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Abstract 

A Peer-to-Peer (P2P) system relies on the cooperation of the peers and the contributions of their resources. To 
motivate autonomous peers share their resources, the system needs to support effective resource allocation 
strategies with respect to peers’ task priorities, and their personal information about valuation. However, peers may 
tend to be selfish for saving their limited resources and act as the free-riders. Some peers may even be malicious 
with the goal to do damage to the system. In this paper, we present a bidding based approach for resource allocation 
to address these issues. We investigate peers’ bidding strategies under different scenarios in terms of probability 
distributions that peers’ valuations of their prioritized tasks follow in achieving the Nash equilibrium. For resisting 
the damage to the P2P system brought by malicious peers, we explore different types of malicious behavior and 
present several statistical mechanisms to detect the malicious peers. The algorithm is also presented for bidders 
performing their auctions. Finally, we conducted experiments to show the effectiveness of the proposed 
mechanisms. 
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1. Introduction 

PEER-TO-PEER networks (P2P) have emerged as new 
technologies in distributed applications, mainly due to 

the advances in network, file sharing system, and 
distributed systems technologies1. P2P systems have 
increased dramatically in its size, use, and underlying 
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protocols, and it has been continuously focused on by 
researchers and engineers.  

To implement an effective and secure resource 
allocation in P2P computing systems, several challenges 
must be addressed. First, as P2P systems are open and 
dynamic, they incorporate different types of peers with 
their private valuations for the public resources and 
multi-priority tasks, which should be considered when 
designing effective resource allocation schemes for 
better sharing of resources. In addition, peers could be 
“selfish” for maximizing their own utility. Moreover, 
some peers may even be malicious and aim at doing 
damage to the system and other peers. Therefore, some 
special mechanisms are needed to detect these malicious 
peers and resist their harmful behavior. 

Recently, there have been many mechanisms 
proposed for resource allocation in different types of 
computing paradigms5-15. They can be categorized into 
three groups1: market-based, reciprocity-based and 
reputation-based approaches. In the market-based 
approaches5-7,11, peers submit bids for resources. Then, 
the resources are allocated due to some predefined 
resource allocation mechanisms.  

In the reciprocity-based approaches12-14, each peer 
records and evaluates the behaviors of others that it 
interacts with, and then makes decision on how to serve 
another one by the direct service exchanges it receives 
from this peer. Moreover, in the methods by using 
reputation-based approaches8-10, the reputation of each 
peer is derived from its behavioral histories of providing 
services and consuming services. A peer having a good 
behavioral history of serving other ones is provided a 
service with better quality, when it competes with other 
users for some resources. Meanwhile, game theoretic 
methods14,15 have also been used to mathematically 
model cooperation in P2P networks. In these methods, 
the authors attempted to make peers achieve a Nash 
equilibrium (NE) state under which no one can improve 
their utility any more by deviating from its current 
strategy. However, we note that the reciprocity-based 
and reputation-based approaches may not be very 
applicable to time-critical P2P computing systems, and 
it needs the system running for an enough long time. 

In this paper, we propose to achieve the goal of 
effective and secure resource allocation in P2P 
computing environments by designing a bidding-based 
method under the game theoretic framework. We start 
by studying a general scenario under which multiple 

peers bid for a group of resources simultaneously, and 
derive the Nash equilibrium solutions. In designing an 
anti-cheating resource allocation mechanism for peers, 
we explore different types of cheating behaviors, and 
then propose several statistics-based mechanisms for 
detecting the malicious peers from the non-cooperative 
environments. Finally, we conduct the experiments to 
show the effectiveness of the proposed methods. 

This paper makes the following major contributions. 
 We address the issue of resource allocation in P2P 

computing environments by incorporating different 
types of peers with varied private valuations for the 
resources and multi-priority tasks, and then derive 
peers’ bidding strategies in achieving NE state. 

 We explore different types of cheating behaviors 
that could be demonstrated by malicious peers 
during the process of bidding for resources, and 
then discuss several statistics-based mechanisms to 
distinguish them from the non-cooperative 
environment. 

