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Abstract 

A fuzzy logic system (FLS) is established for damage identification of simply supported bridge. A novel damage 
indicator is developed based on ratios of mode shape components between before and after damage. Numerical 
simulation of a simply-supported bridge is presented to demonstrate the memory, inference and anti-noise ability of 
the proposed method. The bridge is divided into eight elements and nine nodes, the damage indicator vector at 
characteristic nodes is used as the input measurement of FLS. Results reveal that FLS can detect damage of training 
patterns with an accuracy of 100%. Aiming at other test patterns, the FLS also possesses favorable inference ability, 
the identification accuracy for single damage location is up to 93.75%. Tests with noise simulated data show that 
the FLS possesses favorable anti-noise ability. 

Keywords: Damage identification; Simply-supported bridge; Fuzzy logic; Modal shape ratio  

1. Introduction 

There are totally 621.9 thousand highway bridges in 
China, small and medium span bridges are over 90% 
according to the annual statistical report of Chinese 
highway maintenance [1]. These structures are 
susceptible to damage such as steel corrosion, concrete 
cracks and carbanation due to harsh environment, 
increasing traffic volume and material aging, their 
safety and durability performance degrade during 
service time. Therefore, it is essential to identify the 

damage of bridge in order to improve its operation 
efficiency [2-5]. 

Vibration-based damage identification method has 
attracted worldwide interest in the past few decades [6, 
7]. The theoretical background is that the modal 
parameters (frequency, mode shape etc) are functions of 
physical properties (stiffness, mass etc) of bridge. The 
damage in structure alters its properties, and the modal 
parameters inevitably changed. The commonly used 
modal parameters for damage identification include 
natural frequency, mode shape and their derivatives, 
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such as modal shape curvature, modal strain energy, 
modal flexibility etc [8-12]. 

Among these modal characteristics, natural 
frequency has no relation with measuring positions and 
can be measured most conveniently and accurately [6]. 
However, the frequency-based method possesses several 
apparent drawbacks. For instance, it is inferior sensitive 
to minor damage, and easily affected by environment 
[13]. Additionally, the simply supported reinforced 
concrete bridges are spatial symmetric structures. 
Natural frequency can not distinguish damage at 
symmetric locations in these symmetric structures. 

These difficulties of using frequency as damage 
indicator can be overcome to some extent by using 
changes in mode shapes [14-16]. Comparing with 
natural frequency, mode shapes contain the spatial 
information with respect to location of damage. 
Meanwhile, they vary less sensitively to environmental 
effects. Modal perturbation analysis indicates that 
modal shape ratios are also less sensitive to the 
modeling errors than frequency [17].  

Modal curvature is another most widely used 
damage indicator [10, 13, 14], which is the second 
spatial derivative of mode shape. It can be calculated by 
central difference approximation method in practice. 
But its calculation results possess apparent errors, which 
largely depend on the number of measuring points [18]. 
Modal shape ratios can be obtained more simply, which 
only need the mode shapes of structure before and after 
damage. 

Artificial Neural Networks (ANN) have been 
utilized by many researchers to identify damage 
location and severity [17, 19-23], as they can achieve 
the nonlinear mapping between the inputs and outputs 
from training of certain amount of samples. But  neural 
networks have the reputation of being black box that are 
difficult to understand [24]. Moreover, the test results of 
ANN are highly dependent on the accuracy of training 
samples. Fuzzy systems allow for easier understanding 
because they are expressed in terms of linguistic 
variables [25]. And they are finding increasing use in 
structural damage identification. Ganguli et al. [14, 26-
28] adopted the natural frequency and modal shape 
curvature as the input of fuzzy logic systems and 
genetic fuzzy logic systems for the damage detection of 
helicopter rotor blades. Zhao et al. [29] proposed a 
method based on principal component analysis, 

modified mountain clustering method, descent method 
and fuzzy logic systems for the damage detection of 
concrete bridges. Reda Taha [30] introduced a new 
techniques based on Bayesian updating and fuzzy sets to 
improve pattern recognition and damage detection of 
structures. However, the fuzzy logic method using mode 
shape ratio as input variables has not been reported. 

