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Abstract 

This paper introduces the notion of safety and availability checking for user authorization query processing, and 
develop a recursive algorithm use the ideas from backtracking-based search techniques to search for the optimal 
solution. For the availability checking, we introduce the notion of max activatable set (MAS), and show formally 
how MAS can be determined in a hybrid role hierarchy. For the safety checking, we give a formal definition of 
dynamic separation-of-duty (DSoD) policies, and show how to reduce the safety checking for DSoD to a SAT 
instance.  
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1. Introduction 

Handling the user authorization query1 processing in an 
efficient way is a key issue related to the enforcement of 
access control policies in RBAC systems2-3. In RBAC, 
permissions are associated with roles, and users are 
granted membership in appropriate roles, thereby 
acquiring the roles’ permissions. This simple user 
authorization model in RBAC is sufficient in well 
organized systems when a user is typically assigned to a 
small number of roles. However, in a hybrid hierarchy, 
maintaining permission acquisition and role activation 
semantics can become quite challenging, especially in 
complex and collaborative systems. When a user 
requests a particular set of permissions, the 
authorization system should be able to determine 
whether to grant that request or not. When determining 
which set of roles should be activated in a single session 

for a particular set of permissions requested by a user, 
safety and availability checking should be concerned. 
 Safety checking determines whether the set of roles 

satisfy all constraints governing role activation, 
such as dynamic separation-of-duty (DSoD) 
policies. DSoD can be implemented in a natural 
and efficient way has been recognized as one of 
RBAC’s great advantages4. Furthermore, the safety 
checking should follow the least privilege principle, 
which makes it more complex. 

 Availability checking determines whether the 
requested permissions are covered by the set of 
roles and hence are available to the session. 
Furthermore, the presence of hybrid hierarchies 
makes it more complex. 

Previous work for this problem can be found in 
reference 5, Zhang and Joshi introduced the User 
Authorization Query (UAQ) Problem. They proposed a 
two-step algorithm for the UAQ problem. In the first 
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step, the algorithm uses a greedy search to find a role set 
that cover the desired permissions while following the 
least privilege principle. They referred to this as the role 
mapping problem. The safety and availability checking 
are considered in the second step. The algorithm checks 
whether the set of roles selected in the first step is 
available and satisfies all the DSoD and cardinality 
constraints. They referred to this as the activation 
checking problem. Obviously, this algorithm has some 
false negatives, such as falsely rejecting some legal 
success. For example, the algorithm finds a role set in 
the step 1, but it may violate the safety and availability 
checking in the step 2. In fact, there exists a set of roles 
that satisfies the safety and availability checking, but 
cannot be found in the step 1 by the two-step algorithm. 

In order to address the above false negative, 
Wickramaarachchi et al.6 introduced a recursive 
algorithm that uses the constraints to guide the search. 
The algorithm’s ideas come from DPLL algorithm for 
SAT7, it considers the effect of DSoD constraints and 
can choose a set of roles satisfying the safety checking. 
They assumed that issues of hybrid hierarchies are 
handled in the generation of the UAQ instances, and 
there is no availability checking. Moreover, the DSoD 
constraints were considered in reference 6 is actually 
dynamic mutually exclusive role (DMER) constraints, 
the distinction between DSoD policies as objectives and 
DMER constraints as a mechanism is not clearly 8.  

Based on the above discussion, in this paper, we 
present an efficient approach for solving the problem of 
safety and availability checking for user authorization 
query processing in RBAC systems. Firstly, we 
compute the set of roles that can be activated by a user. 
This work can prune the search space and hence 
enhance the search efficiency, and make sure the 
availability be satisfied. Secondly, we develop a 
recursive algorithm use the ideas from backtracking-
based search techniques that use the DSoD policies to 
search for the optimal solution, and the safety checking 
during the search process. We recognize that make sure 
the safety checking during the search process is very 
important to address the false negatives that falsely 
rejecting some legal success. The contributions of this 
paper include the following: 
 We introduce the notion of safety and availability 

checking for user authorization query (SAC-UAQ) 
processing in RBAC systems extended with hybrid 
role hierarchy.  

 We introduce the notion of max activatable set 
(MAS) and show formally how MAS can be 
determined in a hybrid role hierarchy. 