 We have made an experimental study on our 
detecting methods. We evaluate the peers’ payoff 
under different scenarios, and find that our 
detecting methods can effectively improve their 
payoff and reduce the malicious bidding behaviors. 

The rest of the paper is organized as follows: Section 
2 gives an overview on the related works. Section 3 
introduces our resource allocation game model among 
peers and the major notations used in this paper. Section 
4 explores the peers’ cheating strategies and presents 
several statistics-based mechanisms for detecting their 
malicious behaviors. The algorithm is given in Section 5 
to help peers make their bidding decisions. Section 6 
conducts extensive experiments to evaluate the 
effectiveness of the proposed methods. Finally, Section 
7 briefly concludes the work presented in this paper. 

2. Related Works 

Recently, there are numerous mechanisms proposed for 
resource allocation in peer-to-peer environments. To 
preserve effective resource allocation among peers, 
existing methods can be roughly classified into three 
main approaches, market-based approaches, reciprocity-
based approaches, and reputation-based approaches. 
These methods usually use the game theoretic technique 
to derive their solutions. 
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2.1.  Market-based approaches 

In the market-based approach, peers submit bids for 
resources, and the resources are allocated according to 
some predefined resource allocation mechanisms.   

In Ref.7, the authors proposed a payment-based 
incentive mechanism to cope with the problem of media 
streaming in the P2P network. Peers can earn points 
through contributing their resources to the P2P system, 
and then use these points to bid for a good source node 
in the next time period. Thus, peers will receive 
different media qualities by making different 
contributions to the P2P network.  

In Ref.11, the authors proposed a proportional-share 
mechanism to allocate resources among the users. 
Under this mechanism, each peer partitioned its budget 
among the multiple resources and receives a fraction of 
each resource proportional to its bid.   

In Ref.16, the authors used a single type of currency 
and a set of banks to facilitate secure trading. A peer’s 
wealth was increased when its resources were 
contributed and decreased when they were consumed.   

2.2. Reciprocity-based approaches 

In reciprocity-based approaches, a peer monitored other 
peers’ behaviors and evaluated their contribution levels, 
which can be defined as a numerical assessment of 
peers’ contribution to the P2P network. These 
approaches usually involve a mutual action, i.e., the 
service quality that a peer received was determined by 
its contribution level.   

In Ref.14, the authors proposed a reciprocity-based 
incentive mechanism named Global Contribution to 
solve the problem of resource sharing in P2P networks. 
The authors introduced a popular tit-for-tat policy to 
keep the fairness of bandwidth contribution to the 
networks.   

In Ref.17, the authors considered altruism as a key 
element of P2P streaming broadcast. They showed that 
the level of altruism has an important impact on the 
overlay. Even a small degree of altruism can bring 
significant benefits to the overall system performance.  

In Ref.18, the authors proposed a taxation model, in 
which resource-rich peers were required to contribute 
more bandwidth to the system and subsidize the 
resource-poor peers. The social welfare was hence 
improved through the redistribution of wealth (that is, 
individual benefits in terms of the received media rate).   

2.3.  Reputation-based approaches 

Reputation-based approaches construct and maintain 
reputation information about peers, and peers with good 
reputations are offered with better services. The 
reputation information about a peer is on the basis of 
feedback from other peers who have interacted with this 
peer. Such feedback can be positive or negative. The 
system uses the feedback to build up a good reputation 
for contributing peers and a bad one for free riders. 

A reputation-based method for resource allocation in 
P2P system was presented in Ref.10. The authors 
thought that every peer had a capacity-limited 
bandwidth for its upstream and downstream connections. 
They used the reputation-based method to increase 
peers’ reputation by contributing their resources to 
others, and peers made use of their reputation for 
downloading.   

In Ref.8, the authors proposed a ranking-based 
method for resource allocation. They presented a 
theoretic framework for optimal resource allocation and 
admission control for peer-to-peer networks. Peer’s 
behavioral ranks were incorporated into the resource 
allocation, and the admission control was used to 
provide differentiated services and can block peers with 
bad ranks.   

Some works on reputation-based systems9 provided 
incentive mechanisms to enforce collaboration between 
peers by controlling not only the provider selection 
policy but also the client selection policy. 

