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Abstract 

In this paper, the problem of qualitative description and quantitative optimization for tactical reconnaissance agents 
system organization is considered with objective of higher teamwork efficiency and more reasonable task balancing 
strategies. By analyzing tactical reconnaissance system and its environment, task-(role)-entity agent mapping 
mechanism and agents in system organization, the system framework is qualitatively described. By transforming 
the system into an interaction task request-service mechanism queuing system, a Markov chain of system state 
transition is obtained, since its state transition process in interaction is Markov process and accords with real 
tactical reconnaissance behaviors. By solving the state transition equations, the inherent relationship of tactical 
reconnaissance agents is found and the optimized system configuration is obtained. The established simulation 
demonstration system proves that the proposed approach and model are feasible and effective. 

Keywords: agent; agent-based modeling and simulation; tactical reconnaissance; system organization; optimization; 
Markov process 
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1. Introduction 

Intelligent agent [1-27] is a program that maps percepts 
to actions. It acquires information from its environment 
(“perceives” the environment) and decides about its 
actions and performs them. While there is no real 
consensus about the definition of intelligent agents, the 

above one adapted from [3] is intuitively clear and 
essentially describes the general concept of generic 
agent. All more specific intelligent agents can be 
derived from that concept. Thus a multi-agent system is 
a collection of agents co-operating with each other in 
order to fulfill common and individual goals (in some 
environments they may also compete). In a multi-agent 
system different agents often have different roles and 
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individual goals [1, 3]. As for current fruits, multi-agent 
system technology has been used in many fields. Agent-
oriented software engineering has been viewed as a 
novel paradigm for complex systems. The analysis and 
comprehensive understanding of complex systems is 
extremely difficult and in most cases impossible for 
humans to grasp without the assistance of advanced 
tools such as agent-oriented software engineering. 

In information wars, a commander must 
comprehend the whole situations through various kinds 
of channels during engagement, and command promptly 
as soon as some situations occur according to collected, 
processed and composed battlefield intelligence. 
Therefore, the need of building fast and exact tactical 
reconnaissance system (TRS) has come to the fore. In 
highly distributed warfare system, it may be impossible 
for any of the individual battlefield nodes to perform a 
useful intelligence reconnaissance function without TRS. 

On information battlefield, TRS is composed of a 
geographically dispersed organization of heterogeneous 
elements. All elements are tied together by a 
communications network with command and control 
applied at tactical centers. These elements include 
multiple intelligence reconnaissance platform members, 
such as photo-reconnaissance vehicles, electronic 
reconnaissance vehicles, armored reconnaissance 
vehicles, unmanned aerial vehicles (UAVs) and 
information processing vehicles. They have believes, 
desires, intentions, and may adopt a role and have 
relationships with each other in administrative levels. 
Therefore, it may be seen as a distributed multi-agent 
system revealing a kind of a synergy that would not be 
expected from the simple sum of its component agents. 
This synergy is an emergent property of the system as a 
whole. In this paper, we design an elementary agent-
based model of TRS to lay a foundation for the 
advanced concept technology demonstration of 
intelligence reconnaissance actions. 

In a multi-agent system, an interaction protocol 
contains the basic rules for the negotiation process and 
the communication. Thus it is explicit to point out 
existing and challenging problems that researchers are 
facing in designing and implementing this agent-based 
complex warfare system, such as 

(1) how can we enforce the necessary teamwork, 
leading to coherent and effective results according to the 
overall system’s goals and making all tactical 
reconnaissance entity agents perform military actions 

and fulfill intelligence reconnaissance tasks with higher 
efficiency? 

and (2) how can we design and implement this 
system in a way that avoids computational overload by 
means of intelligence reconnaissance tasks balancing 
strategies so that we can attain higher interaction 
efficiency? 

