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Abstract

Academia and practitioners confirm that software project effort prediction is crucial for an accurate soft-
ware project management. However, software development effort estimation is uncertain by nature. Liter-
ature has developed methods to improve estimation correctness, using artificial intelligence techniques in
many cases. Following this path, this paper presents SEffEst, a framework based on fuzzy logic and neu-
ral networks designed to increase effort estimation accuracy on software development projects. Trained
using ISBSG data, SEffEst presents remarkable results in terms of prediction accuracy.
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1. Introduction

Software is now the driving force of modern busi-
ness, government and military operations ’°. Given
the importance of software in today’s world, the de-
velopment of software systems is a key activity for
both industry and users. In such scenario, the re-
quirements for project plans complying with time,
effort, cost and quality have become a fundamental
element for organizations producing software.

According to 42 two of the three most impor-
tant causes of IT-project failure were related to poor
resource estimations. Not in vain, effort estima-
tion of software developments is an important sub-

*Corresponding author: israel.gonzalez@uc3m.es

discipline in software engineering that has been the
focus of much research, mostly over the last couple
of decades 7*. Yet despite its importance, accurate
and credible software effort estimation is a chal-
lenge for academic research and software industry
3. Maybe that is the reason why software project
effort estimation with high precision is still a largely
unsolved problem. In this scenario, investigating
novel methods for improving the accuracy of such
estimates is essential to strengthen software compa-
nies’ competitive strategy 5.

Inaccurate estimation of development efforts
lowers the proficiency of the project, wastes the
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company’s budget, and can result in failure of the
entire project 3. not in vain, software price deter-
mination, resource allocation, schedule arrangement
and process monitoring are dependent upon soft-
ware estimation 3*. Underestimating the required
software effort and cost can have detrimental ef-
fects on the software quality and eventually on the
company’s business reputation®, apart from this,
underestimation could produce under-staffing (that
may result in staff burnout), under-scoping the qual-
ity assurance effort (that may increase the risk of
low quality deliveries), and setting short schedule
(that may result in loss of credibility as deadlines
are missed). On the other hand, overestimation of
the software cost can result in losing the opportunity
to win the competition for the software project dur-
ing price bidding 3> as well as delaying the use of
the resources in the next project '°, meaning a risk
for the whole project portfolio 3°.

Nevertheless, accurate software estimation can
provide powerful assistance when software manage-
ment decisions are being made 3 in the initial steps,
where budgets are approved 2. Furthermore, any
improvement in the accuracy of predicting the de-
velopment effort can significantly reduce the costs
from errors in this field, such as estimating inaccu-
rately, misleading tendering bids, and disabling the

monitoring progress '3

As a result of the long tradition of software de-
velopment estimation models, there are many mod-
els which can be classified into three groups:

1. Expert Judgment: Estimates using expert
judgment *3, 4!, can be produced easily and
without the need of complicated tools or tech-
niques. However, due to its human and sub-
jective nature is therefore difficult to repeat 3.

2. Analogy: This method was first proposed by
69 as a valid alternative to expert judgment and
algorithmic effort estimations 3. Analogy-
based software effort estimation is the process
of identifying one or more historical projects
that are similar to the project being developed
and then deriving the estimates from them 6.

In certain respects, this method is a systematic
form of expert judgment since experts often
match similar project(s) from their own expe-
riences in order to determine the appropriate
effort estimates 3. Estimation requires the
comparability of structures of the project that
has to be calculated and completed software

developments serving as analogy groundwork
7

3. Algorithmic models. These are the most pop-
ular models in the literature '°. Algorithmic
effort estimation involves the use of statistical
data analysis methods to establish the para-
metric software effort estimation equation .
Examples of such models are COCOMO 13,

12 and SLIM %, to cite the most relevant ones.

With the aim of extending the possibilities of
algorithmic methods, along with dealing with the
dynamic nature of the project ecosystems in a better
way, many works are devoted to the use of artificial
intelligence techniques, such as neural networks and
fuzzy logic models, to bring more accurate software
estimations >°. Following this research path, this
paper presents SEffEst, a framework based on fuzzy
logic and neural networks designed to increase ef-
fort estimation accuracy on software development
projects.

The remainder of the paper is structured as fol-
lows. Section 2 reviews the relevant literature about
fuzzy logic and neural networks and their appli-
cation in software development estimation. Next,
in Section 3, the main contribution of the paper
is presented including a description of the design,
the architecture and the implementation of the tool.
Section 4 presents the validation of SEffEst. Fi-
nally, the paper ends with a discussion of research
findings, limitations and concluding remarks.

2. Using Fuzzy Logic and ANN for the
estimation of software developments

The fuzzy sets theory provides a framework for the
representation of the uncertainty of many aspects of
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human knowledge. Nowadays, fuzzy rule based sys-
tems are being successfully applied to a wide range
of real-world problems from different areas and in
many real-world applications such as ships’ stabil-
ity or multi-criteria decision making domains. Al-
though a system can be defined mathematically in
a general sense, a fuzzy logic system representa-
tion is still preferred by engineers and researchers
31 Due to the inherent uncertainity of software esti-
mation the application of fuzzy logic to this area is
an issue under investigation. This way, > proposes
a goal-oriented programming model for optimizing
the project selection process, applying fuzzy logic,
S0 as to incorporate qualitative and quantitative as-
pects of software projects. These kind of studies are
meaningful but not directly oriented towards soft-
ware estimation. Regression models are one of the
alternatives for software estimation. >’ proposes a
regression model for software estimation improved
by the application of a Sugeno fuzzy inference sys-
tem. 3* applies fuzzy neural networks for project es-
timation based on the COCOMO dataset. The repre-
sentation of COMOMO dataset and rules is the ba-
sis of other fuzzy approaches, such as 37 44 67 55
Bathla et al. © apply fuzzy logic for estimating the
development time without taking into account tra-
ditional techniques which require long-term estima-
tion processes. However, this approach only focuses
on the development time. In a similar line, % pre-
dicts the effort based on the fuzzification of the esti-
mation of the size. Fuzzifying the size of the project
is a common practice for improving the estimation
process (i.e. 35 or 49),

Recent research works on Atrtificial Intelligence
have proved that ANN paradigm can be succesfully
applied to the Software Engineering domain and, in
particular, to the field of estimation*. The promis-
ing results obtained show notable consistency and
exactitude. Several predictions related to software
estimation are related to ANN. The work of ! shows
an example of Bayesian regularization of an ANN
for estimating the size of software developments.
47 estimates the cost of the software by means of a
Wavelet ANN. 70 also predicts the reliability of the
software by means of hybrid models, citing some of
the most representative works in the field.