However, we note that in time-critical P2P 
computing systems, some peers may need to obtain 
resources in a real-time manner. As the reciprocity-
based and reputation-based approaches need the system 
running for long enough time, they may not be very 
applicable to these applications. On the other hand, 
current works based on market-based mechanisms 
mainly focus on resource allocation among peers in a 
relatively static environment, while we concentrate on 
an open, dynamic and non-cooperative P2P 
environment where peers can dynamically join or leave 
the system, their tasks can be generated with different 
priorities, and the number of resources and tasks are 
continuously changing with time elapsing. Meanwhile, 
some peers may even perform malicious behaviors. 
Thus, we also propose several statistical mechanisms for 
detecting out the malicious peers from this non-
cooperative environment. In other words, existing works 
may complement well with our work in this aspect. 
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3. Resource Allocation 

In this paper, each resource, such as peer’s CPU cycles 
and the action to transmit a data packet for others, is 
treated as a discrete good and can be provided to 
environments by peers through auctions. When a peer 
needs resources to finish its tasks, it submits bids for 
these resources and competes with other buyers. Each 
peer autonomously generates its own tasks with 
different levels of priorities. Thus, the peers’ valuation 
of the same resource may be quite different according to 
their prioritized tasks. For example, if a peer holds a 
high-priority task, it will be inclined to pay more bids 
for the resource to finish the task. On the contrary, if the 
peer needs to finish a low-priority task, it may submit 
lower bids than its competitors do. In the following of 
this section, we will discuss the resource allocation 
game (RAG) for peers’ prioritized tasks in details. We 
use the first-price sealed-bids auction2 in the game, i.e., 
when several peers compete for one resource, the peer 
who submits the highest bid becomes the winner and 
obtains this resource. 

The major notations used in this paper are given in 
Table 1. 

Table 1. Definitions of major notations 
Notation Definition 

}{)( m
iatA

i
=  The set of tasks generated by ipa  in stage t  

}{ ipaPA =  The set of peers in current environments 
m
iv  spai '  private valuation for its task m

ia  

m
ib  

The corresponding bid submitted by ipa  to obtain a 

resource so as to finish its task m
ia  

}{)( k
ii rtR =  Resources that can be contributed by ipa  in stage t

)(tci  The number of tasks generated by ipa  in stage t  

)(tdi  
The number of available resources contributed 
by ipa in stage t  

k
ig  

The payoff gained by ipa  through selling its k-th
resource by auction in stage t  

),( n
j

m
i rae  

The payoff gained by ipa  after  it obtains 

resource n
jr  and finish the task m

ia  

     

3.1. Game model 

We use the bidding mechanism proposed in Ref.2 to 
model our resources allocation game. In our resources 
allocation game, each task ia  generated by a peer ipa  
has a priority denoted by ( )ipriority a . We also use iv  to 
denote ipa ’s monetary valuation for ia  in terms of its 

( )ipriority a , which is typically application-specific and 
remains unknown by its competitors. Suppose now a 
resource r  is provided to a group of peers, and it can be 
used to finish their tasks. Each ipa  will have a different 
valuation of r  according to the evaluation of its own 
task ia . Without losing generality, we use iv  to denote 

ipa ’s monetary valuation of r  in finishing its task ia . 
In this paper, we focus on achieving a symmetric Nash 
equilibrium, where the bidding function β  is the same 
to all the peers. The bid submitted by ipa  for r  is 
defined by )( ii vb β= .  

First, we introduce our resource allocation game 
(RAG). In such a game, peers’ valuations are at least v  
with 0≥v , and at most v , which is a common 
knowledge known by all peers. Thus, [ ]vv,  is the 
interval over which each peer’s valuation iv  ranges. Let 
N represent the number of peers in a resource allocation 
game, and [ ]},|{ vvssS iii ∈=  be the bidding strategy 
space of peer ipa , then the bidding strategy combination 
of all peers can be denoted by ),,( 1 Nsss ⋅⋅⋅= , where 

iNi SS ≤≤×= 1  is the peers’ strategy space. Furthermore we 
use is−  to denote the strategy combination of all peers 
except ipa , i.e.,  

),,,,( 111 Niii sssss ⋅⋅⋅⋅⋅⋅= +−−  
Next, we use )(sUi  to denote the utility of ipa  under the 
strategy combination s. Finally, a strategy combination, 
s*, is said to achieve the state of Nash equilibrium, if 
and only if the following condition holds: 
            NiSsssUsU iiiiii ≤≤∈∀≥ − 1,),(*)( *                     (1) 
   Note that, if a strategy combination is said to achieve 
the state of Nash equilibrium, then no peer can improve 
its utility by unilaterally deviating from its own strategy. 