However, current research on agent or agent-based 
modeling and simulation technology usually 
concentrates on domain specification, agent design and 
implementation problems [4-26]. Anita Raja and Victor 
Lesser develop a meta-level control approach based on 
the decision-theoretic use of an abstract representation 
of the agent state to resolve the meta-level control 
problem for agents operating in resource-bounded 
multi-agent environments [4]. David Meignan, Olivier 
Simonin and Abderrafiaa Koukam present a bus 
network simulation tools and adopt a multi-agent 
approach to describe the global system operation as 
behaviors of numerous autonomous entities such as 
buses and travelers [7]. Generally, these approaches are 
proposed to give agent and multi-agent system concept 
developers a view to the future by enabling them to 
simulate and manipulate in near real-time, the assets and 
operational conditions. 

Unfortunately, there exists deficiency on agents 
system configuration for higher teamwork efficiency 
and more reasonable task balancing strategies. This is 
substantially a technology problem about tasks being 
effectively performed through system organization 
optimization. 

The principal aim of this paper is to suggest possible 
model and approach to the above problem by using 
Markov chain method based on system organization 
description, interaction chain design and transformation 
from interaction chain to interaction task request-service 
mechanism queuing system. 

The paper is organized as follows. In Section 2, 
system framework of TRS is described, followed in 
Section 3 with the queuing system model and 
quantitative calculation for TRS. In Section 4, 
performance demonstration for the model by computer 
simulation is presented. The main results are 
summarized in Section 5. 

2. System Framework 

As the term organization is used in multiple ways, it is 
necessary to specify that in this paper we consider 
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mainly process-related type of organizations 
(organization as task or action). Actually, the research 
objects of system organization optimization also include 
functional organizations (organizations as permanent 
structures) and institutional organizations (as an actual 
purposeful structure within a social context). Since 
system framework description reflects subsystem-level 
representation, it is the precondition and basis of 
quantitative optimization for system organization. 

2.1. TRS and Its Environment 

Land warfare is a complex adaptive system. That is to 
say, land warfare is essentially a nonlinear dynamical 
system composed of many interacting autonomous and 
hierarchically organized agents continuously adapting to 
a changing environment [29]. Thus, complex warfare 
system can be defined as a coordinated group of 
individuals who collaborate for a common military task, 
on the basis of some tactical rules and resources. It can 
be represented in terms of the interactions and behaviors 
of warfare entities. These include standard interactions 
such as operations orders, time-driven information such 
as status reports and triggered exchanges such as spot 
reports and fragmentary orders. There is a close match 
between the real-world warfare process and the entity 
paradigm. Based on intelligence reconnaissance, the 
effects of a commander decision process are 
communicated to other members through message 
exchanges across the battlefield, and eventually result in 
action by battle group members. 

Complex warfare system consists of a number of 
real warfare members. These members can be TRS 
members or other system members. During engagement 
a member can become a commander while stay as a 
battle member and a commander can become a battle 
member. On battlefield, a commander must have access 
to information about the world through his own direct 
sensations of the world and reported information from 
other members. 

In complex warfare system, TRS plays a pivotal role, 
which is a set of elements that are interconnected so that 
changes in some elements, or their interrelations, 
produce changes in other parts of the system. Tactical 
reconnaissance operations are usually arranged in a 
hierarchical fashion with decentralized control, similar 
to a military chain-of-command. For example, the 
general reconnaissance vehicles cooperate with 
intelligence reconnaissance (intercommunicating, 

reporting to an intelligence processing vehicle, awaiting 
orders from commander); intelligence processing 
vehicles perform data fusion and processing (sorting 
intelligence, filtrating intelligence, analyzing situation, 
making decision, producing schemes, saving and 
updating information), and control the general 
reconnaissance vehicles (notifying reconnaissance 
requirements, notifying targets information, allocating 
tasks and adjusting tasks). 

Thus, we can set up a mapping from TRS’s internal 
members to entities, such as photo-reconnaissance 
vehicle  photo-reconnaissance vehicle entity, UAV  
UAV entity, and information processing vehicle  
information processing vehicle entity. To express and 
illustrate organization relation about the entities and 
their tasks and roles [22, 28] is the key for system 
organization optimization. 

