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Abstract

In this paper, we describe an approach to database preference queries based on the notion of outrank-
ing, suited to the situation where preferences on different attributes are not commensurable. This model
constitutes an alternative to the use of Pareto order whose main drawback is to leave many tuples incom-
parable in general. Even though outranking does not define an order in the mathematical sense of the
term, we describe a technique which yields a complete pre-order, based on a global aggregation of the
outranking degrees computed for each pair of tuples, which reflects the global “quality” of a tuple w.r.t.
the others.

Keywords: Databases, preference queries, outranking.

1. Introduction

The last decade has witnessed an increasing interest
in expressing preferences inside database queries.
Motivations for such a concern are manifold15. First,
it has appeared to be desirable to offer more ex-
pressive query languages that can be more faithful
to what a user intends to say. Second, the intro-
duction of preferences in queries provides a basis
for rank-ordering the retrieved items, which is espe-
cially valuable in case of large sets of items satisfy-
ing a query. Third, on the contrary, a classical query
may also have an empty set of answers, while a re-
laxed (and thus less restrictive) version of the query

might be matched by some items in the database.
This research trend has motivated several distinct
lines of research, in particular fuzzy-set-based ap-
proaches and Pareto-order-based ones.

Fuzzy set-based approaches3,13,14 use fuzzy set
membership functions that describe the preference
profiles of the user on each attribute domain in-
volved in the query. This is especially convenient
and suitable when dealing with numerical domains,
where a continuum of values is to be interfaced for
each domain with satisfaction degrees in the unit in-
terval scale. Then individual satisfaction degrees as-
sociated with elementary conditions are combined
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using a panoply of fuzzy set connectives, which
may go beyond conjunctive and disjunctive aggre-
gations. It must be emphasized that fuzzy set-based
approaches rely on acommensurability hypothesis
between the satisfaction degrees pertaining to the
different attributes taking part to a query.

Approaches based on Pareto order aim at com-
puting non Pareto-dominated answers (viewed as
points in a multidimensional space, their set con-
stitutes a so-called skyline), starting with the pio-
neering works of B̋orzs̋onyi et al.2. Clearly, the
skyline computation approach does not require any
commensurability hypothesis between satisfaction
degrees pertaining to elementary requirements that
refer to different attribute domains, as needed in
the fuzzy set-based approach. Thus, some skyline
points may represent very poor answers with re-
spect to some elementary requirements (while they
are excellent w.r.t. others, and Pareto order yields
a strict partial order only, while fuzzy set-based ap-
proaches lead to complete pre-orders). Kießling16,17

has provided foundations for a Pareto-based prefer-
ence model for database systems. A preference al-
gebra including an operator calledwinnow has also
been proposed by Chomicki12 for an embedding of
preference formulas into a relational setting (and
SQL). See also Torlone and Ciaccia22, who have fo-
cused on the so-calledBest operator aiming at re-
turning the non-dominated tuples of a relation.

The present paper proposes an alternative to the
use of Pareto order in the case where preferences are
not commensurable. Our goal is not to show that this
approach is “better” than those based on Pareto or-
der, but that it constitutes a different way to deal with
preferences inside database queries, that some users
may find more suitable and intuitive (at least in some
given contexts). The semantics of the two prefer-
ence models that we propose, a strict and a broad
one, is less restricted than the Pareto order model.
Indeed, according to the selected model, the result
obtained can take into account only discriminative
preferences, as for Pareto order, or integrate some
compromise by considering indifference situations.
Moreover, through the use of indifference thresh-
olds, the model inherently introduces some uncer-
tainty when comparing two tuples. Even though the

model we define is not a fuzzy-set-based approach
in the sense of the description above, it uses some
fuzzy features to compare tuples with one another.
The situation considered is that of queries involving
preferences on several attributes, which use different
ordinal scales and/or different scoring measures (ex-
pressed either by fuzzy set membership functions or
by ad hoc functions as in (Agrawal and Wimmers,
2000)1). Then, for a given tuple, each atomic pref-
erence leads to compute a score, which may corre-
spond to a level on an ordinal scale. It is assumed,
however, that the user does not authorize any trade-
off between the atomic preference criteria. In other
terms, contrary to the assumption underlying fuzzy-
set-based approaches, the scores associated with the
different partial preferencescannot be aggregated.
The approach we advocate rests on the concept of
outranking, which was introduced in the context of
decision making in (Roy, 1991)21 but has never been
used so far in a database context, to the best of our
knowledge. However, the way we define outrank-
ing in this paper is a bit different from the defini-
tion given in (Roy, 1991)21, even though the general
idea is similar. It is important to emphasize that the
mechanism we propose to order the tuples on the
basis of their global “quality” yields atotal order
whereas no such mechanism exists in21 where only
a partial order is obtained.

The remainder of the paper is organized as fol-
lows. Section 2 presents some related work, in par-
ticular the Pareto-based approach to preference han-
dling in databases. In Section 3, we present a pref-
erence model based on the notion of outranking and
give two versions of it (strict vs. broad preferences).
In each case, we define an extension of the model
which takes into account smooth transitions between
the concepts of concordance, indifference and dis-
cordance. In Section 4, we describe the way such
preference queries can be expressed by means of an
SQL-like language and we briefly deal with query
evaluation. Finally, Section 5 concludes the paper
and outlines some perspectives for future work. The
proofs of all the theorems are in the appendix at the
end of the paper.
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2. Relatedwork

Let us first recall the general principle of the ap-
proaches based on Pareto order. Let{G1, G2, ...,
Gn} be a set of the atomic preferences. We denote
by t ≻Gi t ′ (resp.t �Gi t ′) the statement “tuplet sat-
isfies preferenceGi better than (resp. as least as well
as) tuplet ′”. Using Pareto order, a tuplet dominates
another tuplet ′ iff

∀i∈{1, . . . ,n}, t �Gi t ′ and∃k∈{1, . . . ,n}, t ≻Gk t ′.

In other words,t dominatest ′ if it is at least as good
ast ′ regarding every preference, and is strictly better
thant ′ regarding at least one preference. The follow-
ing example uses the syntax of the languagePrefer-
ence SQL17, which is a typical representative of a
Pareto-based approach.

Table 1. An extension of relationcar.

make category price color mileage
t1 Opel roadster 4500 blue 20,000
t2 Ford SUV 4000 red 20,000
t3 VW roadster 5000 red 10,000
t4 Opel roadster 5000 red 8,000
t5 Fiat roadster 4500 red 16,000
t6 Renault sedan 5500 blue 24,000
t7 Seat sedan 4000 green 12,000

Example 1a. Let us consider a relationcar of
schema (make, category, price, color, mileage)
whose extension is given in Table 1, and the query:

select* from car
wheremileage6 20,000
preferring (category = ‘SUV’elsecategory = ‘road-
ster’) and (make = ‘VW’ elsemake = ‘Ford’else
make = ‘Opel’);

The idea is to retain the tuples which are not domi-
nated in the sense of the “preferring” clause. Tuples
t1, t4, t5, t6 andt7 from Table 1 are discarded since
they are Pareto-dominated byt2 andt3. On the other
hand,t2 andt3 are incomparable and the final answer
is {t2, t3}.⋄

Consider now the following example.