 We give a set-based specification of DSoD policies, 
the problem of safety checking for DSoD policies 
(SC-DSoD) in the context of RBAC systems, and 
show that it is intractable (coNP-complete) for 

directly enforcing DSoD policies in RBAC. We 
then show how to reduce the SC-DSoD to a SAT 
instance, thus to use SAT solvers to produce 
accurate results efficiently. 

 We present a recursive algorithm use the ideas 
from backtracking-based search techniques that 
use the DSoD policies to find a role set that cover 
the desired permissions while following the least 
privilege principle, and satisfying the DSoD 
policies. 

The rest of this paper is organized as follows. In 
Section 2, we formally define the SAC-UAQ problem. 
In Section 3 we introduce our approach to SAC-UAQ 
problem. The evaluation and illustration of our 
approaches are given in Section 4. Section 5 discusses 
related work, and Section 6 concludes and discusses the 
future work. 

2. The Main Text Problem Definition 

When a user requests a particular set of permissions Preq 
to carry out a particular task, the authorization system 
takes Preq as input, and tries to find an optimum set of 
roles Rsat to be activated in a single session, Rsat should 
satisfies the user’s permission request and the safety and 
availability checking. This means that Rsat contains the 
minimal number of permission such that at least the 
permissions in Preq are activated, the extra permissions 
than Preq should be minimized. Inspired by the 
definition of the UAQ problem by references 5 and 6, 
we define the notion of safety and availability checking 
for user authorization query (SAC-UAQ) process in 
RBAC systems extended with hybrid role hierarchy. 
SAC-UAQ takes three groups of inputs: one is the 
permission request information Preq, another is the 
RBAC state information (UA, PA, RH), and the other is 
DSoD policies.  

Definition 1. SAC-UAQ (safety and availability 
checking for user authorization queries). Given the 
request permission Preq, an RBAC state ε, and the DSoD 
policy set D. The SAC-UAQ problem output a role set 
RsatR such that the following conditions hold: 
 Preq perm(Rsat).  
 Activation of Rsat satisfies all the DSoD policies in 

D.  
 for any R’ R that also satisfies the above two 

conditions, we have perm(Rsat)  perm(R’).  
where R denotes the set of all roles, perm(R) denotes the 
set of all permissions for which R is a member. 

An RBAC state determines the set of roles of which 
a user is a member and the set of permissions for which 
a user is authorized.  

Definition 2. An RBAC state is a 3-tuple (UA, PA, 
RH)  
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 U, R, P denote the set of all users, the set of all 
roles, the set of all permissions respectively. 

 UA U × R, a user-role assignment relation. 
 PA P×R, a permission-role assignment relation. 
 RH  R×R is a partial order on R called the 

inheritance relation, written as i , a and  . 

As pointed out by Li et al. 8, it is very danger with 
equating DMER constraints with DSoD policies. A 
DSoD policy states that in order to have all permissions 
necessary to complete a sensitive task in a single session, 
the cooperation of at least a certain number of users is 
required.  Inspired by reference 8, we give a formally 
definition of DSoD policies that consider the total 
number of available users as a limitation factor through 
referring to the Jason’s work9. The definition of DSoD 
policy is based on following three requirements: (1) a 
DSoD policy must be a high-level requirement; (2) a 
DSoD policy must be expressed in terms of restrictions 
on permissions; (3) a DSoD policy must capture 
restrictions on user set involved in the task. 

Definition 3. A DSoD policy ensures that at least k 
users from a user set {u1,…,un} are required to perform 
a task that requires all these permissions in {p1,…,pm} 
in a single session. Formally, 

   1 1, , , , , ,m ndsod p p u u k   

where each pi is a permission that needed to complete a 
sensitive task, each uj is a user that authorized to 
complete the task, m, n and k are integers, such that 2≤ 
k≤min(m,n), min returns the smaller value of the two. 

3. Approach for SA-UAQ 

In this section we propose an approach for solving the 
SAC-UAQ problem.  

3.1. Max Activatable Set 

We introduce the notion of MAS associated with a 
hybrid role hierarchy that indicates the access 
capabilities of a user resulting from his membership to 
the roles in the hierarchy. MAS is similar to the notion 
of uniquely activatable set (UAS) in reference 1, which 
requires that each role set in UAS can be activated by a 
user in a single session, the permission set in each 
element of the UAS is uniquely, and the role set has the 
smallest cardinality for the same permission set. Thus, 
UAS is mainly relevant from the perspective of the 
principle of least privilege. MAS is less restrictive than 
UAS, the uniquely and least privilege semantics will be 
ensured in Section 3.3. 