3.2. N-peer resource allocation game 

We study a general scenario where there are ( 2)N N >  
peers bidding for a public resource r , which we call a 

peerN −  resource allocation game. Assume that in 
stage t , each ipa   holds a set of tasks }{)( m

ii atA =  with 
each m

ia  having an valuation m
iv . Let )()( tAtc ii =  be 

the number of these tasks. Then, for each task 
)(tAa i

m
i ∈ , ipa  needs to submit a bid m

ib  to get a 
necessary resource so as to finish it. Thus, the total 
amount of payoff gained by ipa  with bidding for 
resources to finish its tasks in stage t , can be given by 

                               ∑
=

−=
)(

1
)()(

tc

m

m
i

m
i

m
ii

i

pbvtE                   (2) 
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where m
ip  is used to denote whether ipa  can 

successfully obtain a resource to finish its task m
ia , i.e., 

if ipa  can do this, 1=m
ip ; otherwise, 0=m

ip . 
Let )(xFi  be the probability distribution function that 

'ipa s  valuation for resources follows on [ ]vv, , which 
can be obtained from its data logs over a long period of 
time. Without losing generality, it is assumed that )(xFi  
is continuous on [ ]vv, , and is defined by  

∫=≤=
V

v iii dxxfVvVF )()Pr()(  

where vV ≤  and )(xfi  is the corresponding probability 
density function (pdf) of )(xFi  on [ ]vv, . 

In the auction for r , each peer is required to report 
its )( ii vF  to the resource provider. Then, resource 
provider broadcasts the information of )}({ xFi  to all the 
peers currently participating in the auction so as to help 
them develop the bidding strategies. In addition, we 
note that some peer may misreport its )(xFi . A 
statistics-based mechanism is given in Section 4.1 for 
checking whether the peers honestly report their ( )iF x .  

     On the other hand, each ipa  can also play a role of 
resource provider, i.e., in stage t , ipa  may have a 
group of available resources }{)( k

ii rtR = , and it can sell 
them out by auction to other peers. Let k

ig  denote the 
payoff gained by ipa  through selling out a resource k

ir  
in stage t , and )()( tRtd ii =  be the number of resources. 
Then, )(tGi , the total amount of payoff gained by ipa  
through selling its resources in stage t , is given by  

                                     ∑
=

=
)(

1
)(

td

k

k
i

k
ii

i

qgtG                         (3) 

where k
iq  is used to denote whether ipa  successfully 

sells out its resource k
ir , i.e., if 1=k

iq , then k
ir  is sold 

out; otherwise, 0=k
iq . 

In this way, the total amount of utility gained by ipa  
in stage t  can be given by: 
                               )()()( tGtEtU iii +=                 
     We give the bidding strategy for peers in achieving 
the state of a symmetric Nash equilibrium in a peerN −  
RAG, and the optimal bidding strategy is given as 
follows.      

Theorem 1.  In the peerN −  RAG, let )(xFi  represent 
the probability distribution that spai '  valuation follows. 
Then, the optimal bidding strategy for the peers in 
achieving the state of a symmetric Nash equilibrium is 

),,,( **
2

*
1

*
Nbbbb ⋅⋅⋅=  where  

                 
∏

∫ ∏

≠=

≠=
−== n

ijj ij

v

v

n

ijj j

iii
vF

dxxF
vvb

i

,1

,1*

)(

)(
)(β                 � 

Note that theorem 1 is different from the conclusion 
presented in Ref.2. In theorem 1, the { ( )}iF x  of peers 
can be different, while in Ref.2, they are required to be 
identical. 