The use of ANN for effort estimation and predic-
tion of software developments constitutes a prolific
field of study. The combination of neural techniques
with other methods has been widely employed: ge-
netic algorithms 38, fuzzy logic 2* or the analogy
method 3. Genuine works on ANN are also avail-
able in the literature, such as '° and * standing out
as remarkable works. In the field of ANN valida-
tion, the studies of °° and %2 based on function points
can be considered a valid precedent for the research
presented in this paper. Although previous research
works show a promising way for software estima-
tion, this research area is far from its maturity 38

This paper is centered on the application of the
SEffEst framework in the domain of the effort esti-
mation for a software project. This framework com-
bines a fuzzy logic component, for the processing
and treatment of fuzzy values, and an ANN based
methodology, to select the best neural model for the
problem as well as the optimization of the ANN per-
formance both in runtime and accuracy.

3. Proposed Solution
According to !°, effort estimation is one of the
bases for the correct estimation of software projects.
Therefore, having this information will facilitate
project management permitting a better resource al-
location and minimizing risks.

Many times, estimations are only based on the
previous experience. If a project is quite similar in
size and objectives to other one, the latter will prob-
ably need similar effort and similar time to be devel-
oped. Unfortunately, if the project to be estimated
is different to the previous ones, then the previous
experience will not be enough for an adequate es-
timation. The metrics exposed at the beginning of
this paper have problems to be applied in certain dy-
namic domains which require high adaptability and
flexibility 3.

Based on these assumptions, the SEffEst frame-
work has been used in order to predict the effort re-
quired for a given software project. Therefore, this
research focuses on the estimation of the final effort
for a certain project taking into account several im-
portant features. To obtain a reliable description of
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Figure 1: SEffEst

a software development project it has been used a
subset of data, adapted from the original set of Inter-
national Software Benchmarking Standards Group
(ISBSG).

To conduct this investigation, the original fea-
ture set has been leaked, excluding those factors re-
lated with the calculation of the function points be-
cause they need a high definition level of the project.
Therefore, this research includes only those factors
or features that provide essential information of the
project but without a complete definition of the sys-
tem.

In addition, several parameters of the original set
include information that is approximate rather than
fixed as well as exact or non-uniform variables. For
this reason, the fuzzy logic component of SEffEst
transforms these values into uniform and complete
values. Thus, the fuzzy logic component is able to
process incomplete data and provide approximate
solutions to problems other methods find difficult
to solve. These variables are specifically: project
elapsed time (ET), lines of code (LC) and concur-

Thttp://www.isbsg.org
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rent users (CU).

Consequently and taking into account the pre-
vious issues, the available patterns are related with
data from 273 projects and they are characterized by
the factors shown in the Table 1. A more detailed
description of each factor can be found in 3'.

The second component of the framework is an
ANN based on optimization methodology. This
component has been developed in order to guide the
search of the best neural model for a given prob-
lem and hence improve the performance of this task
both on time and accuracy. To homogenize the
large number of alternatives, they have been grouped
into three phases or stages, following the premise
model = pattern + architecture + algorithm. For
each of the terms of this equation, different tech-
niques and methods will be analyzed in order to im-
prove the final performance.

These machine learning techniques have been
applied because they allow induction of knowledge.
For example, they are able to generalize behaviours
based on unstructured information from previous ex-
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Table 1: List of available variables in the software estimation scenario

Feature Acronym Fuzzy
Inputs (Vinp) Data Quality Rating DQ No
Resource Level RL No
Development Type DT No
Development Platform DP No
Language Type LT No
Database Management System DBMS Used DB No
Upper CASE Used ucC No
Project Elapsed Time ET Yes
Concurrent Users Cu Yes
Lines of code LC Yes
Output (Vour) Summary Work Effort SW

amples. Furthermore, ANN can be applied to a wide
range of high-complex and non-linear domains, due
to their variety of design alternatives. Nevertheless,
sometimes such variety of design alternatives may
become a disadvantage: the lack of guidelines leads
the designer to make arbitrary decisions or to use
brute force techniques. Some new theoretical ap-
proaches have been proposed so as to facilitate the
design process, but they have not been considered
as analytical because they cannot be applied to all

cases 62 .

3.1. Fuzzy Logic Component

As mentioned, the information required to the es-
timation of software projects is not always clear.
Considerations of expert estimations usually include
vague expressions like “large” or “very high”. For
this type of variables Fuzzy Logic provides a good
way of knowledge representation. Fuzzy sets are de-
fined as:

A={(x,us(x)|x € u} (D

This fuzzy set in the universe of discourse U
is characterized by a membership function p4(x)
taking values in the interval [0.1], and can be repre-
sented as a set of ordered pairs of an element x and
its membership value to the whole. After defining
the fuzzy sets, the fuzzy inference rules may be used
to represent the relation between these fuzzy sets. In
this context, the fuzzy reasoning process is based, on

the one hand, on making inferences from facts and
fuzzy relations; and on the other, on a fuzzy com-
bination of evidence which updates the accuracy
of beliefs. For the fuzzy rules, the Mamdani-type
fuzzy rule recommender system has been applied
3352 due to its wide acceptance and its capability
for capturing expert knowledge. These fuzzy rules,
defined using a set of IF-THEN rules or Bayesian
rules, are expressed as follows:

R™ TF U; is A AND U, IS A" AND ... U,, is
A,” THEN v is B"

With m = 1,2...M, where A;" and B™ are fuzzy
sets in U; C R(real numbers) and V C R respectively,
u= (uy,uy,....uy) € UpxUpx...xU, and v € V, and
X =X1,X2,...,x, € U and y € V are specific numeri-
cal values of u and v, also respectively. A rule of this
type expresses a relation between the sets A and B,
whose characteristic function would be ps—,p(x,y),
and represents what is known as logical implication.

