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Abstract 

Large-scale spam emails cause a serious waste of time and resources. This paper investigates the text features of 
email documents and the feature noises among multi-field texts, resulting in an observation of a power law 
distribution of feature strings within each text field. According to the observation, we propose an efficient filtering 
approach including a compound weight method and a lightweight field text classification algorithm. The compound 
weight method considers both the historical classifying ability of each field classifier and the classifying 
contribution of each text field in the current classified email. The lightweight field text classification algorithm 
straightforwardly calculates the arithmetical average of multiple conditional probabilities predicted from feature 
strings according to a string-frequency index for labeled emails storing. The string-frequency index structure has a 
random-sampling-based compressible property owing to the power law distribution and can largely reduce the 
storage space. The experimental results in the TREC spam track show that the proposed approach can complete the 
filtering task in low space cost and high speed, whose overall performance 1-ROCA exceeds the best one among 
the participators at the trec07p evaluation. 

Keywords: Email Spam Filtering, Text Classification, Multi-Field Learning, Lightweight Field Classifier, Power 
Law, TREC Spam Track. 
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1. Introduction 

Email spam is the bulk, promotional and unsolicited 
message. Currently, with the rapid development of 
computing and communicating technologies, spam 
emails increase exponentially and spread over the world, 

which causes a serious waste of time and resources. So 
it is crucial to filter spam emails efficiently. 

Email spam filtering is normally defined as an 
online supervised binary text classification (TC) 
problem, which is simulated as an immediate full 
feedback task in the TREC evaluation. This online 
learning task [1] assumes that the messages are ordered 
chronologically. At the beginning of the task, the filter 
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has no labeled message. Messages are processed in their 
chronological sequence and the user feedback (category 
label) for each message is communicated to the filter 
immediately following classification. 

Up to now, many online TC algorithms [2] have 
been proposed for spam filtering. For instance: 1) the 
perceptron algorithm is an early online additive weight-
updating algorithm [3], a multiplicative variant of the 
perceptron is the positive winnow algorithm, and a 
further variant of the positive winnow is the balanced 
winnow algorithm; 2) the online Bayesian algorithm [4] 
is based on the vector space model (VSM), and uses the 
joint probabilities of words and categories to estimate 
the probabilities of categories for a given document; 3) 
the kernel-based online support vector machines (SVM) 
algorithm [5] is a recent algorithm, and the relaxed 
online SVM algorithm [6] relaxes the maximum margin 
requirement and produces nearly equivalent results; and 
4) the online fusion of dynamic markov compression 
(DMC) and logistic regression algorithm [7] is a fusion 
algorithm. 

The online TC algorithms have shown a good 
effectiveness for email spam filtering [8]. To our 
knowledge, the online SVM algorithm indeed gives 
state of the art performance on email spam filtering, 
which has out-performed other single TC algorithms, 
including the perceptron algorithm, the Bayesian 
algorithm, and the logistic regression algorithm [9]. The 
relaxed online SVM algorithm has gained several best 
results in the TREC2007 spam track. The online fusion 
of DMC and logistic regression on character 4-gram 
algorithm is the winner at the trec07p evaluation of 
immediate full feedback. 

The previous TC algorithms often pursued the high 
classification accuracy and the high overall performance 
1-ROCA [8] of online supervised learning, without 
more claiming their low space-time complexity. For 
instance, specified in the TREC spam track, even the 
space-time limitation (total 1 GB RAM and 2 sec/email) 
is still unpractical and horrible in a real large-scale 
email system, where large-scale emails will form a 
round-the-clock data stream and there will be more than 
thousands of emails arriving during 2 seconds. 

According to the practical requirement of the large-
scale email system, both the classification accuracy and 
the space-time complexity all should be concerned. This 
paper addresses the practical email spam filtering and 
further defines it as a space-time limited online 

supervised binary TC problem. The main idea is 
breaking the space-time limited TC problem into 
multiple simple sub-problems according to the structural 
feature of email documents, and linearly combining 
multiple results from sub-problems to form the final 
decision. The optimal linear combination method and 
the efficient algorithm for solving sub-problems are two 
crucial points concerned in this paper. 