Next, we analyze the existence of NE in the N-peer 
RAG.  
Theorem 2. In the peerN −  RAG, there exists the Nash 
equilibrium. � 

Finally, we also present another property in this N-
peer RAG 2:  
Theorem 3. In peerN −  RAG with private valuations, 
each spai '  optimal bid *

ib  rises in price with the 
increasing number of its competitors.                          � 

4. Malicious-Behavior Detection Mechanisms 

Because P2P computing environments are dynamic and 
open, some peers may be malicious with the goal to do 
damage to the system. In this section, we focus on 
studying malicious behaviors inside the system (i.e., 
these peers also have legitimate identities), and our goal 
is to design several detection mechanisms to distinguish 
these malicious peers from other benign ones in the 
environments. 

In this section, we focus on the scenario where the 
system containing of a finite number of peers will keep 
running for an enough long time. Each peer will stay in 
the system for a reasonably long time. We also assume 
that each peer has a unique registered identity, which 
can be verified by a central authority (CA). This 
identification will be used to perform necessary access 
control and authentication. CA also manages the 
information of all the auctions occurring in the system, 
i.e., after a successful auction, the resource provider 
reports the details of the auction process to CA, which 
includes the identities of the bidders participating in the 
auction, their bids and the final winner. Thus, CA can 
use this information to detect the malicious peers. In 
addition, there exists a central bank (CB) in the system, 
which stores each peer’s virtual currency, deposit and 
transaction. It also fairly exchanges virtual currency 
between resource providers and bidders. 

To provide an effective resource allocation 
mechanism among selfish peers in a hostile 
environment, several statistical mechanisms are 
presented for detecting peers’ malicious behaviors. 
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For a malicious ipa , its goal is to increase its own 
utility by degrading the system performance and 
wasting the resources of other peers as much as possible. 
In general, ipa  can achieve its goal by taking the 
following harmful actions: 

 ipa  misreports its )(xFi . In the RAG, a rational 

ipa can derive its optimal bidding strategy *
ib  

according to theorem 1. It needs to know in 
advance the )}({ xFi of other peers who also join in 
the auction. Thus, in our RAG, each ipa must 
honestly report its )(xFi  to the resource provider. 
However, some malicious peers may misreport 
their )(xFi  to disturb other peers’ bidding strategies 
and do damage to their utilities. We need some 
approaches to detect this kind of cheating behavior. 

 ipa  excessively bids for resources to accomplish its 
own tasks. A malicious peer may also extremely 
bid for as many resources as possible, in order to 
increase the probability of obtaining the resources, 
and at the same time to increase the bids paid by 
other peers (seen from Theorem 3). For example, in 
stage t , a malicious ipa  generates five tasks, 

51,..., ii aa . It submits bids for ten available resources 
in the environments, and obtains eight resources. 
By carefully choosing five resources which have 
lower prices and dropping the other three resources, 

ipa  enhances its payoff. 

4.1. Peer misreports its )(xFi  

In an auction, each rational peer can derive its optimal 
bidding function from the )}({ xFi  of other peers 
according to theorem 1. The system needs each peer to 
honestly report its )(xFi  to the resource provider and 
CA. However, since some malicious peers may 
misreport their )(xFi , we need to devise a method to 
detect their cheating behaviors. Based on chi-square 
goodness-of-fit test3, a mechanism called FDM  is 
discussed in this section to detect this type of cheating 
behavior. The idea of FDM  is to check whether spai '  
actual bidding behavior is consistent with its )(xFi  
reported, i.e., bids submitted by ipa  in the RAGs 
should be rational due to its )(xFi  according to theorem 
1. 

In FDM , let M  represent the total number of 
resource allocation games },...,{ 1 MRAGRAG  which ipa  
had participated in. Let m

ib  represent the bid submitted 

by ipa in an auction )1( MmRAGm ≤≤ , which was also 
reported by the resource provider to CA. Next, for each 

m
ib , CA assumes that spai '  bidding strategy in mRAG  is 

optimal, and it derives spai '  valuation )(1 m
i

m
i bv −= β  

according to theorem 1. Then, each m
iv  is viewed as a 

sample mY  in FDM . Now CA has a group of such 
samples },...,{ 1 MYY  with a size M . Finally, CA only 
needs to test whether the samples },...,{ 1 MYY  follow iF  
on [ , ]v v . 