In order to improve the estimation process, the
selected variables were analysed in order to decide
the fuzzy variables and their representation (see Ta-
ble 1).The aim of the fuzzy component is to provide
the ANN with more refined information for the esti-
mations. At this point, the variables selected were
Project Elapsed Time (ET), Lines of Code (LC),
Number of Concurrent Users (CU).

With the help of domain experts, the fuzzy sets
were defined. Figure 2 depicts the fuzzy set defined
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Figure 2: Size Fuzzy Set

for the size of the project in KLOC.

3.2. ANN Structure Component

The more important features of the ANN networks
included in this research are detailed in the Table
2. Two complementary stopping criteria were used
during the network training for all the ANN alter-
natives: reaching a specific number of epochs, and
early stopping (ES). Thus, a part of the patterns
has been assigned to the network’s training (training
and validation subset), whereas others have been as-
signed for testing the results obtained (testing sub-
set). The input and output vector for each of the
ANN are created based on the features described in
Table 1.

The train set is used during the training of the
ANN. The use of a validation set is a highly recom-
mended method for stopping network training. This
method monitors error on an independent set of data
and stops training when this error begins to increase.
This is considered to be the point of best generaliza-
tion. Finally, the testing set is used to test the perfor-
mance of the network. Once the network is trained
the weights are frozen, the testing set is fed into the
network and the network output is compared with
the desired output. The other convergence criterion
used (in parallel) with the early stopping is to reach a
specific number of epochs. When the ANN training
reaches a specific number of epochs, in this research
is 81000, the training is stopped. Hence, during the

training of an ANN both criteria are checked to stop
the training process.

The main steps performed during the training
and testing process are the following:

1. Divide the available data into training, valida-
tion and test sets.

2. Use a large number of hidden units (as much
as possible).

3. Use very small random initial values (as much
as possible).

4. Use a slow learning rate (as much as possible).
5. Check the convergence criteria.

o Compute the validation error rate periodi-
cally during training.
« Stop training if the validation error rate
starts to go up”

« Compute the number of epochs.

o Stop training if maximum number of
epochs is reached [81000].

In the original definition of the ANN models,
it has been included the extended BackPropagation
algorithm. This algorithm uses the learning rate
(n) and the momentum coefficient (1) parameters
for a better behaviour. There is no general rule of
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Table 2: Initial features of the ANN networks

hidden-output)

Feature Description References

Topology MLP, RBF, SVM, RNN and ELN See 27 for more details

Inputs Vinp -

Outputs Vour -

Hidden Layer and Neuron 1 Layer with 4 neurons Based on the rules of Tarassenko in 72
Activation Function (input- | figen-fianh-fianh Based on 7%

Training Algorithm

Extended BackPropagation

Learning Parameters

u and n for input layer (0.7 and 1)
and output layer (0.3 and 0.4)

In accordance with the guidelines of *®

Cost Function MSE simple -
Weight Update Batch Based on /!
Weight Initizalization Haykin Heuristic Based on %

Convergence Criteria

Epochs [81000] and Early Stopping | -

thumb for determining the best values of u and 7.
However, several researchers have developed vari-
ous heuristics for their approximation. In this case,
we have used a genetic algorithm to find the best val-
ues for each ANN strategy. Furthermore, the batch
training mode was selected because it presents a bal-
anced behaviour between accuracy and speed '),
and the heuristic of Haykin has been used to initial-
ize the weights, 28.

In regression, the network approximates the out-
put pattern from an input pattern and by a nonlinear
continuous function (F). In this case, to know the
quality of a ANN model during the validation stage,
the coefficient of linear correlation (r) is calculated
and compared for each output variable. This coeffi-
cient reflects the relationship between the actual val-
ues of that variable and those obtained by the ANN.
Moreover, this ratio gives an indication of similarity
and accuracy of the response of the network after the
training process:

L (xi—X)(di—d)

)

r= N
\/ Yid—d)? [Lix—x)?
N N

where the numerator corresponds to the covari-
ance and the denominator to the product of the stan-
dard deviations of the variables x (value obtained)
and d (expected value). This statistical indicator de-

scribes the intensity of the relationship between two
sets of variables x (output obtained by the network)
and d (expected output), i.e., the measure of the in-
tensity of the linear relationship between them. In
particular, it shows whether the value of a variable x
increments or decrements in relation to the increase
or decrease of the value of another variable y. It
can take values in the range [—1, 1]. When the value
is closer to 1, a strong positive association appears.
On the contrary, when the value is closer to -1, a
stronger and negative association appears, i.e., an in-
crement in the variable x produces a decrement in d.
Finally if the value is zero or near zero, the variables
are uncorrelated. It is said that a correlation is sig-
nificant if it is between ||0.7, 1|.

3.3. ANN-based Optimization Methodology

The optimization of the different neural models will
be carried out by defining an optimization method-
ology based on a series of stages and tasks aimed
to determine the best ANN model for this scenario
and to improve its performance, both in time and ac-
curacy. In order to homogenize the large number
of alternatives and simplify its implementation, they
have been grouped into three stages or phases: pat-
terns, architecture and algorithm. This research de-
scribes the process of implementation and optimiza-
tion of an ANN-based framework and its application
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Figure 3: Optimization Methodology based in neural models

in the field of Software development effort estima-
tion. The main aim is to improve the performance of
a neural model, applied in a real scenario of software
development project, looking for the best possible
configuration. To achieve this goal, the optimization
process is divided into five stages which are reflected
in Figure 3.