2.2. Task, Role and Entity 

Traditional analysis on task / sub-task and entity, always 
centers on a tighten coupling of task-entity, as shown in 
Figure 1. 

 

 

 

 

 

 

Fig. 1. Tighten coupling of task-entity. 

Whenever entities have to work in a group setting, 
interactions take place to find a suitable organization 
(who does what) as well as to enable communication of 
results (when and to whom). All these interactive 
activities imply the need for a clear policy for co-
ordination [3]. Reasoning about communication has to 
take into account the amount of interaction, demanded 
performance and resources, future activities and loads, 
imposed deadlines, and also knowledge representing an 
entity’s desires, intentions, and beliefs. The larger the 
number of different possibilities and the set of the 
identified constraints for entities’ joint work are, the 
richer the co-ordination policies will be. 
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In the case where entities are self-interested, 
interaction aims at maximizing an entity’s utility. In the 
case where entities share an overall goal, the objective is 
to maintain global coherence without violating 
autonomy, thus avoiding explicit global control [4]. 
Performing tasks in the context of TRS could be 
considered in the scope of co-ordination of the entity’s 
activities in a dynamic environment where resources 
may be scarce. 

Based on the above analysis, we can obtain 
interaction tasks performing system framework 
description by establishing a task-(role)-entity mapping 
mechanism, shown in Figure 2, in which an entity can 
play a role, as agent, to fulfill tactical reconnaissance 
tasks with more flexibility in the TRS model. 
 

 

 

 

 

 

 

 

Fig. 2. Flexible coupling of task-(role)-entity agent. 

By this method, we can conveniently implement 
subsystem-level representation for establishing the 
interaction tasks optimization model. 

2.3. Tactical Reconnaissance Agents in System 
Organization 

A tactical reconnaissance agent with human being 
properties such as autonomy, sociality, adaptability and 
information can act as a human to perform intelligence 
reconnaissance tasks in teamwork mode. Especially 
tactical reconnaissance agents system considers how a 
group of intelligent and autonomous reconnaissance 
entity agents coordinate their capacities and plan in 
order to achieve certain military goals. Tactical 
reconnaissance agents may be seen as a natural 
extension of the concept of software objects. Object-
oriented programming added abstraction entities, i.e., 

objects, which have persistent local states to the 
structured programming paradigm. Similarly, agent-
based programming adds abstraction entities, i.e., agents, 
which have an independent execution thread to the 
object-oriented paradigm. Thus, compared to an object, 
a tactical reconnaissance agent is able to act in a goal-
directed fashion (e.g., by interacting with other agents, 
reading sensors, or sending commands to effectors) 
rather than only passively react to procedure calls, as 
shown in Figure 3. 

Fig. 3. Comparison of an object and a tactical reconnaissance 
entity agent. 

In addition, a tactical reconnaissance entity agent 
typically has also one or more of the following abilities: 
to communicate with other tactical reconnaissance 
entity agents, to learn from experience and adapt to 
changes in the environment, to make plans, to reason 
using, e.g., logic or game theory, to negotiate with other 
tactical reconnaissance entity agents. Also, tactical 
reconnaissance entity agents are sometimes 
programmed, or at least modeled, in terms of “mental 
states”, such as, believes, desires, and intentions. 
Tactical reconnaissance agents system is an 
organization of reconnaissance entity agents in 
teamwork mode to perform common military goals 
concentrating on battlefield intelligence reconnaissance. 

According the above analysis, TRS can be mapped 
as a multi-agent system since the internal members of 
TRS has been mapped as agents, i.e., photo-
reconnaissance vehicle  photo-reconnaissance vehicle 
agent, UAV  UAV agent, and information processing 
vehicle  information processing vehicle agent. 

We can further define these tactical reconnaissance 
entity agents as two multi-agent sub-systems as follows: 
MAS1=A={Ai}; 
MAS2=B={Bi}; 
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where MAS1 consists of all general reconnaissance 
platform agents and MAS2 consists of all information 
processing platform agents. They exchange information 
by network system (NS). Thus, tactical reconnaissance 
agents system can be illustrated as Figure 4. 
 