To do this, CA starts by postulating two hypotheses: 
 Null hypothesis 0 1: { ,..., }MH Y Y follows )(xFi , 

which indicates that ipa  honestly reports its )(xFi ; 
 Alternative hypothesis 1 1: { ,..., }MH Y Y  does not 

follow )(xFi , which indicates that ipa  misreports 
its )(xFi . 

CA then divides the interval [ , ]v v  on which the 
},...,{ 1 MYY  distributes into D  disjoint intervals, DII ,...,1 . 

Let jO  be the actual number of samples located in jI , 
and jEN  be the expected number of samples located in 

jI , i.e., dxxfMEN iIj j
)(∫= . (Here, )(xfi  is the 

corresponding pdf of )(xFi ). Then, CA obtains 

∑ =

−
= D

j
j

jj

E
ENO

1

2
2 )(

χ                              (4) 

If M  is large enough (i.e., 50≥M ), Eq.(4) will 
approximately follow )1(2 −Dχ 3. Let α  be the 
significance level, that is,   

α=)      Pr( 00 resusedisHbuttrueisH . 
For 2χ  in Eq.(4), if it has )1(22 −≥ Dαχχ , CA 
immediately refuses the hypothesis 0H , and ipa  is 
identified to have misreported its )(xFi . 

In general, FDM  can be used to detect whether a 
peer’s bidding behavior is consistent with its )(xFi . 

4.2. Peer excessively bids for resources 

In each stage, some malicious peers may submit bids for 
as many resources as possible, so that they can increase 
their probabilities of winning the resources, and acquire 
those resources at lower prices. This harmful behavior 
can greatly decrease the payoff gained by other peers.  

Now, we propose another method EDM  to prevent 
this behavior, which is also based on chi-square 
goodness-of-fit test. The idea of EDM  is that, if ipa  
submits bids for more than one resource to finish its task 
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ia , then the valuations derived from these bids will not 
accurately follow its reported )(xFi . As presented in 
Section 4.1, peers will have to honestly report their 

)(xFi  and take the optimal bidding strategy. Then, CA 
only needs to check whether spai '  bidding behavior is 
consistent with its reported )(xFi . 

Different from FDM , in EDM , we let }{ m
ib  be a set 

of bids submitted by ipa , which are reported by 
resource providers to CA, and M  be the size of }{ m

ib . 
Then, for each m

ib , CA can immediately derive spai '  
valuation )(1 m

i
m
i bv −= β  by theorem 1. Next, each m

iv  is 
viewed as a sample mY  in EDM . Now, CA has a group 
of such samples },...,{ 1 MYY , and it only needs to check 
whether the samples },...,{ 1 MYY  is consistent with spai '  

)(xFi  on [ , ]v v . To do this, CA postulates two 
hypotheses: 

 Null hypothesis },...,{: 10 MYYH are consistent with 
)(xFi , which indicates that ipa  does not 

excessively bid for resources ; 
 Alternative hypothesis },...,{: 11 MYYH  are not 

consistent with )(xFi , which indicates that ipa  has 
the behavior of excessively bidding for resources. 

If it finds )1(22 −≥ Dαχχ  (where α  is the confidence 
interval), CA immediately refuses the hypothesis 0H , 
and ipa  is detected for having behavior of excessively 
bidding for resources. We conduct experiments on the 
efficiency of EDM , which are given in Section 6.2.  

5. Resource Allocation among Peers 

1: let te  be the deadline of current stage during which  
ipa  can adjust its bidding strategy; 

2: ipa  finds the non-malicious peers that  currently 
provide the resources it needed; 

3: ipa  randomly selects the resource providers, and plans 
to bid for the resources; 

4: ipa  calculates its current payoff, pfcur _ ; 
5: let difference=∞; 1=k ; 
6: while ( te  does not come up) and ( ε>difference ) do 

7:      for each task m
ia  do 

8:        let r be the resource which ipa  plans to bid for; 

9:        if ipa  finds another resource '( ' )r r r≠ which has 

( , ) ( , ')m m
i ie a r e a r< ; 