In this paper, a novel damage indicator based on 
mode shape ratio is constructed. A simply supported 
bridge is divided into 8 elements with equal length and 
uniform bending rigidity. The damage indicator at 
several characteristic nodes is selected as the input 
measurements of FLS. The outputs of the FLS are 
damage levels of each element. Numerical simulation is 
conducted to verify the memory, inference and anti-
noise ability of the proposed method. 

2. Theoretical background 

2.1. Theory of modal analysis 

The characteristic equations for vibration analysis of 
Euler-Bernoulli beam bridge can be written as[28, 31] 
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where E  is the material elasticity of bridge, )(xI  is 
bending moment of inertia, )(xEI  is the flexural 
rigidity of the beam, )(xm  is mass per unit length of the 
beam and ),( txu  is the transverse displacement of the 
beam reference axis. The beam equation is solved using 
the finite element method.  

For an n degree of freedom system, the equation of 
motion in discrete form is obtained after assembling of 
the element matrix and application of the boundary 
conditions. 

0=+ KqqM &&                                        (2) 

here M is the nn×  mass matrix of the system, K is the 
nn×  rigidity matrix. q  is the 1×n  vector of nodal 

displacements. We seek a solution of the form 
)(iwteq φ= , which results in the eigenvalue problem. 

φωφ MK 2=                                        (3) 

Solving this eigenvalue problem we get n  
eigenvalues ( ω ) and n  eigenvalues ( φ ) which 
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represent the natural frequencies and mode shapes of the 
system, respectively. 

2.2. Modeling of damage 

According to the theory of modal analysis, natural 
frequency and modal shape are closely related with 
rigidity ( EI ) and mass ( m ) of bridge. In general, the 
damage of bridge does not alter its mass but the rigidity 
[17]. Therefore, the reduction of bridge rigidity caused 
by damage is the main factor leading to modal variation.  

Taking the rectangular beam shown in Fig. 1 for 
example, h  is the section height, b  is the section width. 
The rigidity k  of this section can be expressed by 

12

3hbEIEk ×
×=⋅=                            (4) 

h

b

Reference
    Axis

 

Fig. 1. Schematic diagram for rectangular section 

As can be seen from Eq. (4), the rigidity of bridge 
contains two aspects that is elasticity and section size 
( b  and h ). In the present research, there are usually 
two simulation method for damage, one assumes that 
the section size of bridge is changed [32, 33], while the 
other assumes that the elasticity of bridge material is 
altered [17, 24, 28]. In this paper, the latter method is 
adopted, the damage parameter iα  is defined by  

uidii EE ,,1−=α                                    (5) 

where i  is the number of damaged element, uiE , , diE ,  
represent elasticity of undamaged and damaged element, 
respectively. 

A numerical example analysis is performed on a 
simply supported bridge as shown in Fig. 2. The model 
consists of 8 elements with equal element length 
(LEL=1m) and uniform bending rigidity 
( 27 .10155.1 mkNEI ×= ) for undamaged structure. 

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9

Fig. 2. Model of simply supported bridge 

 
In this paper, the structural damage in each element 

is simulated by elasticity reduction ( iα ) of 5, 10, 15 
percent for method validation. These damages are 
classified as “slight damage”, “moderate damage”, 
“severe damage”, respectively. Damage sizes below 
“slight damage” are classified as “undamaged” and 
damage sizes greater than “severe damage” are 
classified as “catastrophic damage”.  

In practical engineering, the selected iα  for “slight 
damage”, “moderate damage”, “severe damage” can be 
adjusted in accordance with the span, load level and 
importance for transportation of bridge. Meanwhile, 
According to the identified damage condition, 
appropriate maintenance strategy may be adopted by 
engineers in order to ensure the safe operation of bridge. 

2.3. Fuzzy logic system 

Fuzzy logic system is a computational mechanism based 
on fuzzy set, fuzzy rules and fuzzy inference. It can 
achieve the nonlinear mapping between inputs and 
outputs [25, 30]. Mamdani fuzzy system is the most 
widely used one, it consists of fuzzification of input 
measurements, fuzzy rules, fuzzy inference and 
defuzzification of output measurements as shown in Fig. 
3 [14, 24]. 

