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Abstract 

Process Failure Modes and Effects Analysis (PFMEA) concept, has been developed based on the success of Failure 

Modes and Effects Analysis (FMEA) to include a broader analysis team for the realization of a comprehensive 

analysis in a short time. The most common use of the PFMEA involves manufacturing processes as they are 

required to be closely examined against any unnatural deviation in the state of the process for producing products 

with consistent quality. In a typical FMEA, for each failure modes, three risk factors; severity (S), occurrence (O), 

and detectability (D) are evaluated and their multiplication derives the risk priority number (RPN). However there 

are many shortcomings of this classical crisp RPN calculation. This study introduces a fuzzy hybrid approach that 

allows experts to use linguistic variables for determining S, O, and D for PFMEA by applying fuzzy ‘technique for 

order preference by similarity to ideal solution’ (TOPSIS) and fuzzy ‘analytical hierarchy process’ (AHP). An 

application to a spindle manufacturing process expresses the relevance of the fuzzy hybrid model in PFMEA.  
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1. Introduction 

There exists a continuously increasing demand for 

quality products in industry and therefore manufacturing 

systems need to be closely monitored for any unnatural 

deviation in the state of the process in order to produce 

products with consistent quality
1
. The use of a quality 

control system can lead to the elimination of assignable 

causes pointed to by unnatural behaviour
2
. FMEA, 

providing a framework for cause and effect analysis of 

potential product or process failures
3
, is a widely used 

engineering technique for designing, identifying and 

eliminating known and/or potential failures, problems, 

errors and so on from system, design, process, and/or 

service before they reach the customer
4
.  

FMEA was first used in NASA in 1963 as a formal 

design methodology and later Ford Motor adopted and 

promoted the technique in 1977 due to its obvious 

reliability requirements
5
. After this time, FMEA has 

become a powerful tool extensively employed for safety 

and reliability analysis of products and processes in a 

wide range of industries particularly in aerospace, 

nuclear and automotive industries
6
.  

Based on the success of Failure Modes and Effects 

Analysis (FMEA), the Process Failure Modes and 

Effects Analysis (PFMEA) concept was developed to 

incorporate a broader analysis team to accomplish a 

thorough analysis in a short time. PFMEA takes a 

product or service design and considers all the steps that 

are necessary to be successful. The most common use of 

the PFMEA involves manufacturing processes. 

PFMEAs may be performed on new processes or to 

improve current processes and to maximize its value 

and a PFMEA should be performed as early in the 

manufacturing development cycle as possible. 

The purpose of PFMEA is prioritizing the Risk 

Priority Number (RPN) of the planning process to 

assign the limited resources to the most serious risk 

item
5
. Each failure mode can be evaluated by three 

factors as severity, likelihood of occurrence, and the 

difficulty of detection of the failure mode. Conventional 

PFMEA evaluation includes these factors each of which 

is assigned a value between 1 and 10 (with 1 being the 

best and 10 being the worst case) and the values of 

severity (S), occurrence (O), and detectability (D) are 

multiplied to produce risk priority number (RPN) as 

RPN = S x O x D. Then the RPN value for each failure 

mode is ranked to find out the failures with higher 

risks
7
. 

The classical crisp valuation of RPN has been 

significantly criticized for a many reasons most of 

which are shown below
6,7,8,9,10,11,12,13,14

: 

• The risk factors S, O and D are accepted equally 

important ignoring their relative importance among 

them. 

• Different combinations of S, O and D may produce 

exactly the same value of RPN, although their 

hidden risk implications may be totally different. For 

instance, two different failures with the S, O and D 

values of 2, 4, 3 and 3, 8, 1 respectively, have the 

same RPN value of 24. 

• Precisely evaluation of S, O and D is mostly 

difficult. However linguistic terms can be adopted to 

express much information in PFMEA.  

• While calculating RPN, the use of multiplication 

method is considered questionable as it is strongly 

sensitive to variations in criticality factor 

evaluations. 

In the comparison of the classical and the fuzzy 

approach, the fuzzy approach has an advantage of 

allowing the conduction of risk evaluation and 

prioritization based on the knowledge of the experts
15

.  

Xu, Tang, Xie, Ho, and Zhu (2002) introduce two 

reasons for considering the fuzzy logic approach; firstly 

natural language is taken in PFMEA-related information 

as it is easy and plausible for fuzzy logic to deal with as 

it is based on human language and can be built on top of 

the experience of experts. Secondly as fuzzy logic 

allows use of imprecise data; it enables the treatment of 

many states.   

Moreover, fuzzy PFMEA, allowing both 

quantitative data and vague and qualitative information 

to be used and managed in a consistent manner, makes 

it possible to combine severity, occurrence and 

detectability in a more flexible structure
11,17

. 

In this study, a hybrid fuzzy approach is proposed 

for PFMEA. It firstly applies a model of Buckley's
18

 

fuzzy AHP integrated with Chen's
19

 fuzzy TOPSIS 

separately for each process function. Later the obtained 

closeness coefficients are multiplied by the weights of 

the process functions for finding the global weight 

scores. Finally the potential failures are ranked 

according to their global weight scores. 
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The rest of the paper is organized as follows: In 

Section 2, Literature Reviews of Fuzzy FMEA, Fuzzy 

AHP and Fuzzy TOPSIS are expressed. In Section 3, a 

fuzzy hybrid approach is proposed for fuzzy PFMEA. In 

Section 4, the proposed methodology is applied to a 

spindle manufacturing process in a firm producing 

aluminum parts and dies for automotive and white-good 

industries considering the process functions of a spindle 

manufacturing process. A sensitivity analysis is also 

realized. Finally, conclusions are given. 

2. Literature Review 

2.1. Fuzzy FMEA 

There are significant efforts have been made in FMEA 

literature to overcome the shortcomings of the 

traditional RPN
14

. The studies about FMEA considering 

fuzzy approach use the experts who describe the risk 

factors S, O, and D by using the fuzzy linguistic terms. 