10:          ipa  chooses to bid for 'r ; 
11:     end for 
12:     ipa  calculates its expected total payoff k

iE ; 

13:     difference= pfcurE k
i _− ; 

14:     1+= kk ; 
15:     ipa  calculates its current payoff, pfcur _ ; 

16: end while
Fig. 1. Algorithm for helping ipa  make its bidding 
strategy in stage t  

In any stage, a peer may hold tasks and resources 
simultaneously. For each task, it bids for a 
corresponding resource to accomplish it. While for the 
resources, it sells them out by auction. In this section, 
we present an algorithm for helping each peer bid for 
the resources. 
  To analyze this process quantitatively, we use an 

indicator ),( n
j

m
i rax  to denote whether ipa  can 

successfully obtain resource n
jr  and finish its task m

ia , 

that is, if ipa  obtains n
jr , then 1),( =n

j
m
i rax ; otherwise, 

0),( =n
j

m
i rax . Let ),( n

j
m
i rae  be the corresponding payoff 

gained by ipa  in finishing m
ia . Then, the total amount 

of payoff, )(tEi , gained by ipa  in t  is given by 
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Let )(tE k
i  denote the total payoff gained by ipa  in the 

thk −  adjustment on its bidding strategy. Then, for 
some >ε 0 set by ipa  itself, if it observes that 

                        1( ) ( )k k
i iE t E t ε+− <                              (6) 

ipa  will not change its bidding strategy any more. 
The algorithm for a peer to make its bidding 

strategies in time stage t is given in Figure 1.  

6. Experiments 

In this section, we present experimental analysis on our 
resource allocation approaches. We test the effects of 
different parameters on the bidding results. The 
simulations are developed with C++ programming 
language and Matlab 7.0. In the experiments, the 
number of peers is set to be 30=N . Each peer’s 
valuation, iF , follows the uniform probability 
distribution on ]1,0[ , i.e., 0=v and 1=v . The number of 
tasks generated by one peer in each stage, )(tci , is 
randomly selected in ]20,1[ . In the experiments, we 
studied on the peers’ payoff and their successfully 
bidding ratio ( SBR ) (i.e., the ratio at which a peer ipa  
can successfully obtain the resources to finish its tasks). 
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iSBR  is defined by 
∑
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== K
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1

)(

)(
, where K  is the 

number of stages that the system has run, and )(tnri is 
the number of resources obtained by ipa  through 
bidding in stage t . Thus, if the value of iSBR  is 1, it 
means that ipa can always successfully obtain the 
resources in the auctions. If the value of iSBR  is 0, it 
means that ipa  can obtain no resources in any RAG.   

6.1. Peer misreporting its )(xFi   

In the experiments, we compared the average payoff 
and SBR  gained by each non-malicious peer under two 
different malicious scenarios, i.e., the scenario where 
the system uses FDM  (proposed in Section 4.1) to 
detect the malicious behaviors (shown in figure 2(c) and 
(d)), and the scenario where the system does not use 

FDM  (shown in figure 2(a) and (b)). The percent of 
malicious peers, ω , is set to increase from 10% to 80%. 
While using FDM , the parameter α  is increased from 
0.02 to 0.08, and the number of time stages is fixed to 
1000. Each malicious ipa  misreports its )(xFi as a 
uniform probability distribution on a different domain 
of ]1,8.0[ . 

In the experiments, we record the ratio of non-
malicious peers’ payoff and SBR with ω  percent of 
malicious peers in the system, to their payoff and SBR  
with no malicious peers in the system, respectively.  As 
shown in Eq.(7) and (8), the ratio of non-malicious 
participants’ payoff and SBR  are denoted by 

)( payoffωη and )(SBRωη , respectively.  

           
∑ ∑
∑ ∑

= =

= Θ∈= K
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1 1
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We let )(tSBRn
i  be the average amount of 

SBR gained by a non-malicious ipa  in stage t  when the 
environment contains some malicious peers. 