 

Fig. 3. Schematic representation of Mamdani system 

2.3.1. Input and output 

The point of fuzzy logic is to map an input vector 
represented by x  to an output one represented by y . 
Mathematically, this can be represented as [14] 

)(xfy =                                                (6) 

Input 

Fuzzifier Fuzzy 
Inference 

Defuzzifier 

Output Rule base 
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In this paper, a novel measurement based on ratios 
of mode shape components between before and after 
damage is constructed as the input of FLS. The mode 
shape ratio is defined by 

un
m

dn
m

n
m φφφ =Δ                                     (7) 

where m is the order of mode shape, n is the number of 
nodes， dn

mφ , un
mφ  represent the mth mode shape 

value at node n for damaged and undamaged structure, 
respectively.  

Taking damage identification of element 4 with 
damage severity 10% for example, the first modal 
shapes (m=1) for all nodes of bridge under damaged and 
undamaged condition are listed in Table 1 and Fig.4. It 
can be concluded the modal shapes at nodes have 
changed, this reveals that the bridge has been damaged. 

Table 1 First modal shapes of damaged and undamaged bridge 

Element 4 with damage severity 
10% Node 

Number Undamaged Damaged 
1 0 0 
2 0.0040917 0.0040851 
3 0.0075604 0.0075630 
4 0.0098781 0.0099189 
5 0.0106920 0.0107220 
6 0.0098781 0.0098514 
7 0.0075604 0.0075160 
8 0.0040917 0.0040609 
9 0 0 

0.000
0.002
0.004
0.006
0.008
0.010
0.012

1 2 3 4 5 6 7 8 9

Node Number

M
od

al
 S

ha
pe

 

Fig. 4. Modal shapes for undamaged bridge 
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Fig. 5. Modal shape ratios between before and after damage 

The mode shape ratios calculated by Eq. (7) without 
considering fulcrum (nodes 1 and 9) are shown in Fig. 5. 
As can be seen from Fig. 5., modal shape ratios emerge 
a peak at the relevant nodes (nodes 4 and 5) of element 
4, which can be used to identify the damage location. It 
indicates that mode shape ratio is a favorable damage 
indicator. 

We can also find that the values of mode shape 
ratios are all around number “1”, and their interval 
range is not obvious. That is not conducive to establish 
the FLS. Therefore, the mode shape ratios are furtherly 
transformed as follows. 

)10001000*( −Δ=Δ n
m

n
m φφ                          (8) 

where n
mφΔ  is the damage indicator used in this paper, 

n
mφΔ  is the mode shape ratio.  
The mode shape ratios before and after 

transformation are listed in Table 2. 

Table 2 Mode shape ratios before and after transformation 

Element 4 with damage severity 
10% Node 

Number 
n

mφΔ  n
mφΔ  

2 0.9984 1.6130 
3 1.0003 0.3439 
4 1.0041 4.1303 
5 1.0028 2.8058 
6 0.9973 2.7029 
7 0.9941 5.8727 
8 0.9925 7.5274 

As can be seen from Table 2, the range of n
mφΔ  is 

more obvious, which is convenient for the construction 
of FLS.  
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Structural damage severity ( iα ) is used as the 
output of the FLS. Therefore, the objective of FLS is to 
find a functional mapping between n

mφΔ  and iα . 

2.3.2. Fuzzification 

The fuzzification comprises the process of transforming 
crisp values into grades of membership for linguistic 
terms of fuzzy sets. The membership function is used to 
associate a grade to each linguistic term [34].  

Inputs to the fuzzy logic system are the 
measurements of n

mφΔ  and outputs are structural 
damage degree ( iα ) of elements. For input variables, 
we define nine membership functions to transform 

n
mφΔ  into linguistic terms of fuzzy sets.  
T ( n

mφΔ )={negligible, very low, low, low medium, 
medium, medium high, high, very high, very very high} 

For output variables, we define five membership 
functions to transform the damage degree into linguistic 
terms of fuzzy sets. For example, “element i  
( 8,...,2,1=i )” is considered as a linguistic variable. It is 
decomposed into a set of terms. 

