7,r9,r10}

Grant
The results are summarized in Table 1. When the user

request to active the permissions in {p1,p3,p5,p7,p9}, the
greedy approach produces a solution {r2,r5} , while both r2
and r5 are unavailable for u, thus the permission request
will be rejected. But our approach can produce the best
solution {r1,r9,r10}. When the permission request is
{p1,p3,p4,p5,p9,p11}, the greedy approach produces a
solution {r1,r3,r10}, although all of the roles in {r1,r3,r10}
are available for u, let u active r3 violates the DSoD policy
d, thus the permission request will also be rejected. In fact,
{r1,r7,r9,r10} is the best resolution for this problem.

Published by Atlantis Press
 Copyright: the authors
 865

 Safety and Availability Checking

Table 2. The results out of the greedy approach

Out of solution Percentage
unavailable 43%
unsafe 27%
non-optimal 9%
optimal 21%

We second implement 100 test cases with varying test
instances for greedy approach. As shown in Table 2, 79%
of the test cases produced an incorrect solution, where 43%
violated the availability checking, and 27% violated the
safety checking. The remaining 30% produced a correct
solution. However, 9% produced sub-optimal solutions
which did not follow the least privilege principle. On the
other hand, as proved in Theorem 2, our approach always
produces the best solution for SAC-UAQ.

4.2. Comparison with Brute-Force Approach

In order to understand the effectiveness of our approach,
we have implemented two algorithms: one is our
approach, the other the brute-force approach. Fig. 2
shows the result of running the experiments for the two
approaches. When the number of roles is small, the two
approaches perform produce comparable results. As the
number of roles increase, the overall trend in time taken
increases exponentially making the brute-force
approach impractical for implementation in dynamic
systems. On the other hand, our approach takes a few
seconds, even for a larger number of roles.

Fig. 2. CPU time for our approach and brute-force approach

5. Related Work

There are a number of user authorization frameworks in
the literature which follow different approaches for user
authorization queries processing in RBAC systems.

To our knowledge, the notion of Uniquely
Activatable Set (UAS) first appeared in Joshi et al.1,
which is similar to our notion of MAS. UAS is

essentially a set of role sets and each element in it is
unique in the term of permissions and can be activated
by the user in one session. They introduce UAS to
simplify the user authorization query processing. They
also propose a set of theorems to compute the UAS
from the hybrid hierarchy. And proposed two
algorithms to compute UAS for a user, one is called the
decomposition based algorithm, and the other is called
the derived relations based algorithm. However, the
complexities of both algorithms are not polynomial12.
While computing the complete set of UAS is complex,
checking whether a set of roles is within the UAS can
be done within polynomial time13. Zhang and Joshi5

combined the UAS checking and role mapping together
with the user authorization processing. They introduced
the generalized notion of UAS where users can be
assigned to any role or multiple roles that appear in the
hierarch. The paper proposed a greedy approach and a
naive brute force approach for the UAQ problem. As
shown in Section 4, the greedy search algorithm does
not consider the effect of any constraint and may choose
a set of roles violating some constraint. And the brute-
force approach is impractical for implementation in a
large dynamic system. A more general definition of
UAQ problem where the permission grant includes both
a lower bound and an upper bound is introduced by
Wickramaarachchi et al.6, They introduced two
approaches for the UAQ problem. The first approach
extends the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm, the second approach reduce the UAQ
problem to the MAXSAT problem.

However, the above work considered DMER
constraints rather than DSoD policies that affect the
solution of UAQ. Li et al.8 considered that the
distinction between DSoD policies as objectives and
DMER constraints as a mechanism is not clearly will
rise the security risks. SoD policy is a fundamental
principle of information security, the concept of SoD
can be traced back to 1975 when Saltzer and
Schroeder14 took it as one of the design principles for
protecting information, under the name “separation-of-
privilege”. Later on, SoD has been vastly studied by
various researchers as a principle to avoid frauds. There
exists a wealth of literature on SoD policies in the
context of RBAC5. It has been recognized that “one of
RBAC’s great advantages is that SoD rules can be
implemented in a natural and efficient way”.

The first paper on SoD policies in RBAC is
proposed by Ferraiolo and Kuhn16, who used the terms
static and dynamic SoD to refer to static and dynamic
enforcement of SoD. Li et al.8 used static mutually
exclusive role (SMER) constraints to enforce SSoD
policies in RBAC. They defined an RSSoD constraint
(essentially as described in Problem 19 above), but
provide no analysis of the complexity of computing the

Published by Atlantis Press
 Copyright: the authors
 866

Jian-feng Lu, et al

set of all such constraints. Note that an RSSoD
constraint is a set of roles that cover Q and contains no
redundancy. In other words, the RSSoD generation
problem is identical to the irreducible cover
enumeration problem and is, therefore, NP-hard
(Theorem 2). The above results are summarized in the
following theorem17. Inspired by the work by Li et al.18,
they tackled the reduction of the verification of
resiliency checking problem to a SAT instance. Their
approach considers a set of static, mutually exclusive
role constraints. We reduce the SC-DSoD problem to a
SAT instance builds on their findings, which enables us
to use existing SAT solvers in our implementation and
benefit from several decades of research in designing
SAT solvers.