 
 
 
 
 

Fig. 4. Tactical reconnaissance agents system organization. 

Therefore, tactical reconnaissance agents system 
organization is transformed as a computational multi-
agent system in which two or more reconnaissance 
entity agents interact and work together to perform a set 
of reconnaissance tasks and to satisfy a set of military 
goals. The system consists of different intelligent nodes 
that are represented by reconnaissance entity agents 
respectively, as is discussed above. A key characteristic 
of tactical reconnaissance agents system is a lot of 
different tactical reconnaissance entity agents with 
information interaction (See Figure 5). 

 
 
 
 
 
 
 
 
 
 

Fig. 5. A tactical reconnaissance entity agent and information 
interaction. 

In our system the distributed request and service 
information interaction protocol has the following 
properties: 

(1) The interaction leads to a finite number of states. 
(2) The interaction process does not enter cyclic or 

infinite sequences but always reaches a terminal state. 

3. Modeling and Solving 

Based on qualitative description for tactical 
reconnaissance agents system organization, we can 
establish an interaction chain mechanism model, and 

transform it to a Markov chain model, thus propose the 
quantitative optimization approach. Our quantitative 
optimization model and approach are designed to 
demonstrate tactical reconnaissance behaviors on 
dynamic and distributed battlefield and explore some 
issues, such as the role of speed in information 
processing, how tasks balancing strategies might change 
when more information processing platforms are added 
to a force or force structure is changed, and how 
distribution of information processing capability affects 
overall force effectiveness. 

3.1. Queuing System Model 

The multi-agent teamwork with optimization tasks 
performing mechanism has the following features [26]: 

(1) There is a seeding tactical reconnaissance entity 
agent who initiates the interaction. 

(2) Each tactical reconnaissance entity agent can be 
active or inactive. 

(3) Initially all tactical reconnaissance entity agents 
are inactive except for a specified seeding agent, which 
initiates the computation. 

(4) An active tactical reconnaissance entity agent 
can do local computation, send and receive messages 
and can spontaneously become inactive. 

(5) An inactive tactical reconnaissance entity agent 
becomes active, if and only if, it receives a message. 

(6) Each tactical reconnaissance entity agent may 
retain its current belief, revise or update its belief as a 
result of receiving a new message by performing a local 
computation. If it modifies its belief, it communicates 
its new belief to other concerned agents; else it does not 
modify its belief and remains silent. Figure 6 shows the 
interaction behaviors process. 
 
 
 
 

Fig. 6. Interaction behaviors process. 

 
 
 
 
 

Fig. 7. Law of tasks performing priority. 
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The law of tasks performing priority [27] can be 
illustrated as Figure 7. 

In our tactical reconnaissance agents system 
organization model, there are two classes of agents 
making up each chain-of-reconnaissance, i.e., general 
intelligence reconnaissance vehicle agents and 
information processing vehicle agents, which exchange 
information by interaction chain mechanism, as shown 
in Figure 8. Tactical reconnaissance agents within the 
same class have unique characteristics such as 
experience and unit cohesion. In addition, tactical 
reconnaissance agents following the same decision path, 
may take different amounts of time to complete the 
same tasks. This is accomplished by running each agent 
as a separate thread of execution or mini-program. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Interaction chain of a served agent and a serving agent 
(above) and interaction chain of served agents and serving 
agents (under). 

The above analysis is not enough when we want to 
probe into countermeasure of enhancing system 
efficiency to cater for the requirements on battlefield 
intelligence reconnaissance. The speed at which a 
tactical reconnaissance entity agent moves through its 
decision cycle is driven by internal factors such as unit 
cohesion and external factors such as resources 
available. This is in substance a problem on multi-agent 
organization optimization. We assume that served 
agents work independently and bring forward randomly 
requests on tactical reconnaissance tasks, and the 
probability of having k agents bringing forward requests 

in time t is a Poisson distribution, i.e., 
!