T (element i )={undamaged, slight damage, 
moderate damage, severe damage, catastrophic damage}, 

8,...,2,1=i . 
Fuzzy sets with gaussian membership functions are 

used for the input variables. These fuzzy sets can be 
defined using the following equation. 

2)/)((5.0)( σμ mxex −−=                                              (9) 

where m  is the midpoint of the fuzzy set and σ  is the 
standard deviation associated with the variables. The 
midpoints are selected to span the region ranging from 
an undamaged bridge to one with significant damage, 
while the standard deviations are selected in order to 
guarantee the enough width to capture the variations of 
the input variables. Therefore, the reasonable selection 
of m  and σ  is very important for the performance of 
the FLS.  

Fuzzy sets with bell functions are used for the 
output variables. These fuzzy sets can be defined using 
the following equation. 

b

a
cy

y 2

1

1)(
−

+

=μ                                               (10) 

where [a, b, c] are the variables that control the shape of 
the function. 

2.3.3. Fuzzy rules and its generation 

Rules for fuzzy system can be expressed as: 
iR : if 1

mφΔ  is 1P ， 2
mφΔ  is 2P … n

mφΔ  is nP ，then 
α  is iQ ， i =1, 2, ..., q  
where iR  denotes the i th rule, n

mφΔ  is mode shape 
ratio and input variable, α  represents damage severity 
of elements and used as the output variable, n , q  are 
the number of input and output variables, P  and Q  are 
the fuzzy sets with the membership function )(xμ , 

)(yμ  as defined in Eqs. (9) and (10). 
Rules for the fuzzy system are obtained by 

fuzzification of the numerical values obtained from 
finite element analysis using the following procedure: 
• The damage indicator n

mφΔ  corresponding to a 
given damage severity is input into the FLS and the 
membership degree of n

mφΔ  is obtained. Therefore, 
each measurement has nine degree of memberships 
based on the linguistic measures. 

• Each measurement variable is then assigned to the 
fuzzy set with the maximum degree of membership. 

• One rule is obtained for each damage severity by 
relating the measurement variable with maximum 
degree of membership to a fault. 

2.3.4. Defuzzification 

Defuzzification is interpreting the membership degrees 
of fuzzy sets into a specific decision or real value. In 
order to obtain the damage state of elements, the outputs 
must be defuzzified. There are many different methods 
of defuzzification available, such as LOM (last of 
maximum), COA (center of area), COG (center of 
gravity), FCD (fuzzy clustering defuzzification) etc [35].  

In this paper, the LOM method is chosen as the 
defuzzification strategy, which is easy for bridge 
engineers to master and apply. This method gives the 
output with the highest membership function. It can be 
expressed by 

),,,,()(0 cdsedmdsduddfdf ααααααα ==                   (11) 

where df  is the defuzzification function, 0α  is the 
identified damage condition after defuzzification, α  is 
the vector of membership degree for all damage 
conditions, such as “undamaged ( udα ) ”, “slight 
damage ( sdα ) ”, “moderate damage ( mdα ) ”, “severe 

Published by Atlantis Press 
      Copyright: the authors 
                   631



H.B.Liu, Y.B.Jiao, Y.F.Gong 
 

 

damage ( sedα ) ”, “catastrophic damage ( cdα ) ”. 0α can 
be determined according to the damage condition with 
maximum membership degree. 

2.4. Modeling of uncertainty 

Uncertainties inevitably exist in experimental 
measurements due to modeling and measurement 
uncertainties. The damage indicator with noise can be 
obtained after adding measurement noise into the 
calculated indicator [36]. 

))1,0(1( normrndnoise ×+Δ=Δ λφφ                           (12) 

here noiseφΔ  is the damage indicator with noise, while 
φΔ  is the indicator without noise, λ  is the noise level 

parameter, )1,0(normrnd  is gaussian random number. 
 

3. Numerical simulation 

3.1. FLS for damage identification of simply 
supported bridge 

3.1.1. Input and output variables 

In general, the damage indicator at all nodes except 
fulcrum is used as the input variable. But there are 
several drawbacks for this method. Firstly, it is not 
necessary, because mode shape ratios at partial nodes 
already contain enough damage information. Secondly, 
there will be data loss in practical measurement, we can 
not obtain the information at all nodes. Therefore, the 
damage indicator at the nodes 2, 4, 5, 6, 8 of the first 
mode shape is selected as the input variables in this 
paper, which is shown in Fig. 6. The output variable is 
the damage severity of elements. 

