
Utilizing Multi-Field Text Features for Efficient Email Spam Filtering

Wuying Liu
College of Computer, National University of Defense Technology

Changsha, Hunan 410073, China
wyliu@nudt.edu.cn

Department of Language Engineering, PLA University of Foreign Languages
Luoyang, Henan 471003, China

Ting Wang*
College of Computer, National University of Defense Technology

Changsha, Hunan 410073, China
tingwang@nudt.edu.cn

Abstract

Large-scale spam emails cause a serious waste of time and resources. This paper investigates the text features of
email documents and the feature noises among multi-field texts, resulting in an observation of a power law
distribution of feature strings within each text field. According to the observation, we propose an efficient filtering
approach including a compound weight method and a lightweight field text classification algorithm. The compound
weight method considers both the historical classifying ability of each field classifier and the classifying
contribution of each text field in the current classified email. The lightweight field text classification algorithm
straightforwardly calculates the arithmetical average of multiple conditional probabilities predicted from feature
strings according to a string-frequency index for labeled emails storing. The string-frequency index structure has a
random-sampling-based compressible property owing to the power law distribution and can largely reduce the
storage space. The experimental results in the TREC spam track show that the proposed approach can complete the
filtering task in low space cost and high speed, whose overall performance 1-ROCA exceeds the best one among
the participators at the trec07p evaluation.

Keywords: Email Spam Filtering, Text Classification, Multi-Field Learning, Lightweight Field Classifier, Power
Law, TREC Spam Track.

* Corresponding author.

1. Introduction

Email spam is the bulk, promotional and unsolicited
message. Currently, with the rapid development of
computing and communicating technologies, spam
emails increase exponentially and spread over the world,

which causes a serious waste of time and resources. So
it is crucial to filter spam emails efficiently.

Email spam filtering is normally defined as an
online supervised binary text classification (TC)
problem, which is simulated as an immediate full
feedback task in the TREC evaluation. This online
learning task [1] assumes that the messages are ordered
chronologically. At the beginning of the task, the filter

International Journal of Computational Intelligence Systems, Vol. 5, No. 3 (June, 2012), 505-518

Published by Atlantis Press
 Copyright: the authors
 505

Administrateur
Texte tapé à la machine
Received 12 December 2010

Administrateur
Texte tapé à la machine
Accepted 24 January 2012

Administrateur
Texte tapé à la machine

W. Liu, T. Wang

has no labeled message. Messages are processed in their
chronological sequence and the user feedback (category
label) for each message is communicated to the filter
immediately following classification.

Up to now, many online TC algorithms [2] have
been proposed for spam filtering. For instance: 1) the
perceptron algorithm is an early online additive weight-
updating algorithm [3], a multiplicative variant of the
perceptron is the positive winnow algorithm, and a
further variant of the positive winnow is the balanced
winnow algorithm; 2) the online Bayesian algorithm [4]
is based on the vector space model (VSM), and uses the
joint probabilities of words and categories to estimate
the probabilities of categories for a given document; 3)
the kernel-based online support vector machines (SVM)
algorithm [5] is a recent algorithm, and the relaxed
online SVM algorithm [6] relaxes the maximum margin
requirement and produces nearly equivalent results; and
4) the online fusion of dynamic markov compression
(DMC) and logistic regression algorithm [7] is a fusion
algorithm.

The online TC algorithms have shown a good
effectiveness for email spam filtering [8]. To our
knowledge, the online SVM algorithm indeed gives
state of the art performance on email spam filtering,
which has out-performed other single TC algorithms,
including the perceptron algorithm, the Bayesian
algorithm, and the logistic regression algorithm [9]. The
relaxed online SVM algorithm has gained several best
results in the TREC2007 spam track. The online fusion
of DMC and logistic regression on character 4-gram
algorithm is the winner at the trec07p evaluation of
immediate full feedback.

The previous TC algorithms often pursued the high
classification accuracy and the high overall performance
1-ROCA [8] of online supervised learning, without
more claiming their low space-time complexity. For
instance, specified in the TREC spam track, even the
space-time limitation (total 1 GB RAM and 2 sec/email)
is still unpractical and horrible in a real large-scale
email system, where large-scale emails will form a
round-the-clock data stream and there will be more than
thousands of emails arriving during 2 seconds.

According to the practical requirement of the large-
scale email system, both the classification accuracy and
the space-time complexity all should be concerned. This
paper addresses the practical email spam filtering and
further defines it as a space-time limited online

supervised binary TC problem. The main idea is
breaking the space-time limited TC problem into
multiple simple sub-problems according to the structural
feature of email documents, and linearly combining
multiple results from sub-problems to form the final
decision. The optimal linear combination method and
the efficient algorithm for solving sub-problems are two
crucial points concerned in this paper.

The multi-field structural feature of email
documents [10] can be used to optimize the linear
combination performance. Our multi-field learning
framework brings the statistical, computational and
representational advantages [11] like ensemble learning
methods. This paper propose a compound weight
method to calculate the linear combination coefficients,
considering both the historical classifying ability of
each field classifier and the classifying contribution of
each text field in the current classified email. This
method is similar to the semi-supervised learning
technique which uses the information of the current
unlabeled email.