Example 1b. Let us consider again the extension
from Table 1, and the query:

select* from car
preferring
(color = ‘blue’elsecolor = ‘red’elsecolor = ‘green’)
and
(make = ‘VW’ else make = ‘Seat’else make =
‘Opel’ elsemake = ‘Ford’)and
(category = ‘sedan’elsecategory = ‘roadster’else
category = ‘coupe’elsecategory = ‘SUV’)and
(leastprice)and (leastmileage);

Here, all the tuples are pairwise incomparable. So
the final answer is the “flat” set{t1, t2, t3, t4, t5, t6,
t7}, i.e., the entire relationcar.⋄

When the number of dimensions on which prefer-
ences are expressed gets high, many tuples may be-
come incomparable. Several approaches have been
proposed to define an order for two incomparable
tuples in the context of skylines, based on:

• the number of other tuples that each of the two
tuples dominates (notion ofk-representative dom-
inance proposed by Linet al. 18) or

• some preference order of the attributes; see
for instance the notions ofk-dominance andk-
frequency introduced by Chanet al. 10,11.

Even if these approaches make it possible to some
extent to avoid incomparable elements, they are all
based on aBoolean notion, namely that of domi-
nance. What we propose is an alternative seman-
tics to the modeling of preference queries involving
incommensurable criteria, which takes into account
theextent to which an element is better than another
for a given atomic preference. In other words, the
approach we propose is fundamentally gradual, un-
like those based on Pareto order such as Skyline and
its different variants.

Unlike the family of approaches based on
Pareto order, score-based approaches (including
those based on fuzzy set theory3,13,14 as well as
the quantitative approach proposed by Agrawal and
Wimmers1 and top-kqueries9) do not deal with in-
commensurable preferences. Besides Pareto-order-
based approaches, only CP-nets7,8 handle incom-
mensurable preferences, but they do so only within
a restrictive interpretation setting.

The use of CP-Nets in database preference
queries has been advocated by Brafman and
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Domshlak8 — whereasthis approach was initially
developed in artificial intelligence7. CP-nets are
a graphical representation of conditionalceteris
paribus preference statements. The underlying idea
is that users’ preferences generally express that, in a
given context, a partially described state of affairs is
strictly preferred to another mutually exclusive par-
tially described state of affairs, in aceteris paribus
way, i.e., everything else being equal in the descrip-
tion of the two compared states of affairs. With CP-
nets, the user describes how his preferences over the
values of one variable depend on the value of other
variables. For instance, a user may express a query
involving the following preference statements:

• s1: the user prefers minivan cars to sedan cars;
• s2: for minivans, he prefers Chrysler to Ford;
• s3: for sedans, he prefers Ford to Chrysler;
• s4: in Ford cars, he prefers the black ones to the

white ones;
• s5: in Chrysler cars, he prefers the white ones to

the black ones.

To sum up, CP-nets deal withconditional prefer-
ence statements and use theceteris paribus seman-
tics, whereas we deal withnon-conditional prefer-
ence statements and consider thetotalitarian seman-
tics (i.e., when evaluating the preference clause of a
query, oneignores the values of the attributes which
are not involved in the preference statement). Let
us mention that the totalitarian semantics is implic-
itly favored by most of the authors in the database
community, including those who advocate a Pareto-
based type of approach.

3. Principle of the approach

In this section, we first present the basic concepts
used further. We then describe two versions of the
outranking-based preference query model (strict vs.
broad preferences). In each case, we define an exten-
sion of the model which takes into account smooth
transitions between the concepts of concordance, in-
difference and discordance.

3.1. Basic notions

3.1.1. Atomic preference modeling

Inside their queries, users can integrate atomic pref-
erences represented by means of an ordinal scale,
especially for categorical attributes, or by means
of explicit scoring function, mainly for numeric at-
tributes.

An ordinal scale is specified as:

S1 > S2 > ... > Sm

such that the elements fromS1 get scorem while
those fromSm get score 1. In other words, an or-
dinal scale involvingm levels is associated with a
mapping: level → {1, , . . . , m} such that the pre-
ferred level corresponds to scorem and the less pre-
ferred one to score 1. A value absent from the scale
gets score zero. The scale may include the special
elementother as a bottom value so as to express
that any value non explicitly specified in the list is
an acceptable choice but is worse than the explic-
itly specified ones: it then corresponds to score 1.
Notice that this way of doing “freezes” the distance
between the elements of the list. For instance, with
the ordered list{VW, Audi} ≻ {BMW} ≻ {Seat,
Opel} ≻ {Ford}, the distance between, e.g., VW
and BMW is assumed to be the same as, e.g., that be-
tween Opel and Ford. If the user wants to avoid this
phenomenon, he/she can elicitate the scores in an
explicit manner, specifying for instance:{1/{VW,
Audi}, 0.8/{BMW}, 0.5/{Seat, Opel}, 0.3/{Ford}}.
This has no impact on the interpretation model de-
scribed further.

As to explicitly defined scoring functions (which
concern numerical attributes), they model flexible
conditions of the formattribute 6 α , attribute ≈ α
andattribute > α whereα is a constant. In the fol-
lowing examples, it will be assumed that they take
their values in the unit interval[0, 1] but this is not
mandatory.

3.1.2. Concordance, indifference, discordance

The outranking relation relies on two basic notions,
concordance and discordance. Concordance repre-
sents the proportion of preferences which validate
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the assertion“ t is preferred tot ′”, denoted byt ≻ t ′,
whereas discordance represents the proportion of
preferences which contradict this assertion.

Let A1, A2,..., An be the attributes concerned re-
spectively by the set of preferencesG = {G1, G2,
..., Gn}. Let g1, g2, ..., gn be the scoring functions
associated respectively with preferencesG1, G2, ...,
Gn.

Indifferent preferences: Each preferenceG j may
be associated with a thresholdq j. PreferenceG j is
indifferent with the statement “t is preferred tot ′” iff
|g j(t.A j)−g j(t ′.A j)|6 q j. This notion makes it pos-
sible to take into account some uncertainty or some
tolerance on the definition of the elementary prefer-
ences.

Concordant preferences: G j is concordant with
the statement “t is preferred tot ′” iff g j(t.A j) >
g j(t ′.A j)+q j.