The linguistic variables were used for evaluating three 

risk factors S, O, and D as an interpretation of the 

traditional ten-point scale (1-10) FMEA factor scores.  

In the fuzzy FMEA literature, the studies have 

mostly concerned with the fuzzy rule-base approach by 

using if-then rules
3,7,15,16,17,20,21,22

. After the assignments 

of the linguistic terms to the factors, if-then rules were 

generated taking the linguistic variables as inputs to 

evaluate the risks. The outputs of the fuzzy inference 

system were variously named as risk
3,21

, the critically 

failure mode
16

, priority for attention
7
, and fuzzy 

RPN
16,22

 in the fuzzy FMEA studies which consider the 

fuzzy rule-base approach.  

Braglia and Bevilacqua (2000)
10

 drew attention to 

the doubts remained due to the difficulties in defining 

many rules and membership functions required by this 

methodology considering the applicability of the real 

industrial cases. They proposed the use of AHP for 

obtaining the rules for a particular fuzzy criticality 

assessment model to overcome this problem. Besides, 

AHP is employed in another study to cope with multiple 

criteria situations involving intuitive, rational, 

qualitative and quantitative aspects for the evaluation of 

the final ranking for every failure cause and this new 

approach is called multi-attribute failure mode analysis 

(MAFMA)
23

. 

Braglia and Bevilacqua (2000)
10

 criticize that the 

failure modes characterized by the fuzzy if–then rules 

could not be prioritized or ranked and there is no way to 

incorporate the relative importance of risk factors into 

the fuzzy inference system by using fuzzy if–then rules. 

Therefore they develop a new fuzzy logic approach 

where fuzzy risk priority numbers (FRPNs) are defined 

as fuzzy weighted geometric means of the fuzzy ratings 

for S, O, and D and can be computed using alpha-level 

sets and linear programming models.  

The fuzzy analytic hierarchy process (FAHP) 

approach was considered by Hua, Hsu, Kuo, and Wua 

(2009)
24

 for evaluating the relative weightings of the 

risk factors of FMEA to analyze of the risks of green 

components in compliance with the European Union 

(EU) the Restriction of Hazardous Substance (RoHS) 

directive in the incoming quality control (IQC) stage. In 

the study, Severity factor was explained by two criteria 

and with considering the Occurrence and the Detection 

factors, the FAHP was utilized to determine the weights 

of four criteria by two experts. The traditional FMEA 

was modified to form green component risk priority 

number (GC-RPN) for the calculation of the risks with 

regard to each category of green components. GC-RPN 

was formulated by the sum of the terms of products of 

the factor scores and weights.  

Hua, Hsu, Kuo, and Wua (2009)
11

 proposed a fuzzy 

TOPSIS approach for Failure Mode, Effects and 

Criticality Analysis (FMECA). The fuzzy version of 

TOPSIS was applied allowing the traditional FMECA 

factors O, S, and D and their equally important weights 

to be evaluated using triangular fuzzy numbers. 

2.2. Fuzzy AHP 

AHP is one of the well-known multi-criteria decision 

making techniques that was first proposed by Saaty 

(1980)
25

. The classical AHP takes into consideration the 

definite judgments of decision makers
26

. Although the 

classical AHP includes the opinions of experts and 

makes a multiple criteria evaluation, it is not capable of 

reflecting human’s vague thoughts
27

. 

As the uncertainty of information and the vagueness 

of human feeling and recognition, it is difficult to 

provide exact numerical values for the criteria and to 

make evaluations which exactly convey the feeling and 

recognition of objects for decision makers. Therefore, 

most of the selection parameters cannot be given 

precisely. Thus experts may prefer intermediate 

judgments rather than certain judgments. So the fuzzy 

set theory makes the comparison process more flexible 

and capable to explain experts’ preferences
28

. 
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Different methods for the fuzzification of AHP have 

been proposed in the literature. AHP is firstly fuzzified 

by Laarhoven and Pedrycz (1983)
29

, and in this study, 

fuzzy ratios which were defined by triangular 

membership functions were compared. The comparison 

ratios based on trapezoidal membership functions are 

used in Buckley's approach
18

. Another approach was 

introduced by Chang
30

 for handling fuzzy AHP, with the 

use of triangular fuzzy numbers for pair-wise 

comparison scale of fuzzy AHP, and the use of the 

extent analysis method for the synthetic extent values of 

the pair-wise comparisons. A fuzzy objective and 

subjective method based on fuzzy AHP was proposed 

by Kahraman, Ulukan, and Tolga (1998)
31

. Kulak and 

Kahraman (2005)
32

 made a selection among the 

transportation companies by using fuzzy axiomatic 

design and fuzzy AHP. They developed fuzzy multi-

attribute axiomatic design approach and compared it 

with fuzzy AHP. 

2.3. Fuzzy TOPSIS 

TOPSIS, one of the classical Multi-criteria decision 

making methods, was developed by Hwang and Yoon 

(1981)
33

. It is based on the concept that the chosen 

alternative should have the shortest distance from the 

positive ideal solution (PIS) and the farthest from the 

negative ideal solution (NIS). TOPSIS also provides an 

easily understandable and programmable calculation 

procedure. It has the ability of taking various criteria 

with different units into account simultaneously
34

.  

A number of fuzzy TOPSIS methods have been 

developed in recent years. Fuzzy numbers to establish 

fuzzy TOPSIS was first applied in Chen and Hwang 

(1992).
35

 A fuzzy TOPSIS method developed by 

Triantaphyllou and Lin (1996)
36 

where relative 

closeness for each alternative is evaluated based on 

fuzzy arithmetic operations. Chen (2000)
19

 extends the 

TOPSIS method to fuzzy group decision making 

situations by considering triangular fuzzy numbers and 

defining crisp Euclidean distance between two fuzzy 

numbers. The methodology proposed by Chen (2000)
19

 

is further improved in some studies
37-38

. In addition the 

fuzzy TOPSIS method is extended based on alpha level 

sets with interval arithmetic
39-40

.  