Definition 4. MAS (max activatable set). Let H=(R, 

[f]), where [f]  { i , a ,  }, be a hybrid role 

hierarchy. Then MAS(H, u) is the max activatable set 

with largest cardinality, such that  

ir R  , ( , , ) ( , )i j iactive u r s r MAS H u   

Where active(u,ri,sj)  denotes that  ri  can be activated in 
the single session sj by user u .  

 
Fig.1. An example of monotype decomposition of a hybrid 

hierarchy. 
Identifying MAS is essential, while making an 

authorization decision about whether or not a user 
should be allowed to activate a particular combination 
of roles in a single session. Since in a hierarchy that 
allows coexistence of the multiple hierarchy types, the 
permission-inheritance and role-activation semantics 
can be complex, thus making administration and 
management of large hierarchies difficult. In order to 
computing the MAS, one should consider the union of 
the A-hierarchy and the IA-hierarchy. When computing 
the permissions available to each role in MAS, one 
should consider the union of the I-hierarchy and IA-
hierarchy. Therefore, when computing the MAS, one 
should decompose of a hybrid role hierarchy into its 
monotype components. We now reproduce the 
definitions of monotype decomposition of a hybrid 
hierarchy from reference 1.  

Definition 5. (Monotype decomposition of H): Let H 
be a hybrid hierarchy, then we define I and A-
decomposition of H as follows 
 The monotype hierarchy HI is said to be the I-
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Decomposition of H if the following holds: ∀r1, r2 
(r1≥i r2) ∈ H∨(r1≥r2)∈ H→(r1≥i r2)∈HI. 

 The monotype hierarchy HA is said to be the A-
Decomposition of H if the following holds: ∀ r1, r2, 
(r1≥a r2)∈ H∨(r1≥r2)∈H→(r1≥a r2)∈HA. 

Fig. 1 shows an example of monotype 
decomposition of a hybrid hierarchy. We assume that 
the user u is assigned to the roles r1 and r2, it can be 
straightforwardly to calculate the MAS(H,u) and the 
permissions available to each role in MAS(H,u) by the 
monotype decomposition. 

3.2. Safety Checking for DSoD policies 

Not all the roles in MAS(H,u) can be activated by the 
user u, since the DSoD policies that may prevent the 
user from activating some roles in MAS(H,u). E.g., in 
Fig.1, MAS(H,u)={r1,r2,r3,r4,r5,r6,r7}, assume that there 
is a DSoD policy d= dsod<{p7, p8},{u, u’},k>, where u’ 
is another user. Then u is prevented to active {r4, r7} or 
{r6,r7} in a single session. We now introduce the 
problem of safety checking for DSoD policies. 

Definition 6. We say that an RBAC state ε is safe 
with respect to a DSoD policy d= 
dsod<{p1,…,pm},{u1,…,un}, k>, which we denote by 
safed(ε), if and only if in state ε no k-1 users from 
{u1,…,un} together active all the permissions in 
{p1,…,pm} in a single session. Formally, 

      1' ' '
1 1 1 11
, , , , ( ) , ,

k

k n i mi
u u u u active u p p



 
    
    Observe that if no k-1 users together active all the 
permissions in a single session, then no set of fewer 
than k users together active all the permissions. An 
RBAC state ε is safe with respect to a set D of DSoD 
policies, which we denote by safeD(ε), if and only if ε is 
safe with respect to every DSoD policies in D. If the 
security administrator wants to specify a DSoD policy, 
he should first identify a sensitive task, and then identify 
the permissions in {p1,…,pm} are needed to carry out a 
sensitive task, the constraint set of user set {p1,…,pm}, 
and determine the minimum number k of collaborating 
users should be actived to complete it. 

Definition 7. SC-DSoD (safety checking for a DSoD 
policy). Given an RBAC state ε and a DSoD policy d, 
determine whether safed(ε) is true. 

Theorem 1. SC-DSoD is coNP-complete. 
Proof. Consider the complement of SC-DSoD, i.e., 

given a state ε and a DSoD policy d, determine if safed(ε) 
is false, which is denoted by SC-DSoD .  