Discordant preferences: PreferenceG j is dis-
cordant with the statement “t is preferred tot ′” iff
g j(t ′.A j)> g j(t.A j)+q j.

In the following, we denote byC(t, t ′) (resp.
I(t, t ′), resp. D(t, t ′)) the set of concordant (resp.
indifferent, discordant) preferences fromG with re-
spect tot ≻ t ′.

3.2. Strict preference model (≻)

In this first model5, only the discriminating prefer-
ences (i.e., the concordant and discordant criteria)
are used to compare two tuples, while the indiffer-
ent ones are ignored. We first present a version of
the approach where theq j’s are interpreted as crisp
thresholds, then we extend it in order to handle fuzzy
thresholds.

3.2.1. Basic version

In this crisp version, the degree of outranking at-
tached tot ≻ t ′, denoted byout1(t, t ′), reflects the
truth of the statement: most of the important criteria
are concordant witht ≻ t ′ and few of the important
criteria are discordant witht ≻ t ′. It is assumed that
a weightw j is attached to each preferenceG j in or-
der to express its importance, and that the sum of
the weights equals 1. The outranking degree can be

evaluated by the following formula:

out1(t, t ′) =⊤(conc(t, t ′),1−disc(t, t ′)) (1)

where⊤ is a triangular norm and

conc(t, t ′) = ∑
G j∈C(t, t ′)

w j,

disc(t, t ′) = ∑
G j∈D(t, t ′)

w j.

In the following, we use Łukasiewicz’ t-norm de-
fined as:⊤Lu(x, y) = max(0, x+ y−1) since it has
interesting properties (cf. Theorem 3a below).

Theorem 1a.Let us define:

ind(t, t ′) = ∑
G j∈I(t, t ′)

w j.

One has:

∀(t, t ′), conc(t, t ′)+ ind(t, t ′)+disc(t, t ′) = 1.�

Lemma 1a.One has:

conc(t, t ′) = 1⇒ disc(t, t ′) = 0

and

disc(t, t ′) = 1⇒ conc(t, t ′) = 0.�

Theorem 2a.∀(t, t ′), conc(t, t ′) = disc(t ′, t).�

Theorem 3a. (Antisymmetry) If conc(t, t ′) >

disc(t, t ′) then:

out1(t, t ′) = conc(t, t ′)−disc(t, t ′) and

out1(t
′, t) = 0.

Otherwise, one has:

out1(t, t ′) = 0 and

out1(t
′, t) = disc(t, t ′)− conc(t, t ′).

In other words, ift somewhat outrankst ′, then t ′

does not outrankt at all, and reciprocally.�

Theorem 4a.∀t, out1(t, t) = 0.�

Example 2a. Let us consider the extension of the
relationcar from Table 1 and the preferences:

for color:
blue≻ black≻ red≻ yellow ≻ green≻ white ≻
other; qcolor = 1; wcolor = 0.1;
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for make:
VW ≻ Audi ≻ BMW ≻ Seat≻ Opel ≻ Ford ≻
other; qmake = 1; wmake = 0.2;

for category:
sedan≻ roadster≻ coupe≻ SUV ≻ other; qcategory

= 1; wcategory = 0.3;

for price:
score(price) = 1 if price6 4000, 0 if price> 6000,
linear in-between;qprice = 0.2;wprice = 0.2;

for mileage:
score(mileage) = 1 if mileage6 15,000, 0 if mileage
> 20,000, linear in-between;qmileage = 0.2; wmileage

= 0.2.

Table 2. Scores obtained by the values fromcar (Example 2a).

make category price color mileage
t1 3 4 0.75 7 0
t2 2 2 1 5 0
t3 7 4 0.5 5 1
t4 3 4 0.5 5 1
t5 1 4 0.75 5 0.8
t6 1 5 0.25 7 0
t7 4 5 1 3 1

Table 2 gives the scores obtained by each tu-
ple for every preference. Notice that in the
sense of Pareto order,t3 dominatest4 and tuples
t1, t2, t3, t5, t6, t7 are incomparable. Thus the result
of a Pareto-based system such asPreference SQL17

would be the “flat” set{t1, t2, t3, t5, t6, t7}, whereas
the approach we propose yields a much more dis-
criminated result, as we will see below.
Let us compute the outranking degreeout1(t1, t2).
The concordant criteria are category and color; the
indifferent ones are make and mileage; the only dis-
cordant one is price. We get:

conc(t1, t2) = wcategory +wcolor = 0.4,
ind(t1, t2) = wmake +wmileage = 0.4,
disc(t1, t2) = wprice = 0.2, hence:
out1(t1, t2) = max(0, 0.4+(1−0.2)−1) =0.2.⋄

Table 3 gives the outranking degree obtained for ev-
ery pair of tuples (t, t ′) from relationcar. A value
in the table corresponds to the outranking degree of

t ≻ t ′ wheret is the tuple corresponding to the line
andt ′ that corresponding to the column. From such
a table, one can build a directed graph such that a
vertex corresponds to a tuple, and there is an edge
from t to t ′ iff out1(t, t ′) > 0. The potential use of
such a graph-based modeling is discussed at the end
of this subsection.

Table 3. Outranking degrees (Example 2a).

t1 t2 t3 t4 t5 t6 t7 µ1

t1 0 0.2 0 0.1 0.1 0.4 0 0.13
t2 0 0 0 0 0 0 0 0
t3 0.1 0.5 0 0.2 0 0.5 0.1 0.23
t4 0 0.3 0 0 0 0.5 0 0.13
t5 0 0.3 0 0 0 0.3 0 0.1
t6 0 0.2 0 0 0 0 0 0.03
t7 0.3 0.6 0 0.1 0.3 0.5 0 0.3
max 0.3 0.6 0 0.2 0.3 0.5 0.1
µ2 0.07 0.35 0 0.07 0.07 0.37 0.02

Notice that due to the use of indifference thresh-
olds, thedegree of outranking does not define an or-
der since the notion of outranking is not transitive
(there may exist cycles in the graph). It is worth re-
calling that the outranking degree computed during
the comparison of two tuples does not define a score
and does not characterize one of the two compared
tuples. This degree represents the trust in the out-
ranking relation between these two tuples.

For instance, consider the three tuples from Ta-
ble 4. We have:

• t ′1 somewhat outrankst ′2: out1(t ′1, t ′2) = 0.2,

• t ′2 somewhat outrankst ′3: out1(t ′2, t ′3) = 0.1,

• t ′3 somewhat outrankst ′1: out1(t ′3, t ′1) = 0.3.