Fuzzy TOPSIS has been introduced for various 

multi-attribute decision-making problems. Fuzzy 

TOPSIS is used for plant location selection
41

 and for 

supplier selection
42

. Fuzzy TOPSIS also is utilized for 

industrial robotic system selection
43

. Ekmekcioglu, 

Kaya, and Kahraman (2010)
34

 used a modified fuzzy 

TOPSIS to select municipal solid waste disposal method 

and site. Another modified fuzzy TOPSIS is used for 

selection of the best energy technology alternative
44

. 

Fuzzy TOPSIS is used for modeling consumer’s product 

adoption process.
45

 

3. Fuzzy Hybrid Approach for Fuzzy PFMEA 

To overcome the shortcomings of crisp PFMEA, a 

fuzzy multi-criteria approach is proposed for fuzzy 

PFMEA in this paper. For determining the importance 

of failure modes a modified fuzzy approach integrating 

the Buckley's fuzzy AHP and Chen's fuzzy TOPSIS is 

used. The fuzzy PFMEA approach is performed 

separately for each process function since all the process 

functions may have different S, O, and D importance 

values. In this stage, failures are determined in the 

process functions by the experts and then Buckley’s 

fuzzy AHP is utilized to determine the weight vector of 

three risk factors; severity, occurrence and detectability. 

Subsequently, by using the linguistic scores of risk 

factors for each failure modes, and the weight vector of 

risk factors, Chen’s fuzzy TOPSIS is utilized. The 

potential failure modes for each process functions are 

obtained and ranked according to the results of their 

closeness coefficient. Later the closeness coefficients 

are multiplied by the weights of the process functions 

for finding the global weight scores. Finally the 

potential failures are ranked according to their global 

weight scores. 

3.1. Buckley’s Fuzzy AHP 

Buckley (1985)
18

 uses the geometric mean method to 

derive fuzzy weights and performance scores. This 

method is selected in the study due to its easy use to 

extend to the fuzzy case and guarantee a unique solution 

to the reciprocal comparison matrix. The weight 

assessing method by geometric mean is chosen for its 

simplicity and ease in its application to the fuzzy case. 

The positive reciprocal comparison matrix of criteria 

weights is given as: 
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The geometric mean of each row is calculated as: 

 

n
n

k

jkj Cz

/1

1








= ∏

=

 for  j,k = 1, 2, …, n (2) 

where Cjk evaluation of the decision maker on the 

pairwise importance comparison of j
th

 and k
th

 criteria.  

The weight wj is calculated as: 

 .,
...21

j
zzz

z
w

n

j

j ∀
+++

=  (3) 

To facilitate the calculation of fuzzy weights, the 

following arithmetic operations of trapezoidal fuzzy 

numbers are presented. A trapezoidal fuzzy number 

(TrFN) can be defined as ( )dcbam ,,,~ =  where 

dcba ≤≤≤≤0  

In the following, Buckley’s (1985) method
18

 is 

explained in the following steps: 

Step 1: Evaluate the relative importance of the 

criteria using pair-wise comparisons. The experts are 

required to provide their judgments on the basis of their 

knowledge and expertise. The experts’ linguistic 

preferences based on Saaty
25

 scale are converted into 

trapezoidal fuzzy numbers using Table 1. Although this 

scale is criticized in some papers
46,47

, many fuzzy AHP 

studies in the literature use fuzzy numbers based on this 

scale
27,28,29,31,32,34

. The scale and TrFNs used in this 

paper is modified from the study of Tolga and 

Kahraman (2011)
48

 since an optimal trapezoidal fuzzy 

numerical scale in AHP has not been found in the 

literature. 

 

Table 1.  Fuzzy evaluation scores for the weight 

vector. 

Linguistic terms Fuzzy score 

Absolutely Strong (AS) (2,2.25,2.75,3) 

Very Strong (VS) (1.5,1.75,2.25,2.5) 

Fairly Strong (FS) (1,1.25,1.75,2) 

Slightly Strong (SS) (1,1.25,1.25,1.5) 

Equal (E) (1,1,1,1) 

Slightly Weak (SW) (2/3,1,1,1) 

Fairly Weak (FW) (1/2,2/3,0.85,1) 

Very Weak (VW) (2/5,1/2,3/5,2/3) 

Absolutely Weak (AW) (1/3,2/5,0.45,0.5) 

 

Step 2: Aggregate experts’ individual preferences 

into group preference by applying the fuzzy trapezoidal 

averaging operator, which is defined by 

 [ ]K

jkjkjkjk CCC
K

C
~

))...((
~

)(
~1~ 21 +++=  (4) 

where K is the number of experts and 
K

jC
~

is the 

evaluation of the K
th

 decision maker on the pairwise 

importance comparison of j
th

 and k
th

 criteria.  

Step 3. Obtain the fuzzy weights jw~ . The 

derivation of jz~ values (Eq. 2) and fuzzy weights jw~  

(Eq. 3) can be detailed as follows. Let, 

 �� = �∏ ������	
 �
/� (5) 

and 

 � = ∑ ����	
 	. (6) 

Similarly, bj and b, cj and c, dj and d can be defined. 

The fuzzy weight wj is determined as 

 �� = ���� , ��� , ��� , ��� �	, each j (7) 

Step 4. Defuzzify and normalize the trapezoidal 

fuzzy weights. To defuzzify the TrFN in Eq. (7), Eq. (8) 

is used: 

 
6

2
a
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b

c

c

b

d

a

w
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Now, to normalize the crisp weights Eq. (9) is used: 

 
nj

w

w
w

n

j

j

j

j ,,2,1,

1

K=
′

′
=

∑
=

 (9) 

After the deffuzzification of each value in the 

matrix, Consistency Ratio (CR) of the matrix can easily 

be calculated and checked whether CR is smaller than 

.10 or not. 