6. Conclusions

In this paper, we defined the notion of safety and
availability checking for user authorization query (SAC-
UAQ) processing in RBAC systems extended with
hybrid role hierarchy, and presented a recursive
algorithm use the ideas from backtracking-based search
techniques that use the DSoD policies to find a role set
that cover the desired permissions while following the
least privilege principle, and satisfying the DSoD
policies. We compared our approach with the greedy
approach and brute-force approach in reference 5, and
found that our approach always provide an optimal
solution in an efficient way.

Acknowledgements

This work is supported by National Natural Science
Foundation of China under Grant 61170108, Zhejiang
Provincial Natural Science Foundation of China under
Grant LQ12F02005, MOE (Ministry of Education in
China) Project of Humanity and Social Science under
Grant 12YJCZH142, Opening Fund of Key Discipline
of Computer Software and Theory of Zhejiang Province
at ZJNU under Grant ZSDZZZZXK23.

References

1. J. B. D. Joshi, E. Bertino, A. Ghafoor and Y. Zhang,
Formal Foundations for hybrid hierarchies in GTRBAC,
in ACM Trans. Inform. Syst. 10(4) (2008), pp. 1-39.

2. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C.E.
Youman, Role-based access control models, in IEEE
Computer, 29(2)(1996), pp. 38-47.

3. ANSI. 2004. American national standard for information
technology-role based access control (ANSI INCITS
359-2004, 2004).

4. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-
Based Access Control (Artech House, 2003).

5. Y. Zhang and J. B. D. Joshi. Uaq: a framework for user
authorization query processing in rbac extended with
hybrid hierarchy and constraints, in Proc. 13th ACM
symposium on Access control models and technologies,
(New York, NY, USA, 2008), pp. 83-92.

6. T. Guneshi, H. Q. Wahbeh, and Ninghui Li, An Efficient
Framework for User Authorization Queries in RBAC
Systems, in Proc. 14th ACM symposium on Access
control models and technologies, (Stresa, Italy, 2009), pp.
23-32.

7. C. Sinz, Visualizing sat instances and runs of the dpll
algorithm, in J. Autom. Reason, 39(2)(2007), pp. 219-
243.

8. N. Li, M. Tripunitara, and Z. Bizri, On Mutually
Exclusive Roles and Separation-of-Duty, in ACM
Trans. Inform. Syst. 10(2) (2007), pp. 1-35.

9. J. Crampton, Specifying and enforcing constraints in
role-based access control, in Proc. 8th ACM Symposium
on Access Control Models and Technologies, (Villa
Gallia, Como, Italy, June 2003), pp.43-50.

10. C. H. Papadimitriou, Computational Complexity,
(Addison Wesley Longman, 1994).

11. D. L. Berre (project leader), SAT4J: A satisfiability
library for Java. URL http://www.sat4j.org/, January
2006.

12. S. M. Chandran, and J. B. D. Joshi, Towards
Administration of a Hybrid Role Hierarchy, in Proc. 6th
IEEE International Conference on Information Reuse
and Integration, (Las Vegas Hilton, Las Vegas, NV,
USA, 2005), pp. 849-866.

13. S. Du, and J. B. D. Joshi, Supporting Authorization
Query and Inter-domain Role Mapping in Presence of
Hybrid Role Hierarchy, in Proc. 11th ACM Symposium
on Access Control Models and Technologies, (Lake
Tahoe, California, USA, June 2006), pp. 228-236.

14. J. H. Saltzer and M. D. Schroeder, The protection of
information in computer systems, Proceedings of the
IEEE, 63(9)(1975), pp. 1278-1308.

15. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman,
Role-Based Access Control Models, in Computer, 29(2)
(1996), pp. 38-47.

16. D. F. Ferraiolo, and D. R. Kuhn. Role-based access
control, in Proc. 15th National Information Systems
Security Conference, (Baltimore, MD, October 1992), pp.
554-563.

17. C. Liang and J. Crampton. Set Covering Problems in
Role-Based Access Control, In Proc. 14th European
Symposium on Research in Computer Security, (Saint-
Malo, France, 2009), pp. 689-704.

18. N. Li, M. V. Tripunitara, and Q. Wang, Resiliency
Policies in Access Control, in ACM Trans. Inform. Syst.
12(4)(2009), pp. 113-137.

Published by Atlantis Press
 Copyright: the authors
 867