The first stage aims to answer the question if the
MLP is the best machine learning strategy for the
domain of software effort estimation. For that rea-
son, the performance and accuracy of various ANN
strategies will be studied and compared. The second
stage focuses on the different techniques and meth-
ods that allow to maximize the use of the patterns
by the neural model. The third stage determines
the best network architecture by implementing a Ge-
netic Algorithm (GA) to find the best configuration
of hidden neurons and layers. The fourth stage ana-
lyzes the influence of different learning algorithms,
both first and second order. Finally the fifth stage is
focused on ensuring the quality of the results by in-
troducing a series of indicators based on information
theory.

The procedure followed in each simulation per-
formed in this optimization process is described be-
low:

. Choose the best machine learning alternative
for the scenario (Stage 1).

. Compare different preprocessing and sam-
pling techniques and consider the best distri-
bution for the patterns inside the train and test
sets (Stage 2).

. Locate the best configuration of hidden ele-
ments using a Genetic Algorithm (Stage 3).

Compare different learning algorithms, re-
peated 20 times with randomly initialized
weights (Stage 4).

. Calculate the quality criteria throughout the
prior steps to ensure the validity of the results.

3.3.1. Stage 1. ANN topologies

This stage aims to clarify what is the best solution
among different topologies based on the computa-
tional theory of the ANN. To achieve that, a com-
parative study will be performed to ensure the best
ANN alternative for this concrete domain. The al-
ternatives that have been included for this stage are
listed in Table 3.
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Table 3: Stage 1. ANN Topologies

Topology

Acronym

Description

References

MultiLayer Perceptron

Radial Basis Function

Support Vector Machines

Recurrent Neural Network

Jordan-Elman Networks

MLP

RBF

SVM

RNN

ELN

This is a universal function approximator as well
as easier to use and apply than other most complex
ANN architectures

This is a nonlinear hybrid networks typically con-
taining a single hidden layer of processing elements
These construct a hyperplane as a decision dimen-
sion which maximizes the margin of separation be-
tween the positive and negative examples in a data
set

This includes two types of connections, the feedfor-
ward and feedback connections, allowing informa-
tion to propagate in two directions, from input neu-
rons to output neurons and vice versa

These are dynamic neural networks which have con-
nections from their hidden layer back to a special
copy layer

33

60

73

54

40

3.3.2. Stage 2. Preprocess, Distribution and
Sampling

This second stage focuses primarily on performing
the preprocessing of the patterns to ensure the com-
pleteness of the data used. In this investigation the
term “incomplete data” refers to the unavailability
of certain information in the subjects in the sam-
ple. To address these situations, several alternative
methods of direct allocation of missing values have
been studied ®*°: Mean, Median, a Random Value
with Uniform Probability Distribution (VUPD) and
a Random Value with Estimated Probability Distri-
bution (VEPD).

Furthermore, one of the areas that has received
most attention by the research community has been
the study of the relationships between the general-
ization capability of the network, the amount of data
available and their distribution in the training and
test sets 23, To ensure the proper distribution of the
patterns throughout the sets, a detailed mathematical
model will be incorporated !4, which will explain the
relationship between the size of the training set and
predictive capacity of the network. Thanks to this
study and the research carried out in '3, it has been
demonstrated that the predictive power of an ANN

increases until a threshold value. From this point
forward, it does not compensate the use of new pat-
terns, and therefore their production, since the re-
duction of the error is minimal and involves a higher
cost of computation during training.

Moreover, to achieve an adequate training and
validation, the division of patterns into different sets,
that further reduces the amount of data, will be re-
quired. In order to address this deficiency, sev-
eral statistical techniques based on multiple resam-
pling data have been incorporated to the optimiza-
tion methodology. Thus, this study included the
guidelines proposed by Priddy and Keller to cope
with limited amounts of data %% as well as the rules
exposed by Bishop ! and Holmstrom and Koistinen
32 for the generation of additive noise.

The comparison made in this stage includes
cross-validation techniques such as Hold-Out
(HOCV) and K-fold (KFCV), the introduction of
Additive White Gaussian Noise (AWGN) and the
combined technique of noise and K-fold validation
(KFCV + AWGN). A detailed explanation of these
alternatives and an example of their use in a domain
with limited information can be found in 6.
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3.3.3. Stage 3. Network Architecture

To ensure an optimal generalization ability, it is es-
sential to get a network as small as possible *°. If the
network has too many processing elements, small er-
rors can be obtained during training, but the gener-
alization may be poor with new data due to over-
training, i.e. it creates a very specific solution on the
training data. Moreover, a network whose dimen-
sions are too small cannot correctly resolve the prob-
lem addressed, so it will not be an optimal solution.
Therefore, to achieve an optimal performance, it is
essential to include in the optimization methodology
heuristics to control the complexity of the ANN.

To deal with this question, a GA-based heuristic
has been included trying to find the best set of hid-
den elements: layers and neurons. The genetic al-
gorithms are systematic methods for solving search
and optimization problems, applying the same meth-
ods of biological evolution: selection based on pop-
ulation, reproduction and mutation. The advantages
of using evolutionary computation like genetic al-
gorithms in conjunction with the ANN have been
clearly demonstrated by the scientific community
17,21,30,66,75

In this study the criterion used to evaluate the
ability of each potential solution is the lowest cost
obtained during training. The criteria and values
used were chosen or fixed in accordance with the
guidelines issued by Lefebvre et al. *® and its ap-
plication in practical problems. The values used are
the following:

« Population: 50

o Maximum generations: 100

o Maximum time of evolution (minutes): 60
o Progression: Generational

o Termination Type: Fitness Threshold

o Selection: Roulette

o Crossover: One point
« Crossover: Probability: 0.9

« Mutation Probability: 0.01

3.3.4. Stage 4. Learning Algorithm

ANN training is based on minimizing the error func-
tion E by the variation of the weights set which
define the ANN (see Equation 3). Therefore, it
comes to a multi-variable optimization without re-
strictions, because there is no other additional re-
quirement with respect to the function or the input
variables.