3.2. Chen’s Fuzzy TOPSIS 

In the following, Chen’s fuzzy TOPSIS method
19

 in 

which linguistic preferences can easily be converted to 

fuzzy numbers which are allowed to be used in 

calculations
36-44

 is explained: 

It is suggested that the decision makers use 

linguistic variables to evaluate the ratings of alternatives 

with respect to criteria. Table 2 gives the linguistic scale 

for evaluation of the alternatives. Assuming that a 

decision group has K people, the ratings of alternatives 

with respect to each criterion can be calculated as; 

 ���� = 

� �����
 �+������ �+�… �+������� (10) 
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where �����  is the rating of the K
th

 decision maker for 

i
th

 alternative with respect to j
th

 criterion.
21

 

 
Table 2.  Fuzzy evaluation scores for the 

alternatives. 

Linguistic terms Fuzzy score 

Very Poor (VP) (0, 0, 1) 

Poor (P) (0, 1, 3) 

Medium Poor (MP) (1, 3, 5) 

Fair (F) (3, 5, 7) 

Medium Good (MG) (5, 7, 9) 

Good (G) (7, 9, 10) 

Very Good (VG) (9, 10, 10) 

 

Obtaining weights of the criteria and fuzzy ratings 

of alternatives with respect to each criterion, the fuzzy 

multi-criteria decision-making problem can be 

expressed in matrix format as, 

  = !��

 ��
�⋮ ⋮��#
 ��#�
………
��
�⋮��#�$, (11) 

 % = &�
, ��, … , ��',    ( = 1,2, … , +, (12) 

where ����  is the rating of the alternative Ai with 

respect to criterion j (i.e. Cj) and wj denotes the 

importance weight of Cj. These linguistic variables can 

be described by triangular fuzzy numbers: ���� =���� , ,�� , -���. To avoid the complicated normalization 

formula used in classical TOPSIS, the linear scale 

transformation is used here to transform the various 

criteria scales into a comparable scale. Therefore, we 

can obtain the normalized fuzzy decision matrix 

denoted by ./ . 
 ./ = �0̃���#2�, (13) 

where B and C are the set of benefit criteria and cost 

criteria, respectively, and 

 0̃ = 3��4���∗ , �
/4���∗ , �4̃���∗6,     (78; (14) 

 0̃ = 3��9�4� , ��
9
�4� , ��

9
�4�6,     (7:; (15) 

 -�∗ = max� -��        if  (78; (16) 

 ��> = min� ���      if  (7:. (17) 

The normalization method mentioned above is to 

preserve the property that the ranges of normalized 

triangular fuzzy numbers belong to [0; 1].  

Considering the different importance of each 

criterion, we can construct the weighted normalized 

fuzzy decision matrix as 

 A/ = �B����#2�, i=1,2,…,m ; j=1,2,…,n (18) 

where 

 B��� = 0̃���. �D�:��   (19) 

According to the weighted normalized fuzzy 

decision matrix, we know that the elements B���  ∀F, ( are 

normalized positive triangular fuzzy numbers and their 

ranges belong to the closed interval [0, 1]. Then, we can 

define the fuzzy positive-ideal solution �GHIJ, K∗� and 

fuzzy negative-ideal solution �GHIJ, K>� as 

 K∗ = �B�
∗, B��∗, … , B��∗�, (20) 

 K> = �B�
>, B��>, … , B��>�, (21) 

where 

 B��∗ = �1,1,1� and B��> = �0,0,0�, j=1,2,…,n. (22) 

The distance of each alternative from K∗ and K> can 

be currently calculated as 

 D�∗ = ∑ DMB��� , B��∗N��	
 ,     i=1,2,...,m, (23) 

 D�> = ∑ DMB��� , B��>N��	
 ,    i=1,2,...,m, (24) 

where D�. , . �is the distance measurement between 

two fuzzy numbers calculating with the following 

formula: 

 D�O�, P̃� = Q
R &�O
 − P
�� + �O� − P��� + �OR − PR��' (25) 

where O� = �O
, O�, OR� and P̃ = �P
, P�, PR� are two 

triangular fuzzy numbers. 

A closeness coefficient is defined to determine the 

ranking order of all alternatives once the 	DT�∗ and DT�> of 

each alternative K� (i=1,2,…,m) are calculated. The 

closeness coefficient of each alternative is calculated as 

 ::� = �/�9	�/�∗U�/�9 , F = 1,2, … ,V (26) 

Obviously, an alternative AX is closer to the �FPIS, A∗� and farther from �FPIS, A>� as CCX 
approaches to 1. Therefore, according to the closeness 

coefficient, we can determine the ranking order of all 

alternatives and select the best one from among a set of 

feasible alternatives. 
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3.3. Proposed Methodology 

In this study firstly, in a spindle manufacturing process, 

the process functions are defined and the weights of 

their importance are obtained by pair-wise comparisons 

according to the opinions of the experts by utilizing 

Fuzzy AHP method. Then a fuzzy approach, allowing 

experts to use linguistic variables for determining S, O, 

and D, is considered for PFMEA by applying fuzzy 

TOPSIS integrated with fuzzy AHP. The fuzzy PFMEA 

approach is performed separately for each process 

function since all the process functions may have 

different S, O, and D importance values. In this stage, 

failures are determined in the process functions by the 

experts and then Buckley’s fuzzy AHP is utilized to 

determine the weight vector of three risk factors; 

severity, occurrence and detectability. Subsequently, by 

using the linguistic scores of risk factors for each failure 

modes, and the weight vector of risk factors, Chen’s 

fuzzy TOPSIS is utilized. The potential failure modes 

for each process functions are obtained and ranked 

according to the results of their closeness coefficient. 

Later the closeness coefficients are multiplied by the 

weights of the process functions for finding the global 

weight scores. Finally the potential failures are ranked 

according to their global weight scores. 