{ }8
1

6
1

5
1

4
1

2
1 ,,,,in ΔΦΔΦΔΦΔΦΔΦ=put                     (13) 

putout ={element 1, element 2, element 3, element 4, 
element 5, element 6, element 7, element 8}              (14) 

1 2 3 4 5 6 7 8 9

 
Fig. 6. Characteristic nodes of mode shape for fuzzy system 

3.1.2. Damage identification cases 

The damage cases are established to verify the 
effectiveness of FLS as shown in Table 3. 

Table 3 Cases for damage identification 

Case No. 1 2 3 
Damaged 
elements Element 1 Element 4 Element 4, 5

3.1.3. Membership functions for inputs and outputs 

Fuzzy sets with gaussian membership functions are used 
for the input variables, different midpoints ( m ) and 
standard deviations (σ ) are selected for different cases 
in order to reduce the repetition of rules and optimize 
the accuracy of detection. Fuzzy sets with bell function 
are used for the output variables, the same membership 
function is used for all cases. The membership functions 
of inputs and outputs are shown in Fig. 7., Fig. 8. and 
Table 4. 

 
(a) Membership functions of case 1 

 
(b) Membership functions of case 2 

 
(c) Membership functions of case 3 

Fig. 7. Schematic diagram of membership function of inputs 
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Table 4 Fuzzy sets for output measurements 

Damage condition a b c 
Undamaged 2 3.5 0 

Slight Damage 2 3.5 5 
Moderate Damage 2 3.5 10 

Severe Damage 2 3.5 15 
Catastrophic Damage 2 3.5 20 

 
Fig. 8. Schematic diagram of membership function of outputs 

In order to make the expression more concise, 
linguistic measures of inputs and outputs are expressed 
by corresponding simplified symbols as shown in 
Tables 5 and 6. 

Table 5 Symbols of fuzzy variables of inputs 

Linguistic measure Symbol 
Negligible N 
Very Low VL 

Low L 
Low-Medium LM 

Medium M 
Medium-High MH 

High H 
Very High VH 

Very Very High VVH 

Table 6 Symbols of fuzzy variables of outputs 

Linguistic measure Symbol 
Undamaged UD   (a) 

Slight Damage SD   (b) 
Moderate Damage MD  (c) 

Severe Damage SED (d) 
Catastrophic Damage CD   (e) 

3.1.4. Fuzzy rule bases 

According to the rules generation method listed in 
section 2.3.3, fuzzy rule bases of cases 1, 2 and 3 are 
listed in Tables 7, 8 and 9. 

The fuzzy rule of “element 4 with moderate damage 
and element 5 with severe damage” can be expressed as: 

If 2
1ΔΦ  is “ very high ”; and 4

1ΔΦ  is “ negligible ”; 
and 5

1ΔΦ  is “ medium high ”; and 6
1ΔΦ  is “medium 

high ”; and 8
1ΔΦ  is “medium high ”; 

Then “element 4 with moderate damage and element 
5 with severe damage”. 

The other fuzzy rules in Tables 7, 8 and 9 can be 
interpreted in the same way. 

It can be seen from the tables that as the damage 
becomes more severe, the damage indicator changes 
from “low” to “medium” and “high” levels. 

As indicated from Tables 7, 8 and 9, each rule 
represents a unique damage situation and is different 
from all the other rules. Therefore the FLS is a good 
pattern classifier, it is applicable to damage 
identification of bridges. These rules provide a 
knowledge base and represent how an engineer would 
interpret data to isolate structural damage using 
indicators proposed in this paper. 