Within the multi-field learning framework, the total
space-time cost depends on the one of each field
classifier. Unfortunately, most previous TC algorithms
often have a complex training process, in which the
multi-pass scan, VSM representation, feature selection
and other complex operations make the algorithm
space-time-inefficient, and unsuitable to be
implemented as the field classifier for the practical
application of email spam filtering. So this paper
explores a lightweight field text classification algorithm
for the field classifier. This algorithm utilizes an
efficient string-frequency index to calculate the
arithmetical average of multiple conditional
probabilities predicted from feature strings.

The rest of this paper is organized as follows. In
section 2, we investigate the text features of email
documents and find the feature noises among multi-field
texts and the power law distribution of feature strings.
In section 3, we describe the multi-field learning idea,
and propose an efficient compound weight method. In
section 4, we explore a string-frequency index data
structure, and propose a lightweight field text
classification algorithm. In section 5, the experiments
and results are described. At last the conclusion and
future work are given.

Published by Atlantis Press
 Copyright: the authors
 506

Efficient Email Spam Filtering

2. Text Features of Email Documents

In most statistical TC algorithms for email spam
filtering, email is normally treated as a single plain-text
document, and text feature is also extracted within this
single document. Actually a full email (often including
five natural text fields: Header, From, ToCcBcc, Subject,
and Body) is a multi-field text document. Feature
extraction from full email document makes many text
features disturb each other, and text feature from one
field is often noise to other fields.

2.1. Multi-Field Text Feature Noises

In statistical TC algorithms, a document is normally
represented as a text feature vector. The dimension of
feature vector space, the total number of text features,
reflects the representational granularity of vector space
model. Previous researches have shown that the
overlapping word-level k-gram model can achieve
promising results [12, 13]. For email documents, single
plain-text model (SPTM) and multi-field model (MFM)
are two different representations. The SPTM ignores the
field information of text feature, regarding the same
string occurrence in different fields as single text feature,
while the MFM treats it as distinct text features. The
dimensions of k-gram feature vector space for trec07p
email set are shown in Table 1. For the two email
representations, four overlapping word-level models are
applied respectively. For MFM, the five natural text
fields’ information is considered.

Table 1. Dimensions of k-gram Feature Vector Space under
the Two Representations: SPTM and MFM.

 1-gram 2-gram 3-gram 4-gram

SPTM 1,037,395 4,189,054 9,447,962 13,869,560

MFM 1,258,491 4,906,594 10,390,571 14,880,647

Table 1 shows the dimension of MFM is larger than
that of SPTM for each k-gram model. For instance, the
difference between the two representations is 1,011,087
for the 4-gram model. The result from Table 1 indicates
that text feature noises exist indeed in SPTM. Because
more finely granular text feature can reduce the noises
and increase the TC accuracy, this paper proposes a
multi-field learning (MFL) framework, which is an
alignment technique of text feature sources. In the MFL
framework, text features are enhanced by the field
information, and the undesired influences among text
features from different fields are expected to be reduced.

2.2. Power Law Distribution of Feature Strings

Within the MFL framework, the distribution of feature
strings from each field text is crucial to develop an
efficient field text classification algorithm. It has been
proved that the number distribution of words follows the
power law in most text documents. We can validate that
the power law also exists in each field of email
documents through the statistic of feature strings. We
consider the five natural text fields of email documents
separately, and for each text field we calculate the
number of each feature string for trec07p email set.
Here, the feature string also applies the four overlapping
word-level models.

(a) Frequency Distribution of 4-gram Feature Strings and

Trendline in the Header Field

(b) Frequency Distribution of 4-gram Feature Strings and

Trendline in the From Field

Published by Atlantis Press
 Copyright: the authors
 507

W. Liu, T. Wang

(c) Frequency Distribution of 4-gram Feature Strings and

Trendline in the ToCcBcc Field

(d) Frequency Distribution of 4-gram Feature Strings and

Trendline in the Subject Field

(e) Frequency Distribution of 4-gram Feature Strings and

Trendline in the Body Field

Fig. 1. Frequency Distributions of 4-gram Feature Strings and
Trendlines in the Five Natural Text Fields. In each sub-figure,

the horizontal-axis indicates the frequency rank of feature
string (log scale), and the vertical-axis indicates the frequency

of feature string (log scale).

Fig. 1 includes five sub-figures corresponding to the
five natural text fields of email documents. In each sub-
figure of Fig. 1, the horizontal-axis (x-axis) indicates the
frequency rank of feature string (log scale), and the
vertical-axis (y-axis) indicates the frequency of feature
string (log scale). We can draw a trendline (y = a x + b)
for each sub-figure of Fig. 1, which indicates that the
number distribution of 4-gram feature strings
approximately follows the power law.

Our statistic shows that not only the number
distribution of 4-gram feature strings follows the power
law in every text field, but also that of 1-gram, 2-gram,
and 3-gram feature strings follows the power law. Table
2 shows the detailed trendline coefficients a and b. The
ubiquitous power law brings a new opportunity to
reduce storage space via deleting the low frequency
feature strings.

Table 2. Trendline (y = a x + b) Coefficients a and b for k-gram Feature Strings in the Five Natural Text Fields.