To sum up; global weight scores of predefined 

failure modes are calculated and failure modes are 

ranked according to these global weight scores through 

succeeding the 4 main steps. These main steps of the 

proposed fuzzy PFMEA model are illustrated by Fig. 1. 

First step covers the process of first type of data 

collection for pair-wise comparison of process functions 

and the collected data is converted to the importance 

weights of the process functions by using fuzzy AHP 

methodology. In the second step, a new type of data is 

collected for pair-wise comparison of risk factors S, O, 

and D with respect to process functions and the fuzzy 

AHP methodology is utilized to calculate the weights of 

the risk factors for each process function. The third step 

involves a third type of data collection from the experts. 

After the determination of the failure modes, experts 

evaluate failure modes with respect to risk factors for 

each process function. The evaluation data is used in 

fuzzy TOPSIS methodology by integrating with the 

values of the weights of the risk factors which are 

calculated in step 2. Fuzzy TOPSIS method is 

implemented for each process function and the 

outcomes are the closeness coefficient values obtained 

for each failure mode for each process function. In the 

fourth step, since all the process functions have different 

importance effects in the total process quality, the 

values of closeness coefficients of each failure mode is 

multiplied by the weights of the process functions which 

are calculated in step 1 to determine the global weights 

of the failure modes. Finally the global weights are 

ranked to find the most risky failure modes in the 

process quality. 4 main steps are given in more detail in 

the following:    

Step1:  

-The process functions are identified by a group of 

experts. 

-Appropriate linguistic variables for importance of 

each process functions are determined. 

-A pair-wise comparison matrix for importance of 

the process functions is constructed, and experts’ 

linguistic evaluations are aggregated to get a mean value 

for each pair-wise comparison. 

-Consistency of pair-wise comparison matrix for the 

process functions according to their importance is 

checked after the defuzzification of each value in the 

matrix according to graded mean integration approach. 

-Buckley's approach is used to obtain the weights of 

the process functions. 

Step2:  

-A group of experts identifies the failure modes of 

each process functions. 

-Appropriate linguistic variables for importance of 

risk factors of each process functions are determined. 

-For each process function, a pair-wise comparison 

matrix for risk factors is constructed, and experts’ 

linguistic evaluations are aggregated to get a mean value 

for each pair-wise comparison. 

-Consistency of pair-wise comparison matrix for 

risk factors for each process function is checked after 

the defuzzification of each value in the matrix according 

to graded mean integration approach. 

-Buckley's approach is used to obtain the weights of 

the risk factors for each process function. 

Step3:  

-Experts’ linguistic evaluations of each failure mode 

with respect to risk factors are aggregated to get a mean 

value. 

-Fuzzy decision matrix and the normalized fuzzy 

decision matrix for each process function are 

constructed for the implementation of TOPSIS.  
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-Weighted normalized fuzzy decision matrix for 

each process function is constructed. 

-For each process function FPIS and FNIS are 

determined. 

-The distance of each failure mode from FPIS and 

FNIS are calculated, respectively.  

-The closeness coefficient of each failure mode is 

calculated.  

Step4:  

-The closeness coefficients are multiplied by the 

weights of the process functions. Later obtained values 

are normalized for finding the global weight scores.  

-The potential failures are ranked according to their 

global weight scores. 

 

 

 

 
 

 

 

Fig. 1. Flowchart of the Fuzzy PFMEA 

 

4. An Application to a Spindle Manufacturing 

Process 

The proposed methodology is applied to a 

manufacturing SME which was established in 1969 for 

manufacturing parts and dies for the original equipment 

and began to manufacture pneumatic brake equipment 

and brake control systems for trucks and buses in 1980. 

The firm modernized its manufacturing technology for 

manufacturing aluminum injection parts, dies and dies 

designs for automotive and white-good industries in a 

19000 m² closed area in 2003. The mission of the firm 

is to achieve die design and die manufacturing by 

combining scientific methods and technology and 

overcome the shortcomings in this field in Turkey. 

Therefore this firm has adopted a quality oriented view. 

The methodology mentioned in the paper is utilized 

in a spindle manufacturing process. In an automobile, 

the spindle is a part of the suspension system that carries 

the hub for the wheel and attaches to the upper and 

lower control arms. The method is focused on the 

process functions of the spindle manufacturing process 

and the potential failure modes in the process. 

4.1. Process Functions 

When the manufacturing process is analyzed, nine 

process functions are defined by the experts of the firm. 

The flow of these process functions are as the 

following: incoming material (M1) � melting (M2) � 

chemical analysis (M3) � die casting (M4) � 

trimming (M5) � shot blasting (M6) � control (M7) 

� packaging (M8) � delivery (M9) 

These process functions are defined briefly below. 

Incoming Material (M1): It is the process of 

checking incoming material incase it doesn’t provide 

the predefined specifications. 

Failure Determination 

Data Collection for evaluating 

failure modes with respect to risk 

factors for each process function 

Implementation of fuzzy TOPSIS 

for each process function 

Closeness Coefficients 

Global Weights and Ranking  

Data Collection for 

pair-wise comparison 

of process functions 

Weights of process 

functions obtained by 

fuzzy AHP 

Data Collection for pair-

wise comparison of risk 

factors with respect to 

each process function 

Weights of risk factors 

obtained by fuzzy AHP 

for each process function 

1 3 2 

4 
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Melting (M2): It is the physical process of phase 

changing of a substance from a solid to a liquid.  

Chemical analysis (M3): It is the act of 

decomposing a substance into its constituent elements. 

Die Casting (M4): It is the process of forcing 

molten metal under high pressure into mold cavities 

which are machined into dies. 

Trimming (M5): It is the process of getting rid of 

the unwanted pieces at the edges of component. 

Control (M7): It is the process of checking whether 

the result of the prior processes is out of tolerance or 

not. 

Shot Blasting (M6): It is the process of cleaning, 

and smoothing the surface by forcibly propelling a 

stream of abrasive material against the surface. 