)(
)(

k

et
tF

tk

k




 , 

where   is the rate of bringing forward requests and t  
is the Poisson distribution parameter. 

By military experts’ evaluation, these hypotheses 
are consistent with real tactical intelligence 
reconnaissance actions, i.e., they reflect battlefield 
intelligence collecting and processing rules in some 
senses. In addition, according to the military 

experiences on tactical reconnaissance process on 
distributed battlefield, we can think that there is only 
one intelligence reconnaissance task produced by an 
arbitrary served agent at any time, i.e., it is impossible 
for two or more intelligence reconnaissance tasks to be 
produced by a served agent simultaneity. Of course, it is 
reasonable to think that an intelligence reconnaissance 
task can be performed by a serving agent. Moreover, as 
far as the military experiences, the serving time of a 
serving agent for a served agent can be assumed to be 
an exponentially distribution, i.e., tetF 1)( , where 

  is the serving rate. Thus we can establish a model of 

interaction task request-service mechanism queuing 
system, which is shown as Figure 9. In this queuing 
system, we assume that there are n served agents and s 
serving agents. 

 
 
 
 
 
 

Fig. 9. Interaction task request-service mechanism queuing 
system. 

Since the system changes randomly, it is generally 
impossible to predict the exact state of the system in the 
future. However, the statistical properties of the 
system’s future can be predicted. In many applications it 
is these statistical properties that are important. The 
changes of state of the system are called transitions, and 
the probabilities associated with various state-changes 
are called transition probabilities. 

In this system, obviously, when sn , for n served 
agents, the total mean serving rate of the system with s 
serving agents is n ; when )1(  sn , for n served 
agents, the total mean serving rate is s  since the 
system has only s serving agents. The total number of 
entities in this system increases 1, when a certain served 
agent arrives; it decreases 1 while a certain served agent 
leaves. Thus, we can analyze exactly the state 
transitions. 

The rate diagram (see Figure 10) expresses the state 
transitions and its rate matrix is given in Eq. (1). 

 
 
 
 

Fig. 10. Rate Diagram. 
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In Figure 10, edges in diagram represent rates. Thus, 

there is a certain rate of transition to each other 
connected state (no need for self-edges). In Eq. (1), 

ijq  

represents a certain rate of transition from state i to state 
j. It is obvious that the rate diagram and the rate matrix 
are consistent and reflect the state transitions analyzed 
as above. 

3.2. Solving by Using Markov Chain Method 

Formally, a Markov chain [30-36] is a discrete 
(discrete-time) random process with the Markov 
property. Often, the term “Markov chain” is used to 
mean a Markov process which has a discrete (finite or 
countable) state-space. Usually a Markov chain would 
be defined for a discrete set of times (i.e. a discrete-time 
Markov chain) although some authors use the same 
terminology where “time” can take continuous values. 

A Markov chain is a sequence of random values 
whose probabilities at a time interval depend upon the 
value of the number at the previous time. The 
controlling factor in a Markov chain is the transition 
probability, which is a conditional probability for the 
system to go to a particular new state, given the current 
state of the system. 

A “discrete-time” random process involves a system 
which is in a certain state at each “step”, with the state 
changing randomly between steps. The steps are often 
thought of as time, but they can equally well refer to 
physical distance or any other discrete measurement; 
formally, the steps are just the integers or natural 
numbers, and the random process is a mapping of these 
to states [32-39]. 

The Markov property states that the conditional 
probability distribution for the system at the next step 
(and in fact at all future steps) given its current state 
depends only on the current state of the system, and not 
additionally on the state of the system at previous steps. 

In fact, in our problem the probability is only 
relevant to the previous time, i.e., future evolution of 
random process depends only on current state. 
Therefore the process is Markov Process and can be 

represented by a discrete-time Markov Chain with state 
transitions. 