We first show that SC-DSoD  is in NP. If an access 
control state ε is not safe with respect to a DSoD policy 
d=dsod<{p1,…,pm},{u1,…,un},k>, there must exist k-1 
users in {u1,…,un} that together active all the m 

permissions in {p1,…,pm}. If one correctly guesses the 
k-1 users that together have all the m permissions in the 
policy, verifying that the guess is correct can be done in 
polynomial time: compute the union of the k-1 users’ 
permissions and check whether it is a superset of the set 
of permissions in the DSoD policy. But when verifying 
safed(ε) is true, one must compute the set of permissions 
of every size-(t-1) user sets in {u1,…,un}, and check 
whether it is a superset of {p1,…,pm}. The running time 
for this straightforward algorithm grow polynomially in 
the number of users and permissions and exponentially 
only in k. Therefore, SC-DSoD  is in NP. 

We now show that SC-DSoD is NP-hard by 
reducing the NP-complete set covering problem10 to it. 
In the set covering problem, the inputs are a finite set S, 
a family F={S1,…,Sl} of subsets of S, and a budget B. 
The goal is to determine whether there exist B sets in F 
whose union is S. This problem is NP-complete. The 
reduction is as follows. Given S, F and B, construct a 
DSoD policy d as follows: for each element in S, we 
create a permission for it, let k be B+1 and let m be the 
size of S. We construct a DSoD policy 
dsod<S,{u1,…,un},B+1>, and construct an access 
control state as follows. For each different subset 
Si(1≤i≤l) in F, create a user  ui∈{u1,…,un}, to which all 
permissions in Si are assigned. The resulting  safed(ε) is 
false if and only if B sets in F cover S. Therefore, 

SC-DSoD  is NP-hard.                                                   □ 
The facts that SC-DSoD is intractable and SAT 

solvers can produce accurate results efficiently appear 
to provide a justification for using SAT solvers to 
enforce the SC-DSOD problem. We now show how the 
SC-DSoD problem can be reduced to a SAT instance. 
The SAT solver we use is SAT4J11. The translation 
works as follows.  

Reduction to SAT: Given a DSoD policy 
d=dsod<P,U,k> and an RBAC state ε=(UA, PA, RH), 
for each ui∈U, we have a propositional variable vi. This 
variable is true if  ui  is a member of size-(k-1) user set 
U’ U to active all the permissions in P. Then we have 
the following two kinds of constraints. For each pj∈P, 
let ui1,ui2,…,uix be the users who are authorized for the 
permission p. We add the first constraint vi1,vi2,…,vix≥1, 
which ensures that all the permissions in P are covered 
by U’. There are |P| such constraints. Then we add the 
second constraint v1+v2+ …+vn≤1(n=|U|), which ensures 
that |U’|≤k-1. There is only one such constraint. If the 
return for the algorithm is “true”, then we know that 
safed(ε) is false, otherwise,  safed(ε) is true. 

Published by Atlantis Press 
      Copyright: the authors 
                   863



 Safety and Availability Checking 

3.3. A Recursive Algorithm for SAC-UAQ 

We present a recursive algorithm for SAC-UAQ as 
shown in Algorithm 1, the ideas of this algorithm comes 
from backtracking-based search techniques that use the 
DSoD policies to find a role set that cover the desired 
permissions while following the least privilege principle. 
In Algorithm 1, the request permission by the user is 
denoted as Preq, the extra permissions than Preq is 
denoted as Pextra, the permissions that have not been 
covered by the selected roles is denoted as Prem, the set 
of roles which can satisfy the three conditions in 
Definition 1 is denoted as Rsat, the set of roles which can 
be active by the user is denoted as Ractive, and denote the 
set of solutions and the current solution as Rsel and Rsol 
respectively, the set of all DsoD policies as D. 
Algorithm 1. SAC-UAQ (Preq, Ractive, D) 
Input: Preq, Ractive, D 
Output: Rsat 
1: Rsat,Rsol,Rsel,Pextra←   
2: Prem←Preq  
3: if Preq  perm(Ractive) then 

4:    return   
5: end if 
6: for each 

activer R  do 

7:   if (
r( ) P eqperm r   ) then 

8:      \active activeR R r  

9:   end if 
10: end for 
11: selectRoles (

r, , , , Prem sel extra active eqP R P R ); 

12: selectRoles ( r, , , , Prem sel extra active eqP R P R ){ 

13: if 
remP   then 

14:   if 
sat selR R then 

15:     sat selR R  

16:   else if  | ( ) | | ( ) |sat selperm R perm R  and | | | |sat selR R  

then 
17:     

sat selR R  

18:     sol sol selR R R   

19:   end if 
20:   return 
21: end if 
22: for each d D  do 
23:   if(SC-DSoD(d,  )) then 
24:     \sel solR R r   