Packaging (M8): It is the process of preparation of 

goods for distribution, storage, sale, and use. It can be 

described as a coordinated system of preparing goods 

for transport, warehousing, logistics, sale, and end use. 

Delivery (M9): It is the act or process of 

transporting goods. 

The process functions have different weights of 

importance in the spindle manufacturing process quality 

in terms of the potential failure modes. There is a 

hierarchy shown in Fig. 2 for the goal of the process 

quality. Process is an activity or a series of activities 

that use resources to convert input elements into output 

elements with an added value. The quality of a process 

depends on the sub-processes or process functions of the 

process.  

The first main step of the proposed methodology is 

realized by implementing a pair-wise comparison by 4 

experts for determining the importance of the process 

functions in the manufacturing process quality 

considering the potential failure modes. The evaluations 

of the experts in linguistic variables for the process 

functions with respect to their importance are obtained 

as expressed in Table 3. The findings express that the 

most important process function is die casting (M4) in 

the spindle manufacturing process with the importance 

weight value of 0.207. The second most important 

process function is found as incoming material (M1) 

while the least important process function is appeared as 

packaging (M8) with the weight value of 0.018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Manufacturing process quality hierarchy 

 

 

Table 3.  Pair-wise evaluations of experts in linguistic variables for the process functions 

 Process 

Functions M1 M2 M3 M4 M5 M6 M7 M8 M9 
Weight Vector 
CR=0.023<0.10 

M1 E,E,E,E 

E,SS, 

E,SS 

SS,FS, 

SS,FS 

FW,E, 

FW,FS 

E,SS, 

E,SS 

FW,SS, 

FW,SS 

SS,FS, 

FS,SS 

VS,AS, 

VS,AS 

FS,VS, 

VS,VS 0.160 

M2   E,E,E,E 

SS,E, 

SS,E 

E,FW, 

E,FW 

E,SW, 

E,SW 

SS,SW, 

SS,SW 

SS,FS, 

SS,FS 

FS,VS, 

FS,VS 

VS,VS, 

VS,VS 0.141 

M3     E,E,E,E 

FW,VW, 

FW,VW 

E,AS, 

E,SW 

E,SS, 

SW,SS 

VS,SS, 

SS,SS 

FW,SS, 

VS,SS 

SS,SS, 

SS,SS 0.106 

M4       E,E,E,E 

SS,AS, 

SS,VS 

SW,SW, 

SW,SW 

VS,FS, 

AS,FS 

VS,VS, 

AS,VS 

AS,VS, 

AS,VS 0.207 

M5         E,E,E,E 

E,E, 

E,SW 

SS,FS, 

SS,VS 

FS,VS, 

FS,VS 

FS,FS, 

FS,FS 0.126 

M6           E,E,E,E 

FS,SS, 

F S,SS 

FS,VS, 

FS,VS 

FS,FS, 

FS,FS 0.144 

GOAL: 

Process 
Quality 

M2 

M9 

M5 

M3 

M4 

M8 

M7 

M6 

Potential 

Failure Modes 
Process 

Functions 
Process 

Quality 

M1 
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M7             E,E,E,E 

SS,FS, 

SS,FS 

SS,FS, 

SS,FS 0.077 

M8               E,E,E,E E,E,E,E 0.018 

M9                 E,E,E,E 0.022 

 

The process functions have different process failure 

characteristics, so that they should have different 

importance values for the risk factors severity (S), 

occurrence (O), and detectability (D). Therefore, in the 

second main step of the proposed methodology, a Fuzzy 

FMEA is utilized for each process separately and their 

S, O, and D factors get different importance weights 

determined by the experts. For obtaining the weight 

vectors of the each risk factor for each process function, 

the evaluations of the experts with the pair-wise 

comparisons in linguistic variables are accomplished for 

S, O, and D (shown in Table 4.). The resulting weights 

are illustrated in Table 5 for each process function with 

their CR values.  
 

Table 4.  The pair-wise evaluations of experts in linguistic variables for S, O and D risk factors for each process function 

Incoming Material S O D Weight Vector  CR=0.083 

S (E,E,E,E) (FS,FS,VS,VS) (VS,SS,VS,VS) 0.624 

O (E,E,E,E) (SS,FS,FW,SS) 0.219 

D (EEEE) 0.157 

Melting S O D Weight Vector  CR=0.051 

S (E,E,E,E) (SS,SS,FS,SS) (E,FS,SW,E) 0.389 

O (E,E,E,E) (FW,E,E,FW) 0.242 

D (E,E,E,E) 0.369 

Chemical Analysis S O D Weight Vector  CR=0.089 

S (E,E,E,E) (VS,FS,SW,FW) (SS,SS,SS,E) 0.395 

O (E,E,E,E) (FS,E,E,E) 0.336 

D (E,E,E,E) 0.269 

Die Casting S O D Weight Vector  CR=0.045 

S (E,E,E,E) (FS,E,SS,E) (E,E,FS,SW) 0.402 

O (E,E,E,E) (FW,E,E,SS) 0.262 

D (E,E,E,E) 0.336 

Trimming S O D Weight Vector  CR=0.067 

S (E,E,E,E) (SS,FS,SW,E) (FS,E,SW,FW) 0.358 

O (E,E,E,E) (SS,E,FW,SW) 0.284 

D (E,E,E,E) 0.358 

Shot Blasting S O D Weight Vector  CR=0.073 

S (E,E,E,E) (E,SS,FW,SW) (SS,FS,SS,E) 0.332 

O (E,E,E,E) (SS,FS,SW,FW) 0.355 

D (E,E,E,E) 0.313 

Control S O D Weight Vector  CR=0.042 

S (E,E,E,E) (FS,FS,SS,FS) (FS,SS,FS,SS) 0.470 

O (E,E,E,E) (SS,E,E,SW) 0.259 

D (E,E,E,E) 0.271 

Packaging S O D Weight Vector  CR=0.093 

S (E,E,E,E) (SS,SS,SW,E) (FS,FS,FW,FW) 0.335 

O (E,E,E,E) (E,E,FS,FS) 0.363 

D (E,E,E,E) 0.302 

Delivery S O D Weight Vector  CR=0.036 

S (E,E,E,E) (E,FW,SW,FW) (E,SW,FW,SW) 0.234 

O (E,E,E,E) (E,E,E,SW) 0.400 

D (E,E,E,E) 0.367 
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The findings demonstrate that the importance of 