 1-gram 2-gram 3-gram 4-gram
 a b a b a B a b

Header -0.8707 11.364 -0.8543 12 -0.8076 11.73 -0.7725 11.465
From -0.8405 9.0269 -0.6313 7.3073 -0.5118 6.0107 -0.4789 5.6451

ToCcBcc -1.2365 11.196 -1.1375 11.165 -1.0443 10.525 -0.9946 10.187
Subject -1.3741 13.416 -0.9913 11.023 -0.8566 9.7211 -0.804 9.1304

Body -1.4133 17.804 -1.1895 17.245 -0.9327 14.355 -0.8188 12.877

Published by Atlantis Press
 Copyright: the authors
 508

Efficient Email Spam Filtering

3. Compound Weight within the MFL
Framework

A full email is a typical multi-field text document.
Applying the divide-and-conquer strategy, multi-field
learning breaks a complex TC problem into multiple
simple sub-problems according to the structural feature
of multi-field text documents. Each sub-problem may
have its specific text features, and the combined

multiple classifying results will be expected to improve
the final classification accuracy.

3.1. Multi-Field Learning Framework

Fig. 2 shows the multi-field learning framework for the
binary TC of multi-field documents, including a splitter,
several field classifiers, a combiner, and an immediate
learner.

Fig. 2. Multi-Field Learning Framework.

The splitter analyses a multi-field document, and
splits it into several sub-documents. There are two kinds
of sub-documents: one is the natural field sub-document,
and the other is the artificial sub-document. There are
some explicit classifiable texts hard to be pretended by
spammers in email documents. For instance, spammers
try to camouflage the spam text, but they never conceal
the email addresses with expectation to be called back
from the spam receivers. So, by some regular expression
rules, we can extract these specific texts to form
artificial sub-documents which do not really exist in
actual multi-field documents. The artificial sub-
document construction is equivalent to increasing the
statistical weight for some specific texts. This paper
implements a MFL framework of seven sub-documents
for email documents, in which the splitter extracts five
natural sub-documents (Header, From, ToCcBcc,
Subject, and Body) according to the natural field
structure and extracts two artificial sub-documents
(H.IP, H.EmailBox) by regular expression rules. The
H.IP sub-document contains IP address texts and the
H.EmailBox sub-document contains email address texts
within the Header field of email documents.

Each field classifier is obligated to process its
related field sub-documents. Text feature extracting, TC
model training or updating, and sub-document

predicting made by each field classifier are only
localized in its related sub-documents. The output of
each field classifier is not the traditional binary result
but a spamminess score (SS), which is a real number
reflecting the likelihood that the classified document is
spam. The traditional Bayesian conditional probability
P(spam|doc), shown in Eq. (1), reflects this likelihood.

(|) ()

(|)
(|) () (|) ()

P doc spam P spam
P spam doc

P doc spam P spam P doc ham P ham


 (1)

If the P(spam|doc) is applied to estimate the SS,

then the SS threshold T, shown in Eq. (2), can be used
to make a binary judgment. But the values of both SS
and threshold are affected by the number distribution of
labeled spams and hams, and the number of two
categories labeled data is not fixed during the time of
online filtering.

()

() ()

P spam
T

P spam P ham



 (2)

In order to eliminate this number distribution

influence and make the same SS value has the
equivalent likelihood during the whole online filtering,
this paper scales up the number of two categories

Published by Atlantis Press
 Copyright: the authors
 509

W. Liu, T. Wang

labeled data to make P(spam)=P(ham), and uses the
scaled Bayesian conditional probability P(spam|doc),
shown in Eq. (3), to represent the SS, then the SS
threshold T=0.5 will be a fixed point.

(|)

(|)
(|) (|)

P doc spam
P spam doc

P doc spam P doc ham



 (3)

The MFL framework is designed for a general

purpose, easily to be applied to previous TC algorithms,
because previous TC algorithms can be used to
implement the field classifier by changing a binary
result output to a continuous SS output. From the
perspective of machine learning, the MFL framework
adds a document-level category label to each sub-
document. Each field classifier can develop more
sophisticate features and train a TC model in its own
feature space, which reduces the feature disturbance
between the sub-documents and makes the TC model
more precise.

The combiner combines multi-classifier’s scores to
form the final SS. If the final SS [0, ∈ T], then the
document will be predicted as a ham; otherwise, if the
final SS (∈ T, 1], it will be predicted as a spam.
Immediately after the classification decision, the
immediate learner sends the user feedback (category
label) to each field classifier for its TC model updating.
The linear combination strategy in the combiner is the
key point to guarantee good effectiveness within the
MFL framework.

3.2. Compound Weight

The linear combination of spamminess scores from field
classifiers is a simple and efficient method, which is
defined in Eq. (4). Here SS denotes the final
spamminess score, n denotes the number of field
classifiers, and SSi denotes the spamminess score
predicted by the ith field classifier. The coefficient αi
(real number) can be set by different weighted strategies.
The straightforward weighted strategy is arithmetical
average calculating method: αi=1/n, abbreviated as
strat1.