;?/EO@VE(W*):O 3)
Therefore, it is a multivariable optimization with
no restrictions because there are not additional re-
quirements regarding the function or the input vari-
ables. The problem of optimizing a differentiable
function, continuous, multivariable and without re-
strictions, has been studied extensively outside the
field of the ANN, and the different approaches that
have been followed can be applied almost directly to
the problem of minimizing the error. However, there
are two aspects to take into account in this specific
scenario, that make a difference from the conven-
tional optimization techniques: the high number of
variables to be optimized and the large number of
derivatives to be calculated in every iteration step,
which makes the calculations particularly costly.

The BackPropagation algorithm calculates the
Jacobian matrix, formed by the first-order partial
derivatives of the error function with respect to the
weights, to locate the best direction where they fit.
Afterwards, the constant weights are updated in that
direction. However, second-order gradient tech-
niques use the Hessian, square matrix of second-
order partial derivatives of error, with respect to the
weights, so as to adapt the size of the step (step-size)
in the direction of the optimal update. Expressed in
mathematical form, second-order techniques try to
solve Equation 4.
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J%’E

Sy77 =0 (4)

Parker proposed in 1982 6! the original formula
of the second-order method for the BackPropagation
algorithm. Its main inconvenience is that it requires
long computational time for finding the best solu-
tion. This is why different alternatives based on dif-
ferent assumptions have appeared over the years to
approximate the error surface, or at least a part of
it, by means of a second-order curve. One of these
approaches, Quick Propagation, assumes a quadratic
error surface so that the second derivative is constant
while other alternatives such as Quasi-Newton and
Levenberg-Marquardt use a variant of the Newton
descent method.

In general, the Newton algorithms have a higher
complexity, some times with limit n® for a size of
the input vector of n (O(n?)). Therefore, their appli-
cation is often found in environments with architec-
tures and input vectors with adjusted sizes.

In Table 4 the different learning algorithms in-
cluded in this research are exposed.

3.3.5. Stage 5. Quality Metrics

The last phase of the framework is aimed at measur-
ing the quality and validity of the results of the var-
ious ANN alternatives analyzed. The performance
parameter calculated in each ANN, the coefficient
of linear correlation (r), enables the determination
of the functioning and performance of an ANN.
However they do not allow for the determination
of which is the better choice when various alterna-
tive models with similar results appear. To facilitate
this decision, quality metrics have been included to
evaluate and compare from the statistical point of
view the generalization ability of the designed neu-
ral models.

Therefore, this stage includes two statistical es-
timates that indicate the measure of goodness of fit
of a statistical model estimated. These quality in-
dicators are the Akaike Information Criterion (AIC)
developed by * and the principle of Minimum De-
scription Length (MDL) proposed by %°. Both cri-
teria are based on the calculation of the prediction

error (EP), that can be expressed as the sum of two
terms !!:

&)

where the complexity term represents a penalty
which increases with the degrees of freedom of the
neural model. Thus, it is based on two computa-
tion elements, one which decreases when the fit to
the data is improved (accuracy or fitness term), and
another which increases with the number of param-
eters (term for the penalty of the complexity of the
model).

EP = training error 4+ complexity term

The use of these parameters in the field of ANN
permits the selection of the optimal neural model for
a given problem from a number of candidates. The
AIC indicator has been used by researchers for dif-
ferent aims, e.g. to reduce the subjectivity of the
choice between one architecture or another, to de-
termine the number of hidden neurons, and even to
design committees of networks %78, The MDL in-
dicator has enabled the reduction of the complexity
of different architectures, minimizing the number of
weights in domains with scarce data, and determin-
ing the number of neurons and hidden layers for the
optimal model 7776

Finally, to reduce the influence of random par-
tition of the data and the initial weights of the net-
work, all the experiments will be repeated 20 times.
This ensures that Type I and Type II (probability
of accepting the null hypothesis when it is false,
known as equal false) errors will be appropriate and
reproducibility (the probability that two executions
of the same comparison method produce the same
results, known as stability) will be greater than the
traditional alternative.

4. Evaluation and Methodology Validation

In this section, the evaluation performed is depicted.
Firstly, the fuzzy components defuzzify the values of
the fuzzy input variables in order to feed the ANN
component. Lastly, the ANN-based optimization
methodology locates the best ANN model for the
problem of this research.
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Table 4: Stage 4. List of Learning Algorithms

Learning Algorithm Acronym Parameters
Gradient GR Parameter 1 in hidden and output layer (with Genetic Algorithm)
Extended BackPropagation EBP Parameter 1) and u in hidden and output layer (with Genetic Algorithm)
Quick-Propagation QP Parameter 1 and u in hidden and output layer (with Genetic Algorithm)
Conjugate Gradient CG Second order method
Levenberg Marquardt LM Second order method

4.1. Fuzzy logic transformation

First of all, the data about the projects to be eval-
uated are processed by the fuzzy logic component.
The data corresponding to the fuzzy variables is pro-
cessed, the fuzzy rules are applied and, finally, the
results are defuzzified in order to determine the input
values for the neural network. In this way, the values
of size, elapsed time and concurrent users are de-
termined and incorporated to the input vector along
with the non-fuzzy input values.

4.2. Stage 1. Comparison of alternatives to MLP

The basic architecture of the ANNs used in this
study are shown in Table 2 and the others ANN
topologies are detailed in Table 5. The initial learn-
ing rule for the ANNSs is the Extended BackPropaga-
tion, with or without the parameters, except for the
Support Vector Machine (SVM) topology. The opti-
mal values for these parameters in each ANN were
approximated through an adaptative process using
the genetic algorithm component.