Table 4. Non-transitivity of outranking.

make category price color mileage
t ′1 4 4 0.5 1 0
t ′2 1 2 0.5 7 1
t ′3 5 3 0.5 4 0.5

However, several ways can be envisaged to rank
the tuples,based on different aggregations of the
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outranking degrees, thus on aglobal evaluation of
each tuple:

1. for everyt, one computes the degree

µ1(t) =
Σt ′∈r\{t}out1(t, t ′)

|r| −1

where|r| denotes thecardinality ofr. Then,
one ranks the tuples in decreasing order ofµ1.
Then, a tuplet is all the more preferred as it
outranks most of the other tuples (where the
fuzzy quantifiermost is assumed to be defined
as µmost(x) = x, ∀x ∈ [0, 1]). With the data
from Table 1, one gets the order:t7 > t3 >
{t1, t4}> t5 > t6 > t2.

2. for everyt, one computes the degree

µ2(t) =
Σt ′∈r\{t}out1(t ′, t)

|r| −1

Then, oneranks the tuples in increasing order
of µ2. A tuple t is all the less preferred as
most of the other tuples somewhat outrank it.
With the data from Table 1, one gets the order:
t3 > t7 > {t1, t4, t5}> t2 > t6.

3. for each tuplet, one computes the degree:

µ3(t) =⊤(µ1(t), 1−µ2(t))

where⊤ is a triangular norm expressing a
fuzzy conjunction and one ranks the tuples in
increasing order ofµ3. This degree reflects
the extent to whicht outranks many tuples
and is not outranked by many. Using the t-
norm minimum, the data from Table 1 leads
to: t7 > t3 > {t1, t4} > t5 > t6 > t2, i.e., the
same order as withµ1 alone. The t-norm
product also yields the same order, whereas
with Łukasiewicz’ t-norm one gets:t7 > t3 >
{t1, t4} > t5 > {t2, t6}. The triangular norm
is a parameter of the model and its choice de-
pends on the way one wants to combine the
two aspects “outranking many” and “not be-
ing outranked by many”. A reasonable default
choice may be considered to be the minimum
(as in a fuzzy querying setting).

4. for eacht, one computes the maximummax
over the outranking degreest ′ ≻ t for everyt ′

of r. Then, one ranks the tuples in increasing
order ofmax. A tuple is all the more preferred
as it is not highly outranked by any other tu-
ple. With the data from Table 1, one gets the
order:t3 > t7 > t4 > {t1, t5}> t6 > t2.

Notice that since the outranking graph built from Ta-
ble 3 does not induce any outranking cycle, there
exists a straightforward method to order the tuples.
The idea is to partition the relation the following
way:

class1: the tuples fromr which are outranked by no
other;r1 = r− class1;
class2: the tuples fromr1 which are outranked by no
other fromr1; r2 = r1− class2;
...

Here, we get the order:t3 > t7 > t1 > t4 > t5 >
{t2, t6}. However, a drawback of this method is that
it does not take into account thedegrees of outrank-
ing (it views outranking as a Boolean notion).

Considering that:

• µ1 and µ2 only capture one side of the problem
(i.e., either how much a tuple outranks the oth-
ers or how much it is outranked by the others),
whereasµ3 captures both,

• the max method is purely qualitative and reflects
only the “worst” outranking situation for each tu-
ple,

it can be argued that the most suitable ranking
method is that based onµ3. In order to relativize the
impact of small differences between the outranking
degrees, it is useful to make these degrees appear in
the ranked result returned to the user. In the case of
Example 2a, the result would then be presented in
the form:

0.3/t7 > 0.23/t3 >0.13/{t1, t4}>

0.1/t5 > 0.03/t6 > 0/t2.
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3.2.2. Fuzzy version

The idea is to make gradual the transition related
to the thresholdq j and consequently the notions
of concordance and discordance, as suggested in
(Perny and Roy, 1992)20 in a decision-making con-
text. One introduces a second positive thresholdδ j

attached to a preferenceG j.
Let µind j(a) be the trapezoidal membership func-

tion of support[g j(a)−q j −δ j, g j(a)+q j +δ j] and
of core[g j(a)−q j, g j(a)+q j] (cf. Figure 1).

Let µconc j(a) be the trapezoidal membership func-
tion of support]− ∞, g j(a)− q j] and of core]−
∞, g j(a)−q j −δ j] (cf. Figure 1).

Let µdisc j(a) be the trapezoidal membership func-
tion of support[g j(a)+q j,+∞[ and of core[g j(a)+
q j +δ j, +∞[ (cf. Figure 1).

Fig. 1. Concordance, indifference, discordance.

One candefine:

• the degree of concordance ofG j with t ≻ t ′ as:

c j(t, t ′) = µconc j(t.A j)(g j(t
′.A j)).

• the degree of indifference ofG j w.r.t. a ≻ t ′ as:

ind j(t, t ′) = µind j(t.A j)(g j(t
′.A j)).

• the degree of discordance ofG j with t ≻ t ′ as:

d j(t, t ′) = µdisc j(t.A j)(g j(t
′.A j)).

Theorem 5a.

∀(t, t ′), c j(t, t ′)+ ind j(t, t ′)+d j(t, t ′) = 1.�

Theorem 6a.

∀(t, t ′), c j(t, t ′)> 0⇒ d j(t, t ′) = 0.�

Theorem 7a.

∀(t, t ′), c j(t, t ′) = d j(t
′, t).�

As to the overall degree of concordance (resp. dis-
cordance), one defines:

conc(t, t ′) = ∑
i=1..n

wi · ci(t, t ′).

and:
disc(t, t ′) = ∑

i=1..n

wi ·di(t, t ′).

Theorem 8a.Theorem 1a still holds, i.e., one has:

∀(t, t ′), conc(t, t ′)+ ind(t, t ′)+disc(t, t ′) = 1.�

The overall degree of outranking oft ≻ t ′ is ex-
pressed as before as:

out1(t, t ′) =⊤Lu(conc(t, t ′),1−disc(t, t ′))

Theorem 9a.Theorem 2a still holds, i.e., one has:

∀(t, t ′), conc(t, t ′) = disc(t ′, t).�

Theorem 10a.Theorem 3a still holds.�

Example 3a.Let us use again the data from Table 1
with the same weightswi and the same thresholdsqi

as in Example 2a, and the following thresholdsδi:

δcolor = 2, δmake = 2, δcategory = 2,
δprice = 0.2, δmileage = 0.2

Notice that (qi = 1, δi = 2) means thatindi(t, t ′) =
1 if |t.Ai − t ′.Ai| 6 1, 0.5 if |t.Ai − t ′.Ai| = 2, 0 if
|t.Ai − t ′.Ai| > 3. Let us compute the degree of out-
rankingout1(t1, t2). We have:

ccolor(t1, t2) = 0.5,indcolor(t1, t2) = 0.5,
ccategory(t1, t2) = 0.5,indcategory(t1, t2) = 0.5,
dprice(t1, t2) = 0.25,indprice(t1, t2) = 0.75,
indmake(t1, t2) = 1,
indmileage(t1, t2) = 1.