1

n

i i
i

SS SS


 (4)

Email spam filtering is an online supervised learning

process, so the normalized historical classification

accuracy rates of field classifiers can be used to estimate
the linear combination coefficients. Within the MFL
framework, each field classifier’s historical SS values
can be plotted to a receiver operating characteristic
(ROC) curve. The percentage of the area below the
ROC curve, abbreviated as ROCA, indicates the
historical classifying ability. So each ROCA is
reasonable to estimate the classification accuracy rate of
each field classifier. This historical performance
weighted strategy was proposed in our previous
research [10], abbreviated as strat2, where the
normalized current n values of ROCA were used to set
the coefficient αi before an email was classified. Our
research has also proved that the overall performance of
strat2 overcomes that of strat1.

Furthermore, the information amount of the current
classified email will also influence the classification
accuracy at the time of online predicting. The length of
the text in each field sub-document can be used as the
measure of the information for each field, which formed
the current classifying contribution weighted strategy,
abbreviated as strat3 combining strategy. In this
strategy, the normalized number of characters in field
sub-documents is used to set the coefficient αi.

In fact, the strat2 and strat3 strategies are two sides
of the same coin. The two strategies, the historical
performance weighted strategy and the current
classifying contribution weighted strategy, will affect
the classification accuracy together. This paper presents
a compound weight considering the strat2 and strat3
strategies on the assumption that the two strategies
contribute equally to a correct classification. Let αi

strat2
and αi

strat3 denote separately the coefficient of the strat2
and strat3, then a compound weight, shown in Eq. (5), is
used as the coefficient αi. This compound weighted
strategy is abbreviated as strat4.

2 3

2

strat strat
i i

i

  
 (5)

The total space-time cost within the MFL

framework depends on the space-time complexity of
each field classifier. Unfortunately, most TC algorithms
often have a complex training process, which is
unsuitable to be implemented as the field classifier for
the practical application. So this paper next explores a
lightweight field text classification algorithm to
implement the field classifier.

Published by Atlantis Press
 Copyright: the authors
 510

Efficient Email Spam Filtering

4. Lightweight Field Text Classification

Previous TC algorithms normally use a VSM
representation to train a TC model, which has to align
vector dimensions, select features, and often leads to
high dimensional sparseness and time-consuming
problems. The online TC algorithm faces an open
incremental text feature space, and cannot foreknow the
vector space dimension. This paper presents a data
structure of string-frequency index (SFI), based on
which the proposed lightweight field text classification
algorithm (named as SFITC-R algorithm) converts the
supervised online training and classifying processes into
index incremental updating and retrieving processes.
The SFITC-R algorithm smoothly solves the online
open text feature space problem, and is space-time-
efficient owing to the SFI data structure and suitable to
implement the field classifier.

4.1. String-Frequency Index

The feature string frequency of historical labeled
documents, the key of online supervised machine
learning, gives rich classification information and must
be stored effectively. This paper applies the overlapping
word-level 4-gram model to define feature strings, and
lets a sub-document D be represented as a sequence of
feature strings in the form D=Sj, (j=1, 2, ..., N). The
string-frequency index is a data structure to store the
feature string information of labeled data, from which
we can conveniently calculate spamminess score of
each feature string according to the scaled Bayesian
conditional probability P(spam|Sj), and
straightforwardly combine the scores to form the sub-
document’s final score.

Fig. 3. String-Frequency Index.

Fig. 3 shows the SFI including two integers and a
hash table. The integral Fspam and Fham denote separately
the total number of labeled spams and hams, which are
then scaled up in order to make P(spam)=P(ham). Each
table entry is a key-value pair <Key, Value>, where
each key is a feature string and each value consists of
two integers. Similarly, the integral Fspam(Sj) and Fham(Sj)
denote separately the number of occurrences of feature
string Sj in labeled spams and hams, and the Sj denotes
the jth feature string. The hash function maps the feature
string Sj to the address of two integers Fspam(Sj) and
Fham(Sj).

The data structure of SFI is a little similar to the
widely used word-frequency matrix (WFM). The main
difference between SFI and WFM is their design
motivations: the SFI is designed to represent a
frequency distribution of strings within two categories,
and the WFM is designed to represent a frequency
distribution of words within documents. Due to different
motivations, the SFI has more advantages comparing to
the WFM for binary TC applications. The WFM storage
space is proportional to the number of documents, while
the SFI storage space is proportional to the number of
categories. In the binary TC, the number of documents
is usually larger than two, so the SFI is more efficient
than the WFM considering the storage space.

// SFITC-R: String-frequency index text classification algorithm (with random sampling).
// D: Sub-Document; L: Binary Category Label; SFI: String-Frequency Index; R: Training Feature Loss Rate.
SFITC-R (D; L; SFI; R)
(1) If (L = null) Then: PREDICT (D; SFI);
(2) Else: UPDATE (D; L; SFI; R).