« RBF: Extended BackPropagation Learning.
n=1.0y u=0.7 for the output layer. .

« RNN: Extended BackPropagation Learning.
n=0.01 y u=0.7 for the hidden layer. n=0.1y
u=0.7 for the output layer.

o SVM: Learning with 1=0.01 for the output layer.

« MLP: Extended BackPropagation Learning.
n=0.9 y u=0.8 for the hidden layer. n=0.1y
u=0.7 for the output layer.

o ELN: Extended BackPropagation Learning.n=0.1
y u=0.8 for the hidden layer. n=0.1 y u=0.8 for
the output layer.

« SOFM: Extended BackPropagation Learning.
Nn=0.9 y u=0.7 for the hidden layer. n=0.1y
u=0.7 for the output layer.

Table 6 shows the average precision (correlation
factor) for each of the alternatives after twenty repe-
titions. The MLP is the best machine learning in all
cases, reaching the threshold of accuracy with 27000
epochs. In second place the RNN obtains an accu-
racy slightly lower than the MLP ,-0.02, with 9000
epochs but with a more unstable behaviour. The re-
maining proposals (RBF, ELN and SVM) fit worse
to the problem with a lower level of precision. Fi-
nally, in all the classifiers analyzed, the performance
decays above the 29000 epochs, indicating signs of
overlearning.

In order to corroborate the former conclusions,
an analysis focused on the quality measure of each
learning machine was performed. To compare the
goodness of fit to the data, the statistical criteria
based on information theory AIC and MDL are de-
tailed in Table 6. As shown, the neural networks
based on the MLP have a better performance and
adjust to the data, i.e. with lower values for these
statistical indicators.
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Table 5: Overview of ANN and cost function strategies included in the stage 1.

Method

Acronym  Description

Conscience full competitive rule. Euclidean metric. Cluster Cen-

ters=70. 10-0-1 topology.

Partially recurrent. 10-1-1 topology.

Kernel Adatron algorithm. Step size 0.01. 10-0-1 topology.
10-4-1 topology
Inputs feed the context units. 0.8 time constant. Momentum

learning rule 10-1-1 topology.

Radial Basis Function RBF
Recurrent Neural Net- RNN
work

Support Vector Machine =~ SVM
MultiLayer Perceptron MLP
Elman Network ELN
Self-Organizing Map SOFM

Square Kohonen Full method. Rows=5, Columns=5, Starting Ra-

dius=2, Final Radius=0. 10-1-1 topology.

Table 6. Stage 1. Results with AIC and MDL criteria (20 runs)

ANN Hitrate r AIC MDL Epochs
RBF  0.6539  413.7332 454.1413 23674
SVM  0.6973  383.3616 278.4807 26937
RNN  0.7161  193.4535 180.9573 29863
ELN  0.5426  493.8069 417.4704 29541
MLP 0.7413 101.2314 99.9212 27850

Finally, as it has been demonstrated, the MLP is
superior in the average of the results and, in addi-
tion, it presents a better fit to the data from the point
of view of the indicators AIC and MDL. Therefore,
in the following paragraphs, the MLP with 27850
epochs will be discussed to optimize its use within
this domain.

4.3. Stage 2. Preprocessing, Distribution and
Sampling

o Task 1. Missing data imputation techniques

This stage preprocesses the patterns to ensure the
completeness of the data. In the simulations of the
Stage 1, the arithmetic mean was used to complete
the missing data and to perform the experiments,
despite being the simplest technique, it usually has a
correct behaviour for this kind of problems. Table 7
shows the results obtained for each alternative used
to complete the missing values in patterns.

Table 7. Stage 2. Results obtained with the preprocessing tech-
niques

Technique Best Result
Mean 0.7521
Median 0.7513
VUPD 0.7302
VEPD 0.7191

In this case, the technique with best results is still
using the "Mean” to complete the missing informa-
tion. This technique is a simple non-random alloca-
tion of an unknown value and it consists of the assig-
nation of the average value for a certain variable, in
the cases that have numerical value. For categorical
variables the corresponding distribution model has
been included.

« Task 2. Techniques for Patterns Distribution

The typical distributions of 50/50 or 80/20 to
train and test sets exposed in ’! do not always fit
neatly into every problems. For that reason and to
find the best distribution, the guidelines described in
18 will be followed and the results will be validated
using the mathematical model proposed in 4.

Figure 4 displays the evolution of the MLP ac-
curacy depending on the size of the train set. The
results obtained agree with the tenets of Crowther
and Fox in '®. From the trend line associated with
the results, the predictive power grows rapidly to the
point A and then begins to decelerate to the point
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B. However, in the last stage, from B till the end,
no significant improvements were produced, aris-
ing stagnation and even deterioration in the rate of
success. In this case, the maximum value of suc-
cess is consistent with the assertions postulated by
Boonyanunta and Zeephongsekul in '#, because the
ratio for the train set is fixed to 70% of the avail-
able patterns. From this point B onwards, the classi-
fier performance stagnates and the results are stable.
The advantage of this analysis is that it facilitates to
know the amount of data to reach acceptable results,
because the improvement that will be achieved to-
wards this point will be minimal.

Therefore, this situation permits initially to re-
duce the cost of getting additional data to increase
the size of the training set and secondly to acceler-
ate the convergence of the learning process. In this
sense, it is necessary to take into account if the cost
associated with the generation of more patterns will
compensate the effort to earn a small percentage of
accuracy, ~1%. However, the problem associated
with this technique is the subjectivity when deter-
mining what level of improvement is despicable.
Thus, it is necessary to consider other criteria such
as the cost of extraction of information, time re-
quired to develop and the train of the neural models,
etc.

Table 8. Stage 2. Estimated values by the mathematical model

T(r) pinT k PO(r) Max.(r)

p in Max.