severity is the greatest in incoming material process 

function with 0.624 while it is the smallest in delivery 

with the value of 0.234. The process function delivery 

has also the biggest value of occurrence factor. While 

severity is so important for the potential failure modes 

in incoming material, detectability factor has the least 

importance in this process function. Shot blasting 

process function has the risk factors most balanced with 

close weight of importance values. 

 
Table 5.  The resulting weights for each process 

function 

Process 

Functions 

Weight Vector of the Process Functions 

S O D CR 

M1 0.624 0.219 0.157 0.083 

M2 0.389 0.242 0.369 0.051 

M3 0.395 0.336 0.269 0.089 

M4 0.402 0.262 0.336 0.045 

M5 0.358 0.284 0.358 0.067 

M6 0.332 0.355 0.313 0.073 

M7 0.470 0.259 0.271 0.042 

M8 0.335 0.363 0.302 0.093 

M9 0.234 0.400 0.367 0.036 

4.2. Potential Failure Modes 

In every process there are several critical potential 

failure modes determined by the experts in the process 

functions. The third step of the proposed methodology 

begins with determining the potential failure modes by 

the experts. These failures are shown in Table 6 for each 

process function. For instance chemical analysis process 

function has two critical potential failure modes while 

die casting process function has 6 potential failure 

modes. 

 

Table 6.  Potential failure modes 

M1 

Chemical comp. Out of standard  (M11) 

Mistake on having sample and doing analyze (M12) 

Deviation of the spectrometer settings  (M13) 

M2 

Using of too much return material  (M21) 

Loading wrong material into furnace  (M22) 

Wrong temperature in melting furnace  (M23) 

Using the sama transport crucible for different alloy 

types  (M24) 

M3 
Mistake on having sample and doing analyze (M31) 

Deviation of the spectrometer settings  (M32) 

M4 

Porosity  (M41) 

Insufficient cooling time  (M42) 

Incomplete filling of cavities  (M43) 

Blister  (M44) 

Part of casting is missing  (M45) 

Excessive flash  (M46) 

M5 

Burrs on surface  (M51) 

Broken spindle  (M52) 

Broken pins  (M53) 

Negative breaking surface  (M54) 

M6 

Burrs on the surfaces  (M61) 

Colour changes on the surfaces  (M62) 

Non-homogenous surface roughness  (M63) 

Surface roughness higher than Rz16  (M64) 

M7 
Defective spindle  (M71) 

Out of tolerance  (M72) 

M8 

Wrong quantities in the boxes  (M81) 

Wrong labels on boxes (M82) 

Broken pinion in the internal transport  (M83) 

M9 

Non Conformity to deadline  (M 91) 

Wrong product/order delivery  (M92) 

Missing/Wrong Documents  (M93) 

 

After the determination of weight vectors of S, O 

and D for each process function, fuzzy TOPSIS is 

utilized and the potential failure modes are evaluated 

with respect to S, O and D according to their belonging 

process functions. Table 7 shows the complete 

evaluations of three experts for potential failure modes 

with respect to the risk factors. For example in control 

process function, the potential failure mode of defective 

spindle is evaluated as Medium Good (MG), Fair (F) 

and Fair (F) respectively for S, O and D by expert 1. 

Also again in control process function, the S of the 

potential failure mode of defective spindle is evaluated 

as Medium Good (MG), Medium Good (MG), and 

Good (G) by the experts. 

 
Table 7.  The evaluations of experts in linguistic 

variables for potential failure modes with respect 

to S, O and D for each process function 

M1 S O D 
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M11 G,MG,G MP,MP,P P,MP,F 

M12 MG,MG,VG F,MP,MP MP,MP,MP 

M13 MG,MG,MG MP,MP,P P,MP,MP 

 

M2 S O D 

M21 VG,G,VG P,P,P MP,MP,MP 

M22 MG,G,G MP,MP,P P,MP,P 

M23 MG,G,G P,P,P P,P,MP 

M24 MG,G,MG MP,MP,P P,P,MP 

 

M3 S O D 

M31 MG,MG,G P,P,P MP,MP,MP 

M32 MG,G,MG P,MP,VP MP,P,F 

 

M4 S O D 

M41 G,G,VG F,F,MG P,P,P 

M42 VG,G,G F,F,G VP,P,VP 

M43 G,G,G P,MP,MP VP,P,P 

M44 VG,G,MG MP,MP,F P,P,VP 

M45 G,G,VG MG,F,MP VP,P,P 

M46 VG,G,G G,MG,G P,P,P 

 

M5 S O D 

M51 VG,G,VG G,G,G P,P,MP 

M52 MG,MG,MG G,G,MG P,P,P 

M53 MG,MG,MG F,F,F P,P,P 

M54 MG,MG,G MG,F,F P,P,P 

 

M6 S O D 

M61 F,MG,MG MP,MP,MP VP,P,VP 

M62 MG,F,MG MP,F,F VP,VP,P 

M63 MG,F,MG F,MP,MP VP,P,P 

M64 G,MG,G F,MG,F P,P,P 

 

M7 S O D 

M71 MG,MG,G F,MG,F F,MP,MG 

M72 G,G,G MP,F,MP P,P,F 

 

M8 S O D 

M81 F,MG,F F,F,F MP,MP,F 

M82 F,F,F MP,F,MG F,MG,G 

M83 MG,G,G MP,F,MP MG,MG,MG 

 

M9 S O D 

M91 P,MP,MP F,MP,F MP,MP,F 

M92 G,MG,G MP,MP,F F,MP,F 

M93 MG,G,G P,P,P MP,P,F 

 

In the fourth and final step, closeness coefficient 

values of each failure mode are multiplied by the 

weights of the process functions to find the global 

weights of the failure modes. Subsequently, the global 

weights are ranked. The final results consisting 

closeness coefficients, global weights and rankings of 

potential failure modes are displayed in Table 8. The 

results show that the most important critical failure 

mode for the spindle manufacturing process is excessive 

flash in die casting process. The second most important 

failure mode appears to be porosity again in die casting 

process. The potential failure mode with the least 

importance is the wrong quantities in the boxes come 

out in the packaging process. 