// PREDICT: Online classifying procedure.
PREDICT (D; SFI)
(1) String[] S := FEATURE(D);
(2) Integer Is := SFI.Fspam;
(3) Integer Ih := SFI.Fham;
(4) New ArrayList<Float> F;
(5) If (Is = 0) Or (Ih = 0) Then: Float SSi := 0.5;

Published by Atlantis Press
 Copyright: the authors
 511

W. Liu, T. Wang

(6) Else:
(6.1) Loop: For Each Sj∈S Do:

(6.1.1) If (SFI.containKey(Sj)) Then:
(6.1.1.1) Integer Isj := SFI.Fspam(Sj);
(6.1.1.2) Integer Ihj := SFI.Fham(Sj);
(6.1.1.3) Float SSj := (Isj/Is)/(Isj/Is+Ihj/Ih);
(6.1.1.4) F.add(SSj);

(6.2) Integer N := F.length;
(6.3) If (N = 0) Then: Float SSi := 0.5;
(6.4) Else: Float SSi := (1/N)∑SSj; // SSj∈F

(7) If (SSi > 0.5) Then: Label L := spam;
(8) Else: Label L := ham;
(9) Output: SSi and L.

// UPDATE: Online training procedure.
UPDATE (D; L; SFI; R)
(1) String[] S := FEATURE(D);
(2) String[] SRS := RANDOMSAMPLING(S; R);
(3) If (L = spam) Then:

(3.1) SFI.Fspam := SFI.Fspam + 1;
(3.2) Loop: For Each Sj∈SRS Do:

(3.2.1) If SFI.containKey(Sj) Then: SFI.Fspam(Sj) := SFI.Fspam(Sj) + 1;
(3.2.2) Else: SFI.putKey(Sj), And SFI.Fspam(Sj) := 1, SFI.Fham(Sj) := 0;

(4) Else If (L = ham) Then:
(4.1) SFI.Fham := SFI.Fham + 1;
(4.2) Loop: For Each Sj∈SRS Do:

(4.2.1) If (SFI.containKey(Sj)) Then: SFI.Fham(Sj) := SFI.Fham(Sj) + 1;
(4.2.2) Else: SFI.putKey(Sj), And SFI.Fspam(Sj) := 0, SFI.Fham(Sj) := 1.

FEATURE (D) //Extract the feature string sequence from D based on overlapping word-level 4-gram model.
RANDOMSAMPLING(S; R) //Random sample the feature string sequence based on the training feature loss rate R.

Fig. 4. Pseudo-Code for the SFITC-R Algorithm.

Supported by the SFI, the SFITC-R algorithm takes
the online classifying process of a sub-document as an
index retrieving process, and also takes the supervised
online training process as an incremental updating
process of index. Fig. 4 gives the pseudo-code for the
SFITC-R algorithm consisting of two main procedures:
PREDICT and UPDATE.

When a new (Label=null) sub-document arrives, the
PREDICT procedure is triggered: 1) it extracts the
feature string sequence from the sub-document based on
the overlapping word-level 4-gram model; 2) it retrieves
the current SFI and calculates each feature string’s SS
according to the Eq. (6) scaled Bayesian conditional
probability; and 3) it assumes that each feature string’s
contribution to the final SS is equivalent and uses the
arithmetical average to calculate the final SS as Eq. (7).

() /

(|)
() / () /

spam j spam
j j

spam j spam ham j ham

F S F
SS P spam S

F S F F S F
 


(6)

1

1 N

i j
j

SS SS
N 

  (7)

When a new labeled sub-document arrives, it is only

required that the sub-document’s feature strings are put
into the SFI. The UPDATE procedure firstly extracts
the feature string sequence, and then randomly samples
the feature string sequence to form a new compressed
sequence based on a preset training feature loss rate R;
and finally, updates the frequency or adds a new index
entry to the SFI according to the feature strings within
the compressed sequence.

4.2. Space-Time Complexity

The SFITC-R algorithm mainly makes up of PREDICT
and UPDATE procedures, whose space-time complexity
depends on the SFI storage space and the loops in the
two procedures.

The SFI storage space is efficient owing to two
reasons: the inherent compressible property of index

Published by Atlantis Press
 Copyright: the authors
 512

Efficient Email Spam Filtering

files and the random-sampling-based compressible
property at the time of incremental updating.

The SFI is an improved version of traditional
inverted files [14], which simplifies the position and
document ID information to two integers, only
reflecting the occurrence frequency of feature strings.
This hash list structure, prevailingly employed in
Information Retrieval, has a lower compression ratio of
raw texts. Though the training sub-documents will
mount in the wake of the increasing of online feedbacks,
the SFI storage space will only increase slowly.
Theoretically, the inherent compressible property of
index files ensures that the SFI storage space is
proportional to the total number of feature strings, and is
independent of the number of training sub-documents.

The random-sampling-based compressible property
of SFI is caused by the number distribution of feature
strings in email documents and our SFI-based
calculating method. During the whole filtering, if a

feature string has less frequency (≤2) in the SFI, it can
be believed that the feature string is useless for
classification. As an extreme instance, if a feature string
occurs only once all the time, it is useless because it will
never be used in the future. The SFITC-R algorithm
only utilizes the ratio of a feature string’s frequency in
spams to that in hams. So the SFI’s classifying ability
will not change after removing the useless feature
strings.

As the online spam filtering faces an open text space,
you can not foreknow the feature string’s occurrence in
the future. It has been found that the number distribution
of feature strings follows the power law in email sub-
documents. According to this finding, we define the
uselessness rate as the ratio of the number of feature
strings with less frequency to the total number of feature
strings in the SFI, and show the number of feature
strings and related uselessness rate of trec07p email set
in Table 3.