We get:

conc(t1, t2) = 0.1×0.5+0.3×0.5= 0.2
ind(t1, t2) = 0.75,

Published by Atlantis Press 
      Copyright: the authors 
                   796



An Approach to Database Preference Queries Based on Outranking

disc(t1, t2) = 0.2×0.25 = 0.05.

Finally:

out1(t1, t2) = max(0, 0.2+(1−0.05)−1) =0.15.

Using the individual scores from Table 2, we get the
outranking degrees represented in Table 5.

Table 5. Outranking degrees (Example 3a).

t1 t2 t3 t4 t5 t6 t7 µ1

t1 0 0.15 0 0 0 0.3 0 0.07
t2 0 0 0 0 0 0 0 0
t3 0.3 0.35 0 0.2 0.15 0.4 0.05 0.24
t4 0.1 0.15 0 0 0.05 0.3 0 0.1
t5 0.05 0.3 0 0 0 0.35 0 0.12
t6 0 0.15 0 0 0 0 0 0.02
t7 0.15 0.55 0 0.15 0.2 0.5 0 0.26
µ2 0.1 0.27 0 0.06 0.07 0.31 0.008

For the same reasons as before, we choose the
ranking basedon µ3 and the result returned to the
user is:

0.26/t7 > 0.24/t3 > 0.12/t5 > 0.1/t4 >
0.07/t1 > 0.02/t6 > 0/t2.⋄

3.3. Broad preference model (�)

In this second model6, we take into account all of the
criteria (including the indifferent ones) in the defini-
tion of outranking.

3.3.1. Basic version

The outranking degree attached to the statementt �
t ′ (meaning “t is at least as good ast ′”), denoted by
out2(t, t ′), now reflects the truth of the statement:
most of the important criteria are concordantor in-
different with t � t ′ and few of the important criteria
are discordant witht � t ′. It is evaluated by the fol-
lowing formula:

out2(t, t ′) = conc(t, t ′)+ ind(t, t ′)

= 1−disc(t, t ′).
(2)

Theorems 1a and 2a straightforwardly hold since
they do not depend on the definition of outranking.

On the other hand, Theorem 3a does not hold any-
more and must be replaced by the following.

Theorem 3b.∀(t, t ′), out2(t, t ′)> 1−out2(t ′, t).�

Theorem 4b.∀t, out2(t, t) = 1.�

From Equation 2 and Theorem 2a, one gets:

out2(t, t ′) = 1− conc(t ′, t). (3)

Table 6. Concordance degrees (Example 2b).

t1 t2 t3 t4 t5 t6 t7
t1 0 0.4 0.3 0.3 0.3 0.4 0.1
t2 0.2 0 0.2 0.2 0.2 0.2 0.1
t3 0.4 0.7 0 0.2 0.2 0.6 0.3
t4 0.2 0.5 0 0 0.2 0.6 0.1
t5 0.2 0.5 0.2 0.2 0 0.4 0.1
t6 0 0.4 0.1 0.1 0.1 0 0.1
t7 0.4 0.7 0.2 0.2 0.4 0.6 0

Table 7. Outranking degrees (Example 2b).

t1 t2 t3 t4 t5 t6 t7 µ1

t1 1 0.8 0.6 0.8 0.8 1 0.6 0.77
t2 0.6 1 0.3 0.5 0.5 0.6 0.3 0.47
t3 0.7 0.8 1 1 0.8 0.9 0.8 0.83
t4 0.7 0.8 0.8 1 0.8 0.9 0.8 0.8
t5 0.7 0.8 0.8 0.8 1 0.9 0.6 0.77
t6 0.6 0.8 0.4 0.4 0.6 1 0.4 0.53
t7 0.9 0.9 0.7 0.9 0.9 0.9 1 0.87

Example 2b. Let ususe the data from Table 2 and
compute the degreeout2(t1, t2). The concordant cri-
teria are category and color; the indifferent ones are
make and mileage; the only discordant one is price.
We get:

conc(t1, t2) = wcategory +wcolor = 0.4,
ind(t1, t2) = wmake +wmileage = 0.4,
disc(t1, t2) = wprice = 0.2, hence:
out2(t1, t2) = 0.4+0.4= 0.8.

Table 6 gives the concordance degree obtained for
every pair of tuples (t, t ′) from relationcar. Table
7 — which can be straightforwardly computed from
Table 6 thanks to Equation 3 — gives the outranking
degree oft � t ′ for every pair of tuples (t, t ′) from
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relation car. Table 7 includes an extra columnµ1

whose meaning is given hereafter.⋄
This time, the global evaluation of each tuple

may be based on the following process:

1. for every tuplet, one computes the degree:

µ1(t) =
Σt ′∈r\{t}out2(t, t ′)

|r| −1

where|r| denotes thecardinality ofr. Degree
µ1(t) expresses the extent to whicht is better
to (or as good as) most of the other tuples from
r (where the fuzzy quantifiermost is assumed
to be defined asµmost(x) = x, ∀x ∈ [0, 1]).
These degrees appear in the last column of Ta-
ble 7.

2. one ranks the tuples in increasing order of
µ1(t).

The data from Table 1 leads to:

0.87/t7 >0.83/t3 > 0.8/t4 >

0.77/{t1, t5}> 0.53/t6 > 0.47/t2.

It is interesting to notice thatµ1(t) also captures the
extent to whicht is not worse than most of the other
tuples. Indeed, let us consider

µ2(t) =
Σt ′∈r\{t}conc(t ′, t)

|r| −1

Degreeµ2(t) expresses the extent to whicht is worse
than most of the other tuples fromr. Due to Equa-
tion 3, one has:∀t, µ1(t) = 1−µ2(t). Thus, ranking
the tuples according toµ1 or to 1− µ2 leads to the
same ordering.

3.3.2. Fuzzy version

As before, the transition between concordance and
indifference on the one hand, indifference and dis-
cordance on the other hand, are made gradual.c j,
ind j and d j are defined as in Subsection 3.2.2 but
outranking degrees are now computed usingout2 (cf.
Formula 3).

Theorems 5a-9a straightforwardly hold since they
do not depend on the definition of outranking.