25:   end if 
26: end for 
27: if | | | ( ) |extral satP perm R  and | ( ) | 0 |satperm R    then 

28:   return 
29: end if 

30: if 
activeR   then 

31:   return 
32: end if 
33: select next 

activer R  that maximize r

r

| ( ) P |

| ( ) \ P \ |
em

eq extral

perm r

perm r P

   

34: selectRoles (
rP \ ( )em perm r , 

selR r , 

rP \ ( ( ) \ P )extral eqperm r , \activeR r ,
rP eq

) 

35: selectRoles  (
r, , , \ ,Prem sel extra active eqP R P R r )} 

Algorithm 1 performs the following steps: 
(1) Make a simple decision that if the request 

permission Preq beyond the availability checking, 
that means such a matching role set doesn’t exist.  

(2) Prune the search space that remove from the 
candidate set Ractive any role that does not include 
any permission in Preq.  

(3) Do a backtracking based search where the search 
tree is traversed recursively, and performs the 
following four steps: 

a) Check whether the current set of selected roles 
Rsol is a solution, such as covers all the 
requested permissions Preq. If so, check 
whether it is a better solution than the stored 
current best solution  Rsat . If so, record Rsol as 
the new best solution  Rsat. 

b) Safety checking for each DSoD policies. The 
input includes a DSoD policy and the new 
RBAC state, we reduce it to a SAT problem, 
when the SAT solver returns false, then remove 
the new role from the current solution  Rsol. 

c) Return if there is no role in Ractive. 
d) Heuristically select the next role from the 

candidate roles. We prefer to select the role 
whose permission sets overlap the most with 
Prem, and the least with extra permissions than  
Pextra.  

e) Recursively call itself with the next role 
selected. 

f) Recursively call itself with the next role not 
selected and removed from the candidate set  
Ractive. 

We now show that the output Rsat for Algorithm 1 is 
the best solution for the problem of SAC-UAQ. 

Theorem 2. Let Rsat denotes the output of the 
algorithm SAC-UAQ (Rsat, Ractive, D), then the following 
conditions hold: 
(1) 

satR   if and only if SAC-UAQ(Preq,Ractive,D) is 

a non-solution problem. 
(2) There does not exist another solution for SAC-

UAQ (Preq,Ractive,D), and R’ is better than  Rsat . 
Proof. (1)For the “only if part”, suppose, for the sake 

of contradiction that there exists a solution 
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Rsol={r1,…,rs} for SAC-UAQ(Preq,Ractive,D), and Rsol≠

 . Then {r1,…,rs} cannot be removed from the 
candidate set  Ractive in step 1 and 2. Since all the roles in 
{r1,…,rs} be active by the user will not violate any 
DSoD policies, and perm(Rsol)=Preq, then all the roles 
will be selected by recursively in step 3. If there does 
not exist another better resolution, Rsat ={r1,…,rs}. This 
would contradict the assertion that Rsat= . Therefore, if 

Rsat= , then SAC-UAQ(Preq,Ractive,D) is a non-solution 
problem. For the “if part”, if SAC-UAQ(Preq,Ractive,D) is 
a non-solution problem, there are two cases. The first 
case is that availability checking is false, such as Preq 
 perm(Ractive), which will return a empty set by step i 

in Algorithm 1. The second case is that safety checking 
is false, that means any set that cover the request 
permissions be active by the user will violate the DSoD 
policy set. Ofcource return the empty set. Therefore, if 
SAC-UAQ(Preq,Ractive,D) is a non-solution problem,  
Rsat= . 

(2)For the sake of contradiction, we assume that 
there exists another solution R’ for SAC-UAQ(Preq, 
Ractive,D), and  R’ is better than  Rsat . By the Definition 
1, we have (i) Preq perm(Rsat), Preq  perm( R’); (ii) 
Activation of Rsat or  R’ satisfies all the DSoD policies 
in D. (iii) perm(R’)  perm(Rsat). Algorithm 1 do a 
backtracking based search for better solution. Assume 
that the stored current best solution is  Rsat , and the 
current selected solution is R’. In step 3.1, checking 
whether  R’ is a better solution than the stored current 
best solution Rsat . If so, record Rsol  as the new best 
solution  Rsat . where the case (iii) perm(R’)   
perm(Rsat) is false. Therefore, There does not exist 
another solution R’ for SAC-UAQ(Preq, Ractive,D), and R’ 
is better than  Rsat .                                                                               
□ 