Table 3. Number of Feature Strings and Uselessness Rate.

Number of Feature Strings (num) Uselessness Rate (%)

N(1) N(2) N(*) U(≤1) U(≤2)

Body 5636342 2212571 9739679 58 81

From 217976 14123 249322 87 93

Header 3516042 505070 4720386 75 85

H.EmailBox 406052 86012 641531 63 77

H.IP 97120 47151 232521 42 62

Subject 82711 15606 126788 65 78

ToCcBcc 29755 5384 44472 67 79

Multi-Field 9985998 2885917 15754699 63 82

The N(1) and N(2) separately denote the number of

feature string which only occurs once and twice in the
trec07p email set. The N(*) denotes the total number of
feature strings. The U(≤1) and U(≤2) are defined in
Eq. (8) and Eq. (9) separately.

(1)

(1)
(*)

N
U

N
  (8)

(1) (2)
(2)

(*)

N N
U

N


  (9)

Table 3 shows that the uselessness rates in seven

fields are all higher, and the total uselessness rate is
between 63% and 82%, which is the theoretical tolerant
range of index entry loss rate. It indicates if we
complete the whole trec07p filtering of immediate full

feedback, the SFI will include 63% to 82% useless
index entry. Lots of useless feature strings form the
“long tail”, which confirm our conjecture.

The number distribution of feature strings follows a
power law, and our SFITC-R algorithm only requires
the relative frequency cause that the random-sampling-
based feature strings selection can cut the “long tail”
useless feature strings in the online situation.

Both two compressible properties of SFI make that
the online labeled email stream can be incrementally
stored as the SFI space-efficiently.

The incremental updating or retrieving of SFI has
constant time complexity according to a hash function.
The major time cost of the online classifying procedure
is the cost for 3N+1 divisions in the loop (see 6.1 of Fig.

Published by Atlantis Press
 Copyright: the authors
 513

W. Liu, T. Wang

4). The online training procedure is lazy, requiring no
retraining when a new labeled sub-document is added.
From Fig. 4, it is found that the time cost of per
updating is only proportional to the total number of
feature strings in the sub-document. Except the only
loop (see 3.2 and 4.2 of Fig. 4) according to the number
of feature strings, there is no time-consuming operations.
Above time complexity is acceptable in the practical
online spam filtering application.

5. Experiments

The proposed work has been evaluated on a widely-used
email spam filtering task of immediate full feedback,
defined in the TREC spam track [15]. The hardware
environment for running experiments is a PC with 1 GB
memory and 2.80 GHz Pentium D CPU. Experimental
corpus is trec07p email set, which contains total 75,419
emails (25,220 hams and 50,199 spams). The TREC
spam filter evaluation toolkit and the associated
evaluation methodology [15] are applied.

5.1. Implementation and Evaluation

In the experiments described below, a seven fields MFL
framework of email documents was implemented (see
section 3.1). Within this MFL framework, each field
classifier is implemented based on the SFITC-R
algorithm and applies mechanical overlapping word-
level 4-gram model to define feature strings. According
to the four different weighted strategies: the strat1,
strat2, strat3 and strat4 strategy of the MFL framework
(see section 3.2), we implement separately four email
spam filters: the sfitc1, sfitc2, sfitc3 and sfitc4 filter.

Three other filters are chosen as baselines: 1) the
bogo filter (bogo-0.93.4) [16, 17] is a classical
implementation of VSM-based online Bayesian
algorithm; 2) the tftS3F filter [18] is based on the

relaxed online SVM algorithm and has achieved several
best results at the TREC2007 spam track; and 3) the
wat3 filter [7], the winner at the trec07p immediate full
feedback spam track, is based on the online fusion of
DMC and logistic regression with overall performance
1-ROCA at 0.0055. These two filters can be run in the
same environment with our filters, and compared on
running time.

Here reports the overall performance measurement
1-ROCA, the area above the ROC curve percentage,
where 0 is optimal, and the total running time to
evaluate the filter’s performance. We also report two
measurements: the spam misclassification percentage
(Misspam) and the ham misclassification percentage
(Misham) to show the validity of our strat4 strategy. All
the above measurements are automatically computed by
the TREC spam filter evaluation toolkit, which can also
plot the ROC curve and the ROC learning curve for
ROC analysis. The ROC curve is the graphical
representation of Misham and Misspam. The area under
the ROC curve is a cumulative measure of the
effectiveness of the filter over all possible values. The
ROC learning curve is the graphical representation of
the filter’s behavior and the user’s expectation evolve
during filter use. The ROC learning curve is that
cumulative 1-ROCA is given as a function of the
number of messages processed, which indicates that the
filter has reached steady-state performance.

5.2. Results and Discussion

The experiments include two parts, one evaluates that
the SFITC-R algorithm is time-efficient and can also
achieve the best overall performance within the MFL
framework; the other verifies that the SFI data structure
has the random-sampling-based compressible property
and the proposed approach is space-efficient.

Table 4. Experimental Results: Time, 1-ROCA, Misspam, Misham Performance and TREC07 Rank.