Theorem 10b.Theorem 3b still holds.�

Table 8. Concordance degrees (Example 3b).

t1 t2 t3 t4 t5 t6 t7
t1 0 0.2 0.1 0.1 0.15 0.3 0.1
t2 0.25 0 0.2 0.2 0.05 0.2 0.05
t3 0.4 0.55 0 0.2 0.2 0.45 0.25
t4 0.2 0.35 0 0 0.1 0.35 0.05
t5 0.2 0.35 0.05 0.05 0 0.05 0.25
t6 0 0.35 0.05 0.05 0.05 0 0.6
t7 0.25 0.6 0.2 0.2 0.25 0.1 0

Example 3b.Let uscompute the degreeout2(t1, t2).
We have:

ccolor(t1, t2) = 0.5,indcolor(t1, t2) = 0.5,
ccategory(t1, t2) = 0.5,indcategory(t1, t2) = 0.5,
dprice(t1, t2) = 0.25,indprice(t1, t2) = 0.75,
indmake(t1, t2) = 1,
indmileage(t1, t2) = 1.

We get:

conc(t1, t2) = 0.1×0.5+0.3×0.5= 0.2
ind(t1, t2) = 0.75,
disc(t1, t2) = 0.2×0.25 = 0.05.

Finally: out2(t1, t2) = 0.2+0.75= 0.95.

Using the individual scores from Table 2, we get the
concordance degrees represented in Table 8. Table
9 gives the outranking degree oft � t ′ for every pair
of tuples (t, t ′) from relationcar.

Table 9. Outranking degrees (Example 3b).

t1 t2 t3 t4 t5 t6 t7 µ1

t1 1 0.95 0.6 0.8 0.8 1 0.75 0.82
t2 1 1 0.45 0.65 0.65 0.65 0.4 0.63
t3 0.9 0.8 1 1 0.95 0.95 0.8 0.9
t4 0.9 0.8 0.8 1 0.95 0.95 0.8 0.87
t5 0.85 0.95 0.8 0.9 1 0.6 0.95 0.84
t6 0.7 0.8 0.55 0.65 0.6 1 0.9 0.7
t7 0.9 0.95 0.75 0.95 0.95 0.4 1 0.82
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The rankingmethod based onµ1 yields:

0.9/t3 >0.87/t4 > 0.84/t5 >

0.78/{t1, t7}> 0.7/t6 > 0.6/t2.⋄

3.4. Relation with Pareto order

Let us now examine the type of relationship that ex-
ists between the outranking-based approach(es) de-
scribed in the previous subsections and the prefer-
ence query model based on Pareto order.

Let t andt ′ be two tuples such thatt is better than
t ′ in the sense of Pareto order (denoted byt >P t ′).
It is straightforward to prove that in the case where
∀ j, q j = 0 (case of usual Skyline or Preference SQL
queries), one has

t >P t ′

⇒ conc(t, t ′)> 0 anddisc(t, t ′) = 0.

⇒⊤Lu(conc(t, t ′), 1−disc(t, t ′)) = conc(t, t ′)> 0

⇒ out1(t, t ′)> 0 andout1(t
′, t) = 0 (Theorem 3a).

Besides:

t >P t ′ ⇒ conc(t, t ′)> 0 anddisc(t, t ′) = 0.

conc(t, t ′)> 0⇔ disc(t ′, t)> 0 (Theorem 2a)

disc(t, t ′) = 0⇒ out2(t, t ′) = 1 and

disc(t ′, t)> 0⇒ out2(t
′, t)< 1.

Hence:

t >P t ′ ⇒ out2(t, t ′)> out2(t
′, t).

Moreover, we have:

t >P t ′ ⇒ (∀t ′′, out(t, t ′′)> out(t ′, t ′′) and

out(t ′′, t)6 out(t ′′, t ′))

whereout is eitherout1 or out2. Notice that this lat-
ter result is valid even when the indifference thresh-
old q j’s are nonzero. Indeed,t >P t ′ means that for
every preferenceG j, one hasg j(t) > g j(t ′), which
implies:

∀t ′′, conc(t, t ′′)> conc(t ′, t ′′) and

disc(t, t ′′)6 disc(t ′, t ′′).

Thus,

∀t ′′, out(t, t ′′)> out(t ′, t ′′).

This result guarantees thatt will be ranked before
t ′ in the final result, whatever the preference model
used (strict or broad).

3.5. On the originality of the approach

The aim of this subsection is to point out what, in
the approach we propose, comes from (Roy, 1991)21

and what is original. First, let us recall that the out-
ranking approach described in (Roy, 1991)21 is sit-
uated in a decision-making context, not a database
querying one. The author considers a set of poten-
tial actions, a decision-maker who assesses each po-
tential action according to a given set of criteria, and
the objective is to determine which are the “best”
actions. In our approach, a potential action corre-
sponds to a tuple, and a criterion corresponds to a
preference concerning a certain attribute.

As mentioned before, the notions of indifference,
concordance and discordance are defined in (Roy,
1991)21, but we revisited their definition so as to
make them more intuitive and more simple:

• we made indifference a symmetrical concept,
whereas it is defined in (Roy, 1991)21 as:

a I j a′ ⇔ g j(a)−g j(a
′)6 q j;

• in our approach, the notions of indifference and
strict preference are based on the same threshold
q j; on the other hand, (Roy, 1991)21 uses a thresh-
old q j to define indifference and another onep j

(> q j) to define strict preference:

• a I j a′ ⇔ g j(a)−g j(a′)6 q j,

• a Pj a′ ⇔ g j(a)−g j(a′)> p j.

The author also defines an extra relationS j the fol-
lowing way: a S j a′ holds iff a is at least as good
asa′ w.r.t. G j, i.e., iff g j(a)− g j(a′) > q j. No-
tice that this corresponds rather to our definition
of strict preference, if one replaces> by>.

• (Roy, 1991)21 considers that a criterionG j is:
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• concordant withthe statement “t outrankst ′”,
denoted byt S t ′, iff t S j t ′, i.e., iff:

g j(t.A j)−g j(t
′.A j)> q j,

• discordant witht S t ′ iff t ′ Pj t, i.e., iff:

g j(t
′.A j)−g j(t.A j)> p j,

• neither one nor the other iff:

g j(t
′.A j)− p j 6 g j(t.A j)< g j(t

′.A j)−q j.

We rather chose to have a strict symmetry be-
tween the concepts of concordance and discor-
dance, and we introduced the additional notion
of an indifferent criterion (which is absent from
(Roy, 1991)21 where indifference is only consid-
ered a binary relation between values). Notice that
our notion of an indifferent criterion is not equiva-
lent to that of a criterion which is “neither concor-
dant nor discordant” from (Roy, 1991)21. Notice
also that our partitioning of the criteria into the
three classes{concordant, indifferent, discordant}
is what makes it possible to define both a strict
preference model and a broad preference one.

• (Roy, 1991)21 also introduces a so-called “veto
threshold”v j defined as follows:g j(a′)−g j(a)>
v j is incompatible with the assertiona S a′ what-
ever the scores related to the other criteria are.
Again, our aim was to propose a simple and in-
tuitive model, and we decided to keep the veto as-
pect for a future extension.