0.7512 501  0.002951 0.5223 0.7121 149

The mathematical model of Boonyanunta and
Zeephongsekul was probed to test the evolution of
the ANN with a higher number of patterns (greater
than those actually available).

This model is summarized in the equation:

P(p) =T (1) +P(0)e” (6)

where T is the threshold of efficiency, k is the
rate of improvement in predictive power per unit in-
crease in efficiency and P(0) is the predictive power
when no data are provided to the training process.
Three points were chosen to approximate the model

described: 50, 100 and 149 patterns. The values
shown in the Table 8 were obtained, on the one
hand, from the values obtained by the MLP and, on
the other, with an optimization method implemented
in the Solver method. The Solver method shows the
maximum threshold that could reach the classifier
(T(%)) by increasing the number of patterns (p).
The column Max. (%) indicates the highest level
reached by the classifier and the column p in Max.
sets the maximum number of patterns used in that
case. However, as with the investigation of refer-
ence, the model has a lag in its predictions and is
not adjusted correctly for a few data. The trend line
superimposed on Figure 4 shows that the threshold
has not been reached. The trend lines shown are log-
arithmic, because it is a curved line that perfectly fits
the data, being very useful when the rate of change
of the data increases or decreases quickly and then
stabilizes. The A and B points are estimated by
calculating the average variation and the standard
deviation obtained in the simulations.

Finally, based on the analysis of the results, the
optimal distribution for train/test sets is 70/30.

o Task 3.Sampling Techniques

In some scenarios due to the nature of the process
that recreates the data, the collection and labeling of
the information becomes an intensive and compli-
cated task. In order to improve the results without
additional testing, various techniques from the field
of statistics, used in estimation and classification
problems, have been analyzed. This techniques al-
low the resampling of the original set of patterns
into a bigger one. Table 9 details the different op-
tions included in this research.

The results of the simulations for this stage are
shown in Table 9. Although the method HOCY, is
used frequently because of its speed, it presents the
problem of wasting information because only a part
of the data is used to train the network. When the
amount of data available is limited, as in the domain
of this research, it is necessary to consider other
alternatives to maximize and optimize the use of
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Figure 4: Stage 2. Evolution of the accuracy of the MLP related to the training set size

Table 9: Stage 2. List of experiments performed with the sampling techniques

Technique Description Hit rate r AIC MDL
HOCV Hold-Out Cross Validation 0.7902  120.2123 156.1146
KFCVs K-fold Cross Validation with 5 sets 0.8201 108.5876  92.7751
KFCVy K-fold Cross Validation with 10 sets 0.8305 101.2543 111.9974
AW GN5 Addition of 50 patterns with noise 0.8203 93.4236  97.8823
AW GNoo Addition of 100 patterns with noise 0.8328 97.5025 101.7039
Ki10AW GNo KFCV;y and AW GNjgo combination 0.8405 91.2352  85.1908

the patterns. The technique K;gAWGN|yo obtains
the best results, with superior performance from
1000 epochs. The maximum improvement obtained
against the HOCYV alternative is reached with 27000
epochs (the average number of epochs required is
21547), coinciding with the point of maximum ac-
curacy of the MLP: 0.7911. Within the other alter-
natives, it should be highlighted the introduction of
100 noise patterns and the variant of KFCV with 10
sets, because they are the alternatives with a stable
behaviour.

Thus, for the following steps, it shall be used the
MLP with the configuration K;gAWGNgg. Thanks
to this technique, it could be mitigated the influence
of the random distribution of patterns of the KFCV
technique. In addition, each simulation of the alter-
native KjgAWGN o will be repeated several times.
This combination results in the 20 x 10cv strategy,

also called repeated K-fold cross validation, indicat-
ing that each simulation will run 20 times with 10
data sets of similar size, using nine to train and one
to test the network 20,

4.4. Stage 3. Network architecture

This stage is responsible for optimizing the archi-
tecture of the ANN by controlling the hidden ele-
ments, layers and neurons. The objective is to im-
prove the performance and the quality of the neural
model. Firstly, an adaptative method like GA will
be used in order to localize within the possible ANN
architectures those which the best behaviour. Lastly,
a trial and error process oriented to measure the per-
formance of the selected topologies will be used to
validate the candidates.

From the point of view of the effectiveness of the
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Table 10: Stage 4. List of learning algorithms studied

Algorithm  Description

EBP Learning method with optimization parameters (hidden and output layers) n =1.0-0.4 and u =0.7-
04

LM Method of second-order improvement for the gradient.

QP Method of second-order improvement with parameters (hidden and output layers) n =1.0-0.4 and
u=0.7-04

GC Method of second-order improvement for the gradient

learning, the creation of topologies with many lay-
ers is not convenient. It is always better to solve the
problem with fewer layers (i.e. A MLP with one or
two hidden layers) so as to achieve a faster train-
ing. In this case, the starting point is the basic MLP
architecture obtained in the previous stages; so ini-
tially only one hidden layer will be used. If the er-
ror is not considered appropriate, a second layer will
be added to the MLP. Since a MLP with two layers
is considered an universal approximator, the use of
more layers may not be necessary.

In the first step (using a GA), the starting topol-
ogy includes only one hidden layer composed by
four neurons: C; Ny. Table 11 shows the best
topologies for hidden layers and neurons selected
by means of the GA (marked as GA). The first one,
C1N3g, has one hidden layer with eight neurons, while
the second one, C{Ns — C»Ns, has two hidden layers
with four and five neurons. In the last case (two hid-
den layers), as the results obtained are not better and

4.5. Stage 4. Learning algorithm

This stage studies different alternatives oriented to
the numerical optimization of the learning algo-
rithm. The aim of the learning algorithm is to lo-
cate the global minimum on the error surface in the
weight space. The first or second order algorithms
attempt to optimize and accelerate the search by
means of different approaches as well as the way
in which weights are updated, e.g using dynamic
adaptation of the parameters or the second deriva-
tive of the error. Table 10 details all the alternatives
proposed in this section.