Table 7 Fuzzy rules of case 1 

Inputs Damage 
levels 21ΔΦ  41ΔΦ  5

1ΔΦ  6
1ΔΦ  8

1ΔΦ  
1-UD N N N N N 
1-SD L L VL L L 
1-MD M M LM M M 
1-SED H H H H H 
1-CD VVH VVH VVH VVH VVH 

Table 8 Fuzzy rules of case 2 

Inputs Damage 
levels 21ΔΦ  41ΔΦ  5

1ΔΦ  6
1ΔΦ 8

1ΔΦ  
4-UD N N N N N 
4-SD L L L L L 
4-MD M M M M M 
4-SED H H H H H 
4-CD VVH VVH VVH VVH VVH 

 
 
 
 
 
 
 
 
 

Published by Atlantis Press 
      Copyright: the authors 
                   633



H.B.Liu, Y.B.Jiao, Y.F.Gong 
 

 

Table 9 Fuzzy rules of case 3 
Inputs 

Damage levels 
21ΔΦ  41ΔΦ  5

1ΔΦ  6
1ΔΦ  8

1ΔΦ  
All-UD N N N N N 

4-UD，5-SD L L VL LM N 

4-UD，5-MD M M L H VL 

4-UD，5-SED H H LM VVH VL 

4-SD，5-UD N LM VL L L 

4-SD，5-SD L VL L VL L 

4-SD，5-MD M VL LM M LM 

4-SD，5-SED H LM M VH LM 

4-MD，5-UD VL H L M M 

4-MD，5-SD LM M LM VL M 

4-MD，5-MD MH L M L MH 

4-MD，5-SED VH N MH MH MH 

4-SED，5-UD VL VVH LM H H 

4-SED，5-SD LM VH M LM H 

4-SED，5-MD MH MH MH N VH 

4-SED，5-SED VH LM H LM VH 

3.2. Results and discussion 

To verify the effectiveness of FLS proposed in this 
paper, its memory, inference and anti-noise ability are 
examined. The purpose is to guarantee that the FLS 
using mode shape ratio as input variable possesses 
satisfactory robustness and generalization ability. In this 
paper, the training and test samples are obtained through 
finite element analysis and calculation. 

3.2.1. Memory ability of FLS 

In order to verify the memory ability of FLS, 26 training 
patterns of cases 1, 2 and 3 are used as the inputs of FLS. 
Numerical simulation shows that the proposed method 
in this paper could identify the damage with an accuracy  
of 100%. The identification results of case 1 and 3 are 
shown in Tables 10 and 11. 

Table 10 Memory ability of fuzzy system for case 1 

Nodes Ideal outputs Actual outputs 
2 1 0 0 0 0 0.99 0 0 0 0 
4 0 1 0 0 0 0.01 1 0 0 0 
5 0 0 1 0 0 0 0 1 0 0 
6 0 0 0 1 0 0 0 0 1 0.01
8 0 0 0 0 1 0 0 0 0 0.97

3.2.2. Inference ability of FLS 

The following damage circumstances listed in Table 12 
are established to verity the inference ability of FLS 
proposed in this paper. Case 2 is used to demonstrate 
the inference ability of FLS with single damage location, 
while case 3 for the multiple damage locations. In Table 
12, the expression “14%-4%” is representative of “damage 
severity is 14% for element 4, while 4% for element 5”, the 
other expressions are the same representations. 

Damage identification results of case 2 with damage 
degree 8% and 14% are shown in Fig. 9. It is shown that 
the damage levels of element 4 are “moderate damage” 
and “severe damage”, respectively. If the damage 
degree 8% is fuzzified by membership function of 
outputs as shown in Fig. 8., its linguistic variable is 
“moderate damage”, while damage degree 14% is 
“severe damage”. Therefore, the FLS have a correct 
damage identification results. As for other 
circumstances in Table 12, the FLS can identify all the 
damage degrees except 17%, the identification accuracy 
is 93.75%. The numerical simulation shows that the 
FLS possess favorable inference ability for damage 
identification with single location. 

The actual identification results of case 3 with 
multiple damage locations are shown in Fig. 10. The 
damage degrees are fuzzified by membership function, 
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and the ideal results are listed in Table 13. Contrasting 
analysis demonstrated that the FLS possessed favorable 
inference ability for damage identification with multiple 
locations. 