• (Roy, 1991)21 computes a so-called credibility
degreeσ(t, t ′) attached to the assertion “t out-
rankst ′”: it is the result of the aggregation of a
concordance indexc(t, t ′) and a discordance in-
dex d(t, t ′). Since concordance and discordance
are defined differently in our approach and in
(Roy, 1991)21, the formulas are necessarily dif-
ferent too, but the general principle is similar in
both cases and consists in computing a sum (or a
weighted sum) of importance degrees.

Above all, the major originality of our approach
with respect to (Roy, 1991)21 lies in the mechanism
we propose to order the tuples on the basis of their
global “quality”.

4. About query expression and processing

In this section, we first give some elements concern-
ing the syntax of queries in the outranking-based
model. Then, we tackle implementation issues.

4.1. Syntactical aspects

Let us consider the SQL language as a framework.
We introduce a new clause aimed at expressing pref-
erences, which will be identified by the keyword
preferring as in thePreference SQL approach. This
clause can come as a complement to awhere clause,
and then only the tuples which satisfy the condition
from thewhere clause are concerned by the prefer-
ence clause.

The preference clause specifies a list of prefer-
ences, and each element of the list includes:

• the name of the attribute concerned,

• an ordered scale or the definition of a scoring
function,

• the optional weight associated with the prefer-
ence,

• the optional thresholdsq andδ .

We assume that scoring functions take their values
in [0, 1]. A simple way to define them is to spec-
ify their core (ideal values) and support (acceptable
values) and to assume that the functions are trape-
zoidal:

• attribute 6 α : ideal:6 α , acceptable:< α +β ,

• attribute ≈ α :
ideal:∈ [α −β , α +β ],
acceptable:∈ ]α −β −λ , α +β +λ [

• attribute > α : ideal:> α , acceptable:> α −β .

When scoring functions concern categorical at-
tributes (case where the user wants to avoid the “dis-
tance freezing” phenomenon induced by an ordinal
scale, cf. Subsection 3.1.1), they have to be given
in extension, as in:{1/{VW, Audi}, 0.8/{BMW},
0.5/{Seat, Opel}, 0.3/{Ford}}.
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As to the weights, their sum must be equal to 1,
and if none is given by the user, each weight is auto-
matically set to 1/mwherem is the number of pref-
erences in the list. In order to make the system more
user-friendly, one can also think of letting the user
specify the weights by means of a linguistic scale
such as{very important, rather important, medium,
not very important, rather unimportant}, assuming
that the system automatically translates these lin-
guistic terms into numerical weights (for instance
0.1 may be associated withrather unimportant, 0.3
with not very important, 0.5 withmedium, 0.7 with
rather important, 1 with very important) and nor-
malizes the set of weights obtained in such a way
that their sum equals 1.

The optional thresholdsq andδ must be consis-
tent with the ordinal scale used or with the unit inter-
val in the case of a scoring function. Ifq is not speci-
fied, its default value is zero, which means that indif-
ference corresponds to equality. Ifδ is not specified,
its default value is also zero, which corresponds to
the “basic version” of the approach (sharp boundary
between concordance and indifference, and between
indifference and discordance). When bothq andδ
are zero, one has:

• a I j a′ ⇔ g j(a) = g j(a′)

• a Pj a′ ⇔ g j(a)> g j(a′)

The preference concerning an attribute can be ei-
therstrict (then one uses the keywordsstrict) or tol-
erant. If it is strict, it means that a tuple which gets
the score zero for the preference concerned is dis-
carded. If it is tolerant (as in the previous examples),
even the tuples which get a zero degree on that pref-
erence are ranked. The notion of a strict preference
frees the user from the tedious task of specifying an
additional condition in thewhere clause.

Example 4.With the specifications above, the query
from Examples 3a and 3b can be expressed as:

select* from car
preferring
color:
blue> black> red> yellow > green> black>
other; w = 0.1; q = 1;δ = 2;

make:
VW > Audi > BMW > Seat> Opel > Ford >
other; w = 0.2; q = 1;δ = 2;
category:
sedan> roadster> coupe> SUV> other; w = 0.3;
q = 1;δ = 2;
price:
ideal:6 4000; acceptable:6 6000; w = 0.2; q = 0.2;
δ = 0.2;
mileage:
ideal:6 15,000; acceptable:6 20,000; w = 0.2; q =
0.2;δ = 0.2;⋄

The following example gives a more simple case of
preference query on the same relation.

Example 5.Hereafter is an example of a query with
a crisp interpretation of concordance, indifference
and discordance, which in addition illustrates the use
of strict preferences:

select* from car
preferring
color: blue> black> red> yellow;
make: VW> Audi > BMW > Seat;
categorystrict: sedan> roadster> coupe> SUV;
pricestrict: ideal: 6 4000; acceptable:6 6000;
mileage: ideal:6 15,000; acceptable:6 20,000⋄

4.2. About query evaluation

Let us denote byn the cardinality of the relation con-
cerned. The data complexity of a preference query
based on outranking is obviously inθ(n2) since all
the tuples have to be compared pairwise. This is
also the case for Pareto-based preference queries.
Notice that on the other hand, fuzzy queries have
a linear data complexity (but let us recall that they
can be used only when the preferences are commen-
surable). Even though outranking-based preference
queries are significantly more expensive than regular
selection queries (n2 instead ofn), they remain per-
fectly tractable (they belong to the same complexity
class as self-join queries in the absence of any in-
dex).

Notice that when the result of the SQL query on
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which thepreferences apply is small enough to fit in
main memory, the extra cost will be relatively lim-
ited (the data complexity is linear in this case).

The approach has been implemented in a proto-
type named DISCORD (Database Interrogation Sys-
tem Computing OutRanking Degrees), using Post-
greSQL 8.3, Apache 2.2, PHP 5.3 and C. This last
language is used to speed up the comparison process
through the use of compiled programs. The most
sensitive aspect concerns the handling of the degrees
involved in the calculus (in particular, the concor-
dance degrees). Different implementations may be
envisaged:

1. intermediary results (in particular, the table
storing the concordance degrees) are stored in
main memory. Forn tuples, this implies using
4 · n2 bytes, using a 32 bit representation for
the typefloat. In practice, only relatively
small relations (containing about 25,000 tu-
ples with 3Gb memory available, for instance)
can be handled. On the other hand, this imple-
mentation is rather fast (less than 10 seconds
for a relation containing 10,000 tuples);

2. no intermediary results are stored. Then, the
size of the memory is not a problem anymore,
but the temporal performances dramatically
decrease (several hours for a relation contain-
ing 10,000 tuples);

3. parallel calculus, which exploits the fact that
pairwise comparisons are independent. In-
deed, due to the fact that the outranking re-
lation is not transitive, one can compute out-
ranking degrees in parallel and then merge the
results to obtain the global evaluation of each
tuple.