The results obtained are shown in Table 12. The
best proposal is the GC algorithm with a slightly bet-
ter performance than the classical EBP algorithm.

Table 12. Stage 4. Results obtained for the learning algorithms

the computational time is higher, no more complex Algorithm _ Hitrater ~ AIC MDL  Epochs
topologies have been searched (i.e. including more EBP 0.8746  52.7613  53.4398 19781
hidden layers). The behaviour of the above men- LM 0.9099  41.0923  44.6117 1694

tioned proposals have been studied through a pro- 8(}): 83(1)‘7‘8 éggggi giz‘g;i iiig;

cess of trial and error, also including a wider range
of configurations. The results obtained by each ar-
chitecture are shown in Table 11.

Table 11. Stage 3 results. Comparison of architectures

4.6. Stage 5. Quality Metrics

Architecture  Hitrate r AIC MDL Epochs
9_;)1?(}1 A) 82322 gggégg :;ig;g i;gg(l) This stage includes the AIC and MDL criteria the_lt
10-9-1 08361 804874 387180 20518 have been used in the previous stages of the opti-
10-4-3-1 0.8460  126.0079 7584253 27796 mization methodology. The use of these parameters
10-4-5-1 (GA)  0.8633  90.1587 95.43103 29083 in the field of ANN facilitates the selection of the
10-4-6-1 0.8324  117.8848 72.70923 32855 optimal neural model for a given problem from a

number of candidates.
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4.7. Summary and Discussion

The evolution of the accuracy and the number of
epochs performed in each stage are listed in Table
13. The columns "% Var.” and "% Var. Total”
show the percentage of variation from the previous
stage and the total percentage of variation between
the last stage and the initial MLP. The total average
improvement is 23.38% and reducing the number of
epochs reaches 45.18%. In addition, the quality met-
rics introduced throughout all phases of the method-
ology adds an additional component to ensure the
validity of the conclusions reached.

Authors have tested a similar framework, using
ANNSs but without the fuzzy component, in similar
regression problems where it was necessary to pre-
dict a value from a set of input variables. Table 14
includes a comparison between SEffEst and other
similar systems proposed by the authors. The pre-
vious research work 2* carried out by the authors,
obtained a hit rate of 0.8525. It implies that SEffEst
improves the hit rate by 6.15%. The reason for this
improvement can be rooted in the fact that SEffEst
incorporates the fuzzy logic component that has al-
lowed the inclusion of more test cases in which some
information was vaguely quantified. With respect to
27 despite the domains are not comparable (software
estimation vs ballistic impact), it can be observed
that SEffEst hit rate is quite similar to the two sce-
narios proposed by 27. Firstly, all hit rates can be
considered as very high, remarking the good results
achieved by SEffEst. Lastly, despite the research
works are different, they are based on the evolution
of the optimization methodology and its implemen-
tation into a concrete framework. Thus, it can be
assumed that the optimization methodology can be
applied to different domains obtaining remarkable
results. It can also be concluded that the inclusion
of new elements to the methodology (as fuzzy logic
components in SEffEst) permits the improvement of
the results.

5. Conclusions

Adequate and reliable effort estimation from a re-
duced data set in the early phases of a software
project represents a competitive advantage and pro-

vides valuable information in order to make deci-
sions.

There are several research lines related to soft-
ware estimation. In this paper, fuzzy logic and ANN
have been explored with a view to improve the esti-
mation process. ANN technique takes into account
a wide number of design factors, requiring an ade-
quate test set that provides the accurate training of
the network in order to obtain optimal results. The
selection of the test set and the training process re-
quire knowledge and experience due to the inherent
difficulty to these tasks. Fuzzy logic, on the other
hand, permits the representation of knowledge us-
ing vague concepts in terms near to the language of
the experts. This paper presents SEffEst, a frame-
work based on an optimization methodology for
ANN models oriented to effort estimation of soft-
ware projects considering fuzzy input values. The
main aim of this research is to improve the perfor-
mance of a neural model by finding the best possible
configuration for the problem to be solved and set-
ting up the adequate fuzzy sets in order to ease the
definition of the input values. The proposed frame-
work manages to find the best neural model for the
problem at hand, and thus improves the performance
of the ANN both in time and precision.

To validate the proposed approach, SEffEst has
been designed based on a set of parameters available
at the early phases of the project. The parameters
that imply a deep knowledge of the software project
have been discarded in order to allow the early esti-
mation, and the values of lines of code, elapsed time
and concurrent users have been fuzzified.

Research results show that an accurate Fuzzy
logic - ANN architecture for effort estimation has
been obtained. The mean correlation factor obtained
with SEffEst is 0.9140, improves 6.15 % the previ-
ous work of the authors. That is a promising value,
because the effort estimation of a software project
depends on a considerable number of variables.

Future research is focused on the application of
SEffEst in stages of the project where more variables
are known. This offers a promising perspective, in
order to play with more fuzzy variables and more
relevant and accurate information about the project.
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Table 13: Stage 4. Summary of the results obtained

Stage 1 Stage2 % Var Stage3 % Var Stage4 % Var % Total Var
Hitrater 0.7413 0.8405 1338 0.8746 4.05 09140 451 23.30
Epochs 29410 27850 -530 19781 -28.97 16121 -18.50 -45.18
Table 14: Comparison of SEffEst with other systems
Reference Hit rate r Problem type Main Features
SEffEst 0.9140 Regression of one variable Fuzzy Logic and ANN framework for
software development domain. 5 stage
optimization methodology
24 0.8525 Regression of one variable ANN framework for software develop-
ment domain). 5 stage optimization
methodology
2 0.9000 and 0.9300 Scenario 1 for regression of two ANN framework for impact ballistic
variables domain. 4 stage optimization method-
ology
2 0.9200 and 0.9100  Scenario 2 for regression of two ANN framework for impact ballistic
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