 Time (sec) 1-ROCA (%) Misspam (%) Misham (%) TREC07 Rank

sfitc4 2834 0.0055 0.21 0.11

wat3 0.0055 1

sfitc2 2776 0.0067 0.16 0.15

sfitc3 1910 0.0070 0.40 0.08

sfitc1 1863 0.0074

tftS3F 62554 0.0093 2

bogo 25100 0.1558

Published by Atlantis Press
 Copyright: the authors
 514

Efficient Email Spam Filtering

In the first part of experiments, the bogo, tftS3F, and
our four filters run on immediate full feedback task on
the trec07p corpus separately, and our four filters set
their training feature loss rate R=0. The detailed
experimental results are shown in Table 4. The results
show that the sfitc4 filter can complete filtering task in
high speed (2834 sec), whose overall performance 1-
ROCA is comparable to the best wat3 filter’s (0.0055)
among the participators at the trec07p evaluation. The
time and 1-ROCA performances of our four filters
exceed the bogo’s and the tftS3F’s more. Comparing the
sfitc2 and the sfitc3 in the percent of misclassified
spams and hams, we find that the strat2 strategy
optimizes spam’s decision (0.16<0.40) and the strat3
strategy optimizes ham’s decision (0.08<0.15). The
Misspam and Misham of sfitc4 shows that compound
weight can consider the both two aspects.

Fig. 5 shows the ROC curves and Fig. 6 shows the
ROC learning curves of the bogo, tftS3F, wat3, and our
best sfitc4 filter respectively. In Fig. 5, the area
surrounded by the left border, the top border and the
sfitc4 curve is relatively small, which means that the
overall filtering performance of sfitc4 filter is promising.
Fig. 5 also shows that the overall performance is
comparable among the tftS3F, wat3, and sfitc4 filters. In
Fig. 6, around 7,000 training samples, the sfitc4 curve
achieves the ideal 1-ROCA performance (0.01).
Comparing the sfitc4, tftS3F and wat3 learning curves,
we find that all the performances decrease near 20,000
training samples. However, when close to 40,000
training samples, the sfitc4 can quickly return the ideal
steady-state, and the average overall performance 1-
ROCA can reach 0.0055. This indicates that the SFITC-
R algorithm applying strat4 strategy of the MFL
framework has strong online learning ability.

Fig. 5. ROC Curves: Immediate Full Feedback on the Trec07p Corpus.

Published by Atlantis Press
 Copyright: the authors
 515

W. Liu, T. Wang

Fig. 6. ROC Learning Curves: Immediate Full Feedback on the Trec07p Corpus.

In the second part of experiments, we run the sfitc4
filter under different training feature loss rate R from
10% to 90%. The sfitc4 filter repeatedly runs 30 times

for each training feature loss rate, and here reports the
mean performance among the 30 results for each
training feature loss rate.

Fig. 7. Time, Space and 1-ROCA Performance under Different Training Feature Loss Rates.

Fig. 7 shows the time, space and 1-ROCA
performance, where the space is the number of index
entry in the final SFI storage. From Fig. 7, we find that

the 1-ROCA performance is almost a constant (≈0.0055)
while R varing from 0% to 70%, which indicates if we
randomly delete up to 70% feature strings at the time of

Published by Atlantis Press
 Copyright: the authors
 516

Efficient Email Spam Filtering

online training, the 1-ROCA performance will not be
influenced obviously. This result confirms the random-
sampling-based compressible property of SFI in our

SFITC-R algorithm within the MFL framework for
email spam filtering.

Table 5. Training Feature Loss Rate, Index Entry Loss Rate and Performance.

Training Feature Loss Rate (%) Index Entry Loss Rate (%) Time (sec) Space (num) 1-ROCA (%)

 0 0 2834 15754699 0.0055

10 6 2715 14763087 0.0055

20 13 2607 13660951 0.0054

30 21 2481 12511131 0.0053

40 29 2139 11257499 0.0053

50 37 2130 9895697 0.0055

60 46 2094 8467245 0.0053

70 56 2066 6860210 0.0055

80 68 2028 5071819 0.0064

90 81 2006 2984139 0.0066

The details of loss rate and performance are shown

in Table 5. On average of 30 results, there are four 1-
ROCA performances exceed the best one (0.0055)
among the participators at the trec07p evaluation. From
Table 5, we find that the index entry loss rate
approximates a direct ratio of the training feature loss
rate, which proves that random-sampling-based feature
strings selection according to theoretical index entry
loss rate between 63% and 82% is effective in the online
situation.

Above experiments show that 1) the SFITC-R
algorithm and the compound weight method can
achieve high classification accuracy in low time
complexity within the MFL framework; and 2) the SFI
data structure, with two compressible properties, can
largely reduce the space complexity of our approach.

6. Conclusions

For large-scale email spam filtering, a practical TC
algorithm must manage to obtain high classification
accuracy under the restriction of limited time and space.
Compared with some advanced machine learning TC
algorithms, our proposed approach makes use of the
structural feature of email documents and obtains a
comparable performance. The experimental results
show that, applying the compound weighted strategy
within the MFL framework and using the SFI data
structure to store previous labeled emails, the SFITC-R
algorithm can achieve the state-of-the-art performance
at greatly reduced space-time cost, which adapts to

practical requirements of large-scale email spam
filtering. Based on the above researches, we can draw
following conclusions:

● The multi-field structural feature can support the
divide-and-conquer strategy. Using an optimal linear
combination strategy of multi-field learning, the
straightforward occurrence counting of string features
may obtain promising classification performance, even
beyond that of some advanced algorithms. This
straightforward counting will also bring time reducing.