According to Figure 11, we can obtain the state 
transition equations as follows: 

ki
Ik

k
i qtP
dt

tdP 


 )(
)(

 

 )1)(()())(( 11   itPtPitP iii
  (2) 

In Eq. (2), )(tPi  represents the probability of the 

system in state i in time t. 
As )(lim tPP i

t
i 
 , which represents the steady-

state probability of the system in balance state i, 

0
)(


dt

tdPi . 

Accordingly, Eq. (2) can be transformed as follows: 
0)( 111   iiiii PPP          (3) 
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According to Eq. (4) we can calculate the steady-

state probability of the system in state 1, i.e., 1P  

(expressed by 0P ). According to Eq. (5) we can 

calculate 2P  (expressed by 0P ) by 1P  in the above 

result. In the light of this recursive approach, we can 
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Then by Eq. (12) we can calculate 0P  in Eq. (11) as 

follows: 
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If we put 0P  in Eq. (13) to the expressions of kP  in 

Eq. (9) and Eq. (10), then we can obtain kP . 

The main parameters are listed as follows: 
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qL  represents the mean number of served agents 

waiting in line in the system; 

qT  represents the mean time from a served agent 

arriving at the system to it starting to be served; 
T represents the mean time from a served agent 

arriving at the system to it finishing being served and 
leaving; 

L represents the total mean number of entity agents 
in the system. 

These parameters substantially reflect interaction 
chain attributes, therefore which can be used as the 
factors of tactical reconnaissance agents system 
organization optimization. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.11. Parameters variety from case 1 to case 4. 
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Case 1: 2  ,1   , when the sum of serving 

agents increases from 1 to 8, parameters 0P , qL , L , 

qT , T  alter as Figure 11(a). 

Case 2: 3  ,2   , when the sum of serving 

agents increases from 1 to 8, parameters 0P , qL , L , 

qT , T  alter as Figure 11(b). 

Case 3: 2  ,3   , when the sum of serving 

agents increases from 2 to 8, parameters 0P , qL , L , 

qT , T  alter as Figure 11(c). 

Case 4: 1  ,2   , when the sum of serving 

agents increases from 3 to 8, parameters 0P , qL , L , 

qT , T  alter as Figure 11(d). 

Thus we can obtain the optimized sum of serving 
agents in different conditions, as listed in Table 1. 

 
Table 1.  Optimized sum of serving agents in different 

conditions. 


  

2

1  
3

2  
2

3  
2 

Optimized sum of s  2 2 3 4 

 

4. Performance Demonstration for the Model 

Performance demonstration for our model is 
implemented by agent-based simulation. In the 
simulation demonstration system that we set up, multi-
agent interactions relationship in military 
reconnaissance operations is given in Figure 12, in 
which T and t represent task inputs for Red Force 
agents and Blue Force agents respectively. 

The designed entity agents in this simulation 
demonstration system are listed as follows: 

r1：UAV Agent 1 (Red Force); 
r2：UAV Agent 2 (Red Force); 
r3: Electronic Reconnaissance Vehicle Agent (Red 

Force); 
r4: Photo-reconnaissance Vehicle Agent (Red 

Force); 
r5: Armored Reconnaissance Vehicle Agent (Red 

Force); 
r6: Battlefield Sensor Agent 1 (Red Force); 
r7: Battlefield Sensor Agent 2 (Red Force); 
r8: Command Vehicle Agent (Red Force); 
b1: Electronic Reconnaissance Vehicle Agent (Blue 

Force); 

b2: Armored Reconnaissance Vehicle Agent (Blue 
Force); 

b3: Information Processing Vehicle Agent (Blue 
Force). 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Multi-agent interactions relationship. 

Simulation implementation can be illustrated by 
Figure 13. When we run the system, we can obtain some 
results, and find that these TRS entities performed 
successfully intelligence reconnaissance task on tactical 
virtual battlefield. 