 

 
Table 8.  The importance of each potential failure mode 

Processes Failure Modes CCs 

Global 

Importance Ranking 

Incoming Material 

Chemical comp. Out of standart 0.246 0.047 8 

Mistake on having sample and doing analyse 0.256 0.049 6 

Deviation of the spectrometer settings 0.218 0.042 10 

Melting 

Using of too much return material 0.234 0.040 12 

Loading wrong material into furnace 0.212 0.036 13 

Wrong temperature in melting furnace 0.193 0.032 16 

Using the sama transport crucible for 

different alloy types 0.206 0.035 14 

Chemical Analysis 
Mistake on having sample and doing analyse 0.230 0.029 21 

Deviation of the spectrometer settings 0.235 0.030 20 

Die Casting 

Porosity 0.237 0.059 2 

Insufficient cooling time 0.212 0.053 4 

Incomplete filling of cavities 0.191 0.047 7 
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Blister 0.198 0.049 5 

Part of casting is missing 0.217 0.054 3 

Excessive flash 0.257 0.064 1 

Trimming 

Burrs on surface 0.265 0.040 11 

Broken spindle 0.218 0.032 15 

Broken pins 0.190 0.029 22 

Negative breaking surface 0.202 0.030 19 

Shot Blasting 

Burrs on the surfaces 0.158 0.028 23 

Colour changes on the surfaces 0.177 0.030 18 

Non-homogenous surface roughness 0.181 0.031 17 

Surface roughness higher than Rz16 0.242 0.042 9 

Control 
Defective spindle 0.252 0.023 24 

Out of tolerance 0.217 0.020 25 

Packaging 

Wrong quantities in the boxes 0.201 0.005 31 

Wrong labels on boxes 0.228 0.005 29 

Broken pinion in the internal transport 0.242 0.005 27 

Delivery 

Non Conformity to deadline 0.194 0.005 28 

Wrong product/order delivery 0.236 0.006 26 

Missing/Wrong Documents 0.168 0.005 30 

 

 

    

4.3. Sensitivity Analysis 

     In this subsection, we observe if the ranking of 

potential failure modes are robust or too sensitive to the 

changes in the weights of the manufacturing processes. 

A sensitivity analysis by changing the weights of 

manufacturing processes is calculated according to 

information given in Table 9. The results for ranking the 

PFMs of the manufacturing processes for different cases 

are shown in Fig. 3. 

 

Table 9.  The weights of the manufacturing 

processes with respect to the considered cases 

Case0 Case1 Case2 Case3 Case4  

M1 0.160 0.150 0.111 0.100 0.050 

M2 0.141 0.150 0.111 0.100 0.150 

M3 0.106 0.150 0.111 0.080 0.150 

M4 0.207 0.150 0.111 0.170 0.150 

M5 0.126 0.100 0.111 0.100 0.150 

M6 0.144 0.100 0.111 0.150 0.170 

M7 0.077 0.100 0.111 0.100 0.080 

M8 0.018 0.050 0.111 0.100 0.050 

M9 0.022 0.050 0.111 0.100 0.050 

 

According to the sensitivity analysis results, as the 

importance of all manufacturing processes are same, 

Burrs on surfaces, one of the potential failure mode of 

Shot Blasting manufacturing process, is ranked first and 

Excessive flash, one of the potential failure mode of Die 

Casting manufacturing process, is ranked second. In the 

other three cases, Excessive flash is ranked first. So it 

can be considered that Excessive flash is the most 

important potential failure mode among the others. On 

the other hand a similar result can be reasoned as 

Missing/Wrong Documents, one of the potential failure 

mode of Delivery manufacturing process, is the least 

important potential failure mode. 

5. Conclusion 

PFMEA, designed to provide information for risk 

management decision-making in any process, is a 

widely used engineering technique in industries. In 

PFMEA potential failure modes are determined and can 

be evaluated by risk factors named severity, occurrence, 

and detection. In a typical PFMEA, the risk priority 

number of each failure mode is obtained by the 

multiplication of crisp values of the risk factors. 

Due to the criticisms in literature for RPN 

calculation uses the multiplication method, a fuzzy 

hybrid approach is considered for PFMEA by its 

superiority over the traditional approach. This study 

firstly applies a model of Chen's fuzzy TOPSIS 

integrated with Buckley's fuzzy AHP separately for 

each process function. Later the closeness coefficients 

are multiplied by the weights of the process functions 

for finding the global weight scores. Finally the 

potential failures are ranked according to their global 

weight scores. 
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Fig. 3. Sensitivity analysis 

 

In this study a spindle manufacturing process is 

considered as an application case study that 

demonstrated the applicability of the proposed hybrid 

fuzzy model. By regarding the sensitivity analysis, 

Excessive flash, one of the potential failure mode of Die 

Casting manufacturing process, is determined as the 

most important potential failure mode whereas 

Missing/Wrong Documents, one of the potential failure 

mode of Delivery manufacturing process, is determined 

as the least important potential failure mode. 

For further research, we suggest other multi-criteria 

methods like ELECTRE, VIKOR, or Utility Models to 

be used and the obtained results be compared with the 

results of this paper. 
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