So far, the prototype has been implemented using
the first strategy, but we intend to apply the third one
in a new version.

In order to make the query evaluation process
more efficient, another solution could be to use a
classification process, as proposed in (Boscet al.,
2009)4. Instead of being compared pairwise like in

Pareto-order-based approaches, tuples are compared
to acceptability profiles that are associated with pre-
defined classes. According to their satisfaction of
user preferences, tuples are then assigned to classes
with a certain degree. This approach relies on a clas-
sification algorithm with a linear complexity, which
leads to a data complexity of the preference queries
which is linear too. The pairwise comparison can
then be performed on the tuples grouped in the class
that is associated with the most selective acceptabil-
ity profile.

5. Conclusion

In this paper, we have proposed an alternative to the
use of Pareto order for the modeling of preference
queries in the case where preferences on different
attributes are not commensurable. The approach we
defined is based on the concept of outranking, which
was initially introduced in a decision-making con-
text (but its definition was revisited here so as to fit
our purpose). Outranking makes it possible to com-
pare tuples pairwise, and even though it does not de-
fine an order (it is not transitive), we showed how
a complete-preorder could be obtained by aggregat-
ing the outranking degrees in such a way that the
aggregate characterizes the global “quality” of a tu-
ple (regarding a given set of preferences) with re-
spect to the others. As in the case of Pareto-order-
based approaches, the data complexity of queries
is quadratic, thus tractable even though signifcantly
higher than that of regular selection queries.

As a perspective for future research, we intend
to investigate a variant of the outranking-based pref-
erence model where the tuples, instead of being or-
dered by means of the aforementioned aggregation
function, are clustered into predefined classes —
in the spirit of (Mousseauet al., 2000)19. Such a
method leads to a linear data complexity (each tu-
ple is compared to a set of profiles, but tuples are
not compared pairwise anymore) at the price of a re-
duced discrimination power.
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Appendix A

Proof of Theorem 1a. Straightforward since the
sum of the weights equals 1 andconc(t, t ′), ind(t, t ′)
anddisc(t, t ′) form a partition ofr.

Proof of Theorem 2a. One has:C(t, t ′) = D(t ′, t)
by definition of concordant and discordant criteria.
Thus, the definitions ofconc(t, t ′) and disc(t, t ′)
straightforwardly imply Theorem 2.

Proof of Theorem 3a.Let us use the following no-
tations: a = conc(t, t ′) andb = disc(t, t ′). Due to
the definition of Łukasiewicz’ implication, one has:
out1(t, t ′) = max(0, a + 1− b − 1) = max(0, a −
b). Due to Theorem 2, one has:conc(t ′, t) =
disc(t, t ′) = b anddisc(t ′, t) = conc(t, t ′) = a. Thus
out1(t ′, t) = max(0, b + 1− a − 1) = max(0, b −
a). If conc(t, t ′) > disc(t, t ′), i.e., if a > b,
then out1(t, t ′) = a − b = conc(t, t ′)− disc(t, t ′)
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and out1(t ′, t) = 0, otherwiseout1(t, t ′) = 0 and
out1(t ′, t) = b − a = conc(t ′, t) − disc(t ′, t) =
disc(t, t ′)− conc(t, t ′).

Proof of Theorem 4a. Straightforward from Theo-
rem 1 and the fact that∀t, ind(t, t) = 1.

Proof of Theorem 5a. Straightforward from the
definitions ofµconc j(a), µind j(a) andµdisc j(a) (see Fig-
ure 1), and those ofc j, ind j andd j. Notice in par-
ticular that the intersection ofµconc j(a) and µind j(a)

is located at level 0.5, as well as the intersection of
µind j(a) andµdisc j(a).

Proof of Theorem 6a. Follows straightforwardly
from the definitions ofµconc j(a) and µdisc j(a) (see
Figure 1).

Proof of Theorem 7a. c j(t, t ′) =
µconc j(t.A j)(g j(t ′.A j)) = 1 if g j(t ′.A j) 6 g j(t.A j)−
q j − δ j, 0 if g j(t ′.A j) > g j(t.A j)− q j, linear in-
between.
d j(t ′, t) = µdisc j(t ′.A j)(g j(t.A j)) = 1 if g j(t.A j) >
g j(t ′.A j)+q j+δ j, 0 if g j(t.A j)6 g j(t ′.A j)+q j, lin-
ear in-between. Let us use the notationsg j(t.A j) =
a, g j(t ′.A j) = a′. One has:

• a′ 6 a− q j − δ j ⇔ a > g j(t ′.A j)+ q j + δ j and in
this casec j(t, t ′) = 1= d j(t ′, t)

• a′ > a − q j ⇔ a 6 a′ + q j and in this case

c j(t, t ′) = 0= d j(t ′, t)

• a−q j−δ j 6 a′ 6 a−q j ⇔ a′+q j 6 a6 a′+q j+
δ j and in this casec j(t, t ′) = (a− a′ − q j)/δ j =
d j(t ′, t).

Proof of Theorem 8a. ∀(t, t ′), conc(t, t ′) +
ind(t, t ′) + disc(t, t ′) = ∑i=1..n wi × ci(t, t ′) +

∑i=1..n wi × indi(t, t ′) + ∑i=1..n wi × di(t, t ′) =
∑i=1..n wi × (ci(t, t ′) + indi(t, t ′) + di(t, t ′)) =
∑i=1..n wi (due to Theorem 5) = 1 (since the sum
of the weights equals 1).

Proof of Theorem 9a. conc(t, t ′) = ∑i=1..n wi ×
ci(t, t ′) = ∑i=1..n wi × di(t ′, t) (due to Theorem 7) =
disc(t ′, t).

Proof of Theorem 10a. Straightforwardly follows
from the definition of Łukasiewicz’ t-norm and the
arguments used (cf. the proof of Theorem 3, which
remains valid due to Theorem 9).

Proof of Theorem 3b. ∀(t, t ′), out2(t, t ′) +
out2(t ′, t) = conc(t, t ′) + ind(t, t ′) + conc(t ′, t) +
ind(t ′, t) = conc(t, t ′) + ind(t, t ′) + disc(t, t ′) +
ind(t ′, t) (cf. Theorem 2a) = 1 +ind(t ′, t) (cf. The-
orem 1a)> 1 (sinceind(t ′, t) = ind(t, t ′)> 0).

Proof of Theorem 10b.The proof of Theorem 3b is
also valid in the fuzzy case since Theorems 1a and
2a hold in this case too.
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