4. Evaluation and Illustration 

In reference 5, Zhang and Joshi introduced two 
approaches for the UAQ problem. The first approach is 
a two-step algorithm for the UAQ problem based on 
greedy approach. As discussed in Section 1, this 
approach has some false negatives, such as falsely 
rejecting some legal success. The second approach is a 
naive brute-force algorithm that goes through ever 
subset of the set of all roles available to the user. In this 
section, we implement our proposed approach for SAC-
UAQ problem. We first compare our results with those 
from the greedy approach introduce in reference 5. We 
second compare our results with those from the brute-
force approach introduce in reference 5. The 
implementation of the three algorithms was written in 

Java. Experiments were carried out on a notebook with 
an Intel Core i7 2630QM running at 2.0GHz, and with 
DDR3 2GB 1066MHz, running Microsoft Windows 7 
Home Basic. The methodology that we use in 
generating test instances is as follows. 
 The ratio of roles to users is 5:1 
 The ratio of roles to DSoD policies is5:1 
 The ratio of roles to permissions is1:5 
 The ratio of roles to permission request is 2:1 

4.1. Comparison with Greedy Approach 

In order to compare our results with the greedy 
approach proposed in reference 5, we first give a 
running example to show the greedy approach may 
produce a solution satisfies the “role mapping” module 
but fails the “activation checking module”, and 
ultimately the user request get rejected. 

Example 1. Consider the role set R in an RBAC 
system, the role-permission relationships, the role set 
available for a user u, the role activation of another user 
u’, and DSoD policies considered for this example.  
 R={r1,r2,r3,r4,r5,r6,r7,r8,r9,r10} 

 perm(r1)={p1,p3,p6} 
 perm(r2)={p1,p5,p9,p12,p14} 
 perm(r3)={p2,p3,p4,p8,p11} 
 perm(r4)={p1,p6,p13,p14,p16,p19,p20} 
 perm(r5)={p3,p6,p7,p9,p10} 
 perm(r6)={p5,p7,p10,p15,p17,p18,p20} 
 perm(r7)={p1,p4,p15} 
 perm(r8)={p3,p7,p16,p18,p19} 
 perm(r9)={p2,p5} 
 perm(r10)={p7,p9,p11, p20} 

 MAS(H,u)={r1,r3,r7,r9,r10} 
 Active_Role(u’)={r1,r4,r5,r8} 
 DSoD policy: d=ssod<{ p8,p11},{u,u’},2> 

Table 1. Comparison greedy approach with ours  

Permission Request Greedy Approach Our Approach

{p1,p3,p5,p7,p9} 
{r2,r5} 

Reject:un-available 
{r1,r9,r10} 

Grant

{p1,p3,p4,p5,p9,p11}
{r1,r3,r10} 

Reject: un-safe 
{r1,r7,r9,r10}

Grant
The results are summarized in Table 1. When the user 

request to active the permissions in {p1,p3,p5,p7,p9}, the 
greedy approach produces a solution {r2,r5} , while both r2  
and r5 are unavailable for u, thus the permission request 
will be rejected. But our approach can produce the best 
solution {r1,r9,r10}. When the permission request is 
{p1,p3,p4,p5,p9,p11}, the greedy approach produces a 
solution {r1,r3,r10}, although all of the roles in {r1,r3,r10} 
are available for u, let u active r3 violates the DSoD policy 
d, thus the permission request will also be rejected. In fact, 
{r1,r7,r9,r10}  is the best resolution for this problem.  
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Table 2. The results out of the greedy approach 

Out of solution Percentage 
unavailable 43% 
unsafe 27% 
non-optimal 9% 
optimal 21% 

We second implement 100 test cases with varying test 
instances for greedy approach. As shown in Table 2, 79% 
of the test cases produced an incorrect solution, where 43% 
violated the availability checking, and 27% violated the 
safety checking. The remaining 30% produced a correct 
solution. However, 9% produced sub-optimal solutions 
which did not follow the least privilege principle. On the 
other hand, as proved in Theorem 2, our approach always 
produces the best solution for SAC-UAQ. 