        1

1 1
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K n
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=
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                          (8) 

In the equations, we use ωΘ  to denote the set of non-
malicious peers in the environment which contains ω  
percent of malicious peers, )(tE n

i  to denote the amount 
of payoff gained by a non-malicious ipa  under the 
malicious scenario in time stage t , and )(tEi  to 

represent its payoff in stage t  under the scenario with 
no malicious behaviors.       

As shown in figure 2 (a) and (b), when ω  increases, 
the values of )(SBRωη  and )( payoffωη are reduced 
greatly. This is because the non-malicious peers bidding 
at rational prices have little chance to obtain the 
resources in the auctions with their valuations 
distributed on ]1,0[ . However, when the system uses 

FDM  detect the cheating behaviors, the malicious peers 
will be very careful to submit their bids so as to avoid 
being detected out. In this way, the non-malicious peers 
can gain more payoff and SBR . For example, even if the 
ω  increases up to 0.8, the non-malicious peers can 
obtain more than 96 percent of the payoff that they may 
obtain in a non-malicious scenario. 
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Fig. 2. Detecting peers’ designed malicious behavior 

6.2. Peers excessively bidding for resources 

In this section, we use EDM  to identify the malicious 
behavior of excessive bidding. We set ω  (the percent of 
malicious peers) to increase from 10% to 80%. In every 
time stage t , a malicious ipa  generates )(tci  tasks, and 
it will bids for )1)(( >ππ tci resources. The value of 
π increases from 2 to 4. To identify this malicious 

behavior, we use the equation ∑ =

−
= D

j
j

jj

E
ENO

1

2
2 )(

χ  to 

check each spai '  action. The parameter α  is set as 0.05, 
and the value of D  varies in the set of 
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}100,90,80,70,60,50,40,30,20,10{ . The value of M  is set to 
2000. 
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Fig. 3. Peers excessively bidding for resources 

To demonstrate the effectiveness of EDM , we focus 
on two aspects, i.e., whether EDM  can effectively 
identify the malicious peers that excessively bid for 
resources, and whether EDM  is too sensitive to mistreat 
the non-malicious peers as malicious ones. Thus, two 
probabilities MP  and NP  are analyzed. MP  represents 
the probability that a malicious peer can be detected out 
by EDM , while NP  denotes the probability that a non-
malicious peer will not be detected out as a malicious 
one in EDM . As shown in figure 3 (a) and (b), when π  
increases, the value of MP  is incremented significantly, 
which means that EDM  becomes more accurate in 
detecting the malicious peers. The reason is that when a 
peer submits bids for more resources than it actually 
needs, its bidding behavior will deviate significantly 
from its )(xFi . We can also observe from figure 3(b) 
that the probability NP  is approximately 0.945, and the 
value of D  has little impact on it. This means that 

EDM  seldom regards a non-malicious peer as a 
malicious one in performing excessively bidding for 
resources. In this way, we show the effectiveness of 

EDM .  
To show the performance of our method, we also 
compare it with another method named KARMA16, 
which also implemented banks to facilitate secure 
auctions so as to resist the malicious behavior. In the 

experiments, the number of resources that each 
malicious peer bids for is four times as many as the 
number of tasks it generates. The results are shown in 
figure 3 (c) and (d). We can find that the payoff and 
SBR of non-malicious peers suffer greatly from this 
type of malicious behavior. We can also see that our 
method performs much better than KARMA. The 
reason is that if each malicious peer will pay for every 
resource that it has won, KARMA can not find the 
corresponding malicious behavior of excessively 
bidding for resources. While in our method, if a 
malicious peer submits bids for more resources than it 
actually needs, the valuations derived from these bids 
will not accurately follow its )(xFi .  Thus, our method 
can detect this malicious behavior.  

7. Conclusion 

In a peer-to-peer system, peers may tend to be selfish 
for saving their limited resources and act as the free-
riders. Some peers may even be malicious with the goal 
to damage the system. To address these issues, we 
present a market-based approach for allocating 
resources to autonomous peers holding prioritized tasks, 
and detecting malicious peers in non-cooperative peer-
to-peer environments. Several statistical mechanisms 
are presented for detecting out the malicious peers from 
the non-cooperative environments. Finally, we conduct 
some experiments to show the effectiveness of the 
proposed mechanisms. 
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