 

Table 11 Memory ability of fuzzy system for case 3 

Element 4 with “slight damage” 
Element 5 with “moderate damage” 

Element 4 with “moderate damage” 
Element 5 with “severe damage” Damage  

level Outputs of element4 Outputs of element 5 Outputs of element4 Outputs of element 5
“Undamaged” 0.002 0 0 0 

“Slight” 1 0.002 0.002 0 
“Moderate” 0.002 1 1 0.002 

“Severe” 0 0.002 0.002 1 
“Catastrophic” 0 0 0 0.002 

Table 12 Damage cases for inference ability of fuzzy systems 

Circumstances Damage identification with single location（case 2） Damage identification with multiple locations（case 3）
Damage 
Severity 

1%;2%;3%;4%;6%;7%;8%;9%;11%; 
12%;13%;14%;16%;17%;18%;19% 

14%-4%；6%-6% 
8%-12%；12%-6% 

Table 13 Identification of damage with multiple 
locations 

Identification 
results 

Damage  
degree Damage levels 

14%-4% 
Element 4 “severe damage”;  

Element 5 “moderate damage” 

6%-6% 
Element 4 “slight damage”;  
Element 5 “slight damage” 

8%-12% 
Element 4 “moderate damage”;  
Element 5 “moderate damage” 

Actual outputs 

12%-6% 
Element 4 “moderate damage”;  

Element 5 “slight damage” 

14%-4% 
Element 4 “severe damage”;  

Element 5 “moderate damage” 

6%-6% 
Element 4 “slight damage”;  
Element 5 “slight damage” 

8%-12% 
Element 4 “moderate damage”;  
Element 5 “moderate damage” 

Ideal outputs 

12%-6% 
Element 4 “moderate damage”;  

Element 5 “slight damage” 

 

0.0
0.2
0.4
0.6
0.8
1.0
1.2

a b c d e
Damage Level

M
em

be
rs

hi
p 

D
eg

re
e

Damage Severity-8%

 

(1) Identification of damage severity 8% 
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(2) Identification of damage severity 14% 

Fig. 9. Damage identification of case 2 
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(3) Identification of damage severity 8%-12% 
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(4) Identification of damage severity 12%-6% 

Fig. 10. Damage identification of case 3 

3.2.3. Anti-noise ability of FLS 

The identification of case 2 with damage degree 7% and 
15% is used to verify the anti-noise ability of FLS 
proposed in this paper for the damage identification 
with single location. The identification results are 
shown in Figs. 11 and 12. The damage level can be 

obtained according to the maximum membership degree. 
As can be seen from these figures, FLS can identify the 
damage under the noise level 50% for the degree 7%, 
while 20% for the degree 15%. It demonstrated that the 
FLS proposed in this paper possesses satisfactory anti-
noise ability for the damage identification of single 
location. 

Case 3 with damage degree 10%-15% and 12%-6% 
are used to verify the anti-noise ability of FLS for the 
damage identification with multiple locations. The 
results are demonstrated in Figs. 13 and 14. As for the 
damage degree 10%-15%, FLS can identify the damage 
under noise level 30%, While 15% for the damage 
degree 14%-4%. Numerical simulation shown that the 
FLS proposed in this paper possess favorable anti-noise 
ability for the damage identification with multiple 
locations. 

 
Fig. 11. Anti-noise analysis of element 4 with  damage degree 
7% 

 
Fig. 12. Anti-noise analysis of element 4 with damage degree 
15% 
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Fig. 13. Damage identification of case 3 with damage degree 10%-15% 

 

Fig. 14. Damage identification of case 3 with damage degree 14%-4% 

4. Conclusions 

We have demonstrated a method to identify the damage 
of simply supported bridges based on FLS. A novel 
damage indicator transformed from mode shape ratios is 
proposed in this paper and used as the input 
measurement of FLS, while damage severity of element 
is treated as the ouput one. Gauss and Bell membership 
functions are selected for fuzzification of input and 
output variables, respectively.  

Numerical simulation on selected damage cases is 
conducted to verify the memory, inference and anti-
noise ability of the proposed method. As for the 
memory ability, FLS can detect damage of training 
patterns with an accuracy of 100% for single and 
multiple damage locations. Aiming at other test patterns, 
the FLS also possesses favorable inference ability, the 
identification accuracy for single damage location is up 
to 93.75%. Tests with noise simulated data show that 

the FLS can detect damage very accurately at different 
noise levels. 
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