● The index data structure has the inherent
compressible property of raw texts, by which the text
retrieval approach can be used to treat the text
classification problem. Each incremental updating or
retrieving of index has constant time complexity, which
may satisfy the space-limited and real-time
requirements of online applications.

● The ubiquitous power law is a very important
distribution feature of random events. This paper
elucidates that the number distribution of feature strings
follows the power law in email documents, according to
which we succeed in random-sampling-based feature
strings selection at the time of online training.

With the development of mobile computing and
network communicating, the spam concept is
generalized to email spam, instant messaging spam,
short message service spam, and so on. This paper
proposed filtering approach is more general and can be
easily transferred to other spam filtering. Further
research will concern online semi-supervised learning,
active learning, and personal learning for spam filtering.

Published by Atlantis Press
 Copyright: the authors
 517

W. Liu, T. Wang

We will apply large-scale unlabeled data, select
effective samples for training by mining differences
among multiple field classifiers of the MFL framework,
and improve the SFI structure for both global and
personal labeled text storage.

Acknowledgements

The authors thank the anonymous reviewers for helping
to greatly improve the paper. This research is supported
by the National Natural Science Foundation of China
(No. 61170156, No. 60933005), and the National High
Technology Research and Development Program of
China (No. 2010AA012505). We thank Dr. D. Sculley
for his tftS3F filter code.

References

1. Gordon V. Cormack, A. Bratko, Batch and On-line Spam
Filter Evaluation, In CEAS2006: Proceedings of the 3rd
Conference on Email and Anti-Spam (2006).

2. Thiago S. Guzella, Walmir M. Caminhas, A Review of
Machine Learning Approaches to Spam Filtering, Expert
Systems with Applications. 36(7) (2009) 10206–10222.

3. Fabrizio Sebastiani, Machine Learning in Automated
Text Categorization, ACM Computing Surveys. 34(1)
(2002) 1–47.

4. Kian Ming Adam Chai, Hai Leong Chieu, Hwee Tou,
Bayesian Online Classifiers for Text Classification and
Filtering, In SIGIR’02: Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (2002), pp. 97–104.

5. J. Kivinen, A. Smola, R. Williamson, Online Learning
with Kernels, Advances in Neural Information
Processing Systems. 14 (2002) 785–793.

6. D. Sculley, Gabriel M. Wachman, Relaxed Online SVMs
for Spam Filtering, In SIGIR’07: Proceedings of the 30th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(2007), pp. 415–422.

7. Gordon V. Cormack, University of Waterloo
Participation in the TREC 2007 Spam Track, In
TREC2007: Notebook of the 16th Text REtrieval
Conference (National Institute of Standards and
Technology, 2007).

8. Gordon V. Cormack, Email Spam Filtering: A Systematic
Review, Foundations and Trends in Information
Retrieval. 1(4) (2008) 335–455.

9. J. Goodman, W. Yin, Online Discriminative Spam Filter
Training, In CEAS2006: Proceedings of the 3rd
Conference on Email and Anti-Spam (2006).

10. Wuying Liu, Ting Wang, Multi-Field Learning for Email
Spam Filtering, In SIGIR’10: Proceedings of the 33rd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(2010), pp. 745–746.

11. Thomas G. Dietterich, Ensemble Methods in Machine
Learning, In MCS2000: Proceedings of the Multiple
Classifier Systems (2000), pp. 1–15.

12. H. Drucker, D. Wu, V. N. Vapnik, Support vector
machines for spam categorization, IEEE Transactions on
Neural Networks. 10(5) (1999) 1048–1054.

13. Zhihua Wei, Duoqian Miao, Jean-Hugues Chauchat, Rui
Zhao, Wen Li, N-grams based Feature Selection and Text
Representation for Chinese Text Classification,
International Journal of Computational Intelligence
Systems. 2(4) (2009) 365–374.

14. Justin Zobel, Alistair Moffat, Inverted Files for Text
Search Engines, ACM Computing Surveys. 38(2) (2006)
Article 6.

15. Gordon V. Cormack, TREC 2007 Spam Track Overview,
In TREC2007: Proceedings of the 16th Text REtrieval
Conference (National Institute of Standards and
Technology, Special Publication 500-274, 2007).

16. Paul Graham, A Plan for Spam. (August 2002)
http://www.paulgraham.com/spam.html.

17. Paul Graham, Better Bayesian Filtering. In the 2003
Spam Conference. (January 2003)
http://www.paulgraham.com/better.html.

18. D. Sculley, Gabriel M. Wachman, Relaxed Online SVMs
in the TREC Spam Filtering Track, In TREC2007:
Proceedings of the 16th Text REtrieval Conference
(National Institute of Standards and Technology, Special
Publication 500-274, 2007).

Published by Atlantis Press
 Copyright: the authors
 518