4.2. Comparison with Brute-Force Approach 

In order to understand the effectiveness of our approach, 
we have implemented two algorithms: one is our 
approach, the other the brute-force approach. Fig. 2 
shows the result of running the experiments for the two 
approaches. When the number of roles is small, the two 
approaches perform produce comparable results. As the 
number of roles increase, the overall trend in time taken 
increases exponentially making the brute-force 
approach impractical for implementation in dynamic 
systems. On the other hand, our approach takes a few 
seconds, even for a larger number of roles.   

 

Fig. 2. CPU time for our approach and brute-force approach 

5. Related Work 

There are a number of user authorization frameworks in 
the literature which follow different approaches for user 
authorization queries processing in RBAC systems.  

To our knowledge, the notion of Uniquely 
Activatable Set (UAS) first appeared in Joshi et al.1, 
which is similar to our notion of MAS. UAS is 

essentially a set of role sets and each element in it is 
unique in the term of permissions and can be activated 
by the user in one session. They introduce UAS to 
simplify the user authorization query processing. They 
also propose a set of theorems to compute the UAS 
from the hybrid hierarchy. And proposed two 
algorithms to compute UAS for a user, one is called the 
decomposition based algorithm, and the other is called 
the derived relations based algorithm. However, the 
complexities of both algorithms are not polynomial12. 
While computing the complete set of UAS is complex, 
checking whether a set of roles is within the UAS can 
be done within polynomial time13. Zhang and Joshi5 

combined the UAS checking and role mapping together 
with the user authorization processing. They introduced 
the generalized notion of UAS where users can be 
assigned to any role or multiple roles that appear in the 
hierarch. The paper proposed a greedy approach and a 
naive brute force approach for the UAQ problem. As 
shown in Section 4, the greedy search algorithm does 
not consider the effect of any constraint and may choose 
a set of roles violating some constraint. And the brute-
force approach is impractical for implementation in a 
large dynamic system. A more general definition of 
UAQ problem where the permission grant includes both 
a lower bound and an upper bound is introduced by 
Wickramaarachchi et al.6, They introduced two 
approaches for the UAQ problem. The first approach 
extends the Davis-Putnam-Logemann-Loveland (DPLL) 
algorithm, the second approach reduce the UAQ 
problem to the MAXSAT problem. 

However, the above work considered DMER 
constraints rather than DSoD policies that affect the 
solution of UAQ. Li et al.8 considered that the 
distinction between DSoD policies as objectives and 
DMER constraints as a mechanism is not clearly will 
rise the security risks. SoD policy is a fundamental 
principle of information security, the concept of SoD 
can be traced back to 1975 when Saltzer and 
Schroeder14 took it as one of the design principles for 
protecting information, under the name “separation-of-
privilege”. Later on, SoD has been vastly studied by 
various researchers as a principle to avoid frauds. There 
exists a wealth of literature on SoD policies in the 
context of RBAC5. It has been recognized that “one of 
RBAC’s great advantages is that SoD rules can be 
implemented in a natural and efficient way”.  

The first paper on SoD policies in RBAC is 
proposed by Ferraiolo and Kuhn16, who used the terms 
static and dynamic SoD to refer to static and dynamic 
enforcement of SoD. Li et al.8 used static mutually 
exclusive role (SMER) constraints to enforce SSoD 
policies in RBAC. They defined an RSSoD constraint 
(essentially as described in Problem 19 above), but 
provide no analysis of the complexity of computing the 
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set of all such constraints. Note that an RSSoD 
constraint is a set of roles that cover Q and contains no 
redundancy. In other words, the RSSoD generation 
problem is identical to the irreducible cover 
enumeration problem and is, therefore, NP-hard 
(Theorem 2). The above results are summarized in the 
following theorem17. Inspired by the work by Li et al.18, 
they tackled the reduction of the verification of 
resiliency checking problem to a SAT instance. Their 
approach considers a set of static, mutually exclusive 
role constraints. We reduce the SC-DSoD problem to a 
SAT instance builds on their findings, which enables us 
to use existing SAT solvers in our implementation and 
benefit from several decades of research in designing 
SAT solvers. 

6. Conclusions 

In this paper, we defined the notion of safety and 
availability checking for user authorization query (SAC-
UAQ) processing in RBAC systems extended with 
hybrid role hierarchy, and presented a recursive 
algorithm use the ideas from backtracking-based search 
techniques that use the DSoD policies to find a role set 
that cover the desired permissions while following the 
least privilege principle, and satisfying the DSoD 
policies. We compared our approach with the greedy 
approach and brute-force approach in reference 5, and 
found that our approach always provide an optimal 
solution in an efficient way. 
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