 
 (a) 

 
(b) 

Fig.13. Simulation demonstration system. 
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Figure 13(a) presents initialization for entity agents 
situation setting for tactical reconnaissance simulation. 
In initialization, entity agents can be added and their 
initial tasks can be given according to real military 
requirements (See the central part in Figure 13(a)). 
Figure 13(b) presents partial, dynamic and real-time 
two-dimension battlefield situation information during 
agent-based TRS simulation. The real-time object 
information and state information of an agent (as a 
certain military role) during simulation (See the right 
parts in Figure 13(a) and Figure 13(b)) show that how a 
certain reconnaissance task is being performed by a 
certain appropriate entity. 

The computational results proposed in Figure 12 can 
be testified by the agent-based TRS simulation. Here we 
take two main parameters, i.e., qL  and qT , into account. 

For photo-reconnaissance vehicle agent(s) and 
information processing platform agent(s), the statistical 
simulation results in No.1 tactical reconnaissance stage 
and No.2 tactical reconnaissance stage are respectively 
illustrated in Figure 14(a) and Figure 14(b). We can see 
that the statistical simulation results and the 
computational results are consistent. 

 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 

(b) 

Fig.14. Contrastive results of interaction chain attributes in 
two stages. 

Note that those data in the proposed model reflect a 
real life in warfare field, since the established 

simulation demonstration system can identify the main 
components in complex warfare system organization 
and discover their local interactions and behaviors. 

We carry through Verification, Validation, and 
Accreditation (VV&A) for our simulation model to 
analyze these results. As far as the concept model, we 
check attributes description and interactions, e.g., 
whether the entities and their tasks are consistent with 
real force situation. As far as the program model, 
emphases are put in data to verify their correctness, 
dependability and performance. 

By the evaluation, these results that we obtained 
from TRS simulation are accordant to real warfare 
situation. The fact proves that our models are reasonable 
and the approach is feasible and effective. 

5. Conclusion 

Analyzing the configuration and overall efficiency of 
interaction in a complex military multi-agent system, 
especially like tactical reconnaissance agents system, is 
a problem needing to be studied by researchers 
interested in this area. Markov chain method is a useful 
tool to analyze a discrete-state system. In this paper, 
based on qualitative description, according to military 
operational experience and the system framework we 
transformed tactical reconnaissance agents system 
organization into an interaction chain and thus obtained 
a corresponding interaction task request-service 
mechanism queuing system, and developed a Markov 
chain model on the task interaction process, since the 
state transition probability of the next state depends only 
on current state. The feasibility and efficiency of our 
model are proved by agent-based simulation 
demonstration results. The fact shows that the analyzing 
technique we proposed has the capability of optimizing 
the teamwork problems of practical complex warfare 
system organization. 

In contrast with other current research results, our 
analyzing technique has some advantages: (1) 
presenting concept models of tactical reconnaissance 
agents system and conveniently implementing its 
subsystem-level representation by establishing a task-
(role)-entity mapping mechanism; (2) transforming the 
system into an interaction task request-service 
mechanism queuing system, establishing a Markov 
chain model, and finding the inherent relationship of 
TRS entities and obtaining the optimized tactical 
reconnaissance agents system organization 
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configuration by solving the state transition equations; 
(3) implementing performance demonstration for the 
model and validating the above results by the agent-
based TRS simulation. Thus, it constructs a bridge from 
qualitative description to quantitative theoretical 
calculation and simulation demonstration, which are 
three related critical success factors in optimization of 
tactical reconnaissance agents system organization. 

From a scientific point of view, warfare entities 
make up a dynamic, non-linear, complex adaptive 
system in which the overall system behavior emerges 
from the aggregate interaction. Moreover, our research 
is still at an early stage, as there are only a few entities 
in model and it needs to be studied furthermore to be 
more practical. These result in extreme difficulty on 
problems test. The number of problems test may be 
increased so that statistical tests can be performed. The 
alternatives can be using problems in similar studies, 
test problems on web sites and generating random 
problems with different sizes. Future work may include 
more systematic validation of the model, more data 
collection and the application of our agent-based TRS 
simulation to the study of organization behaviors issues. 
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