The multi-field structural feature of email 
documents [10] can be used to optimize the linear 
combination performance. Our multi-field learning 
framework brings the statistical, computational and 
representational advantages [11] like ensemble learning 
methods. This paper propose a compound weight 
method to calculate the linear combination coefficients, 
considering both the historical classifying ability of 
each field classifier and the classifying contribution of 
each text field in the current classified email. This 
method is similar to the semi-supervised learning 
technique which uses the information of the current 
unlabeled email. 

Within the multi-field learning framework, the total 
space-time cost depends on the one of each field 
classifier. Unfortunately, most previous TC algorithms 
often have a complex training process, in which the 
multi-pass scan, VSM representation, feature selection 
and other complex operations make the algorithm 
space-time-inefficient, and unsuitable to be 
implemented as the field classifier for the practical 
application of email spam filtering. So this paper 
explores a lightweight field text classification algorithm 
for the field classifier. This algorithm utilizes an 
efficient string-frequency index to calculate the 
arithmetical average of multiple conditional 
probabilities predicted from feature strings. 

The rest of this paper is organized as follows. In 
section 2, we investigate the text features of email 
documents and find the feature noises among multi-field 
texts and the power law distribution of feature strings. 
In section 3, we describe the multi-field learning idea, 
and propose an efficient compound weight method. In 
section 4, we explore a string-frequency index data 
structure, and propose a lightweight field text 
classification algorithm. In section 5, the experiments 
and results are described. At last the conclusion and 
future work are given. 
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2. Text Features of Email Documents 

In most statistical TC algorithms for email spam 
filtering, email is normally treated as a single plain-text 
document, and text feature is also extracted within this 
single document. Actually a full email (often including 
five natural text fields: Header, From, ToCcBcc, Subject, 
and Body) is a multi-field text document. Feature 
extraction from full email document makes many text 
features disturb each other, and text feature from one 
field is often noise to other fields. 

2.1. Multi-Field Text Feature Noises 

In statistical TC algorithms, a document is normally 
represented as a text feature vector. The dimension of 
feature vector space, the total number of text features, 
reflects the representational granularity of vector space 
model. Previous researches have shown that the 
overlapping word-level k-gram model can achieve 
promising results [12, 13]. For email documents, single 
plain-text model (SPTM) and multi-field model (MFM) 
are two different representations. The SPTM ignores the 
field information of text feature, regarding the same 
string occurrence in different fields as single text feature, 
while the MFM treats it as distinct text features. The 
dimensions of k-gram feature vector space for trec07p 
email set are shown in Table 1. For the two email 
representations, four overlapping word-level models are 
applied respectively. For MFM, the five natural text 
fields’ information is considered. 

Table 1.  Dimensions of k-gram Feature Vector Space under 
the Two Representations: SPTM and MFM. 

 1-gram 2-gram 3-gram 4-gram 

SPTM 1,037,395 4,189,054  9,447,962 13,869,560

MFM 1,258,491 4,906,594 10,390,571 14,880,647

Table 1 shows the dimension of MFM is larger than 
that of SPTM for each k-gram model. For instance, the 
difference between the two representations is 1,011,087 
for the 4-gram model. The result from Table 1 indicates 
that text feature noises exist indeed in SPTM. Because 
more finely granular text feature can reduce the noises 
and increase the TC accuracy, this paper proposes a 
multi-field learning (MFL) framework, which is an 
alignment technique of text feature sources. In the MFL 
framework, text features are enhanced by the field 
information, and the undesired influences among text 
features from different fields are expected to be reduced. 

2.2. Power Law Distribution of Feature Strings 

Within the MFL framework, the distribution of feature 
strings from each field text is crucial to develop an 
efficient field text classification algorithm. It has been 
proved that the number distribution of words follows the 
power law in most text documents. We can validate that 
the power law also exists in each field of email 
documents through the statistic of feature strings. We 
consider the five natural text fields of email documents 
separately, and for each text field we calculate the 
number of each feature string for trec07p email set. 
Here, the feature string also applies the four overlapping 
word-level models. 

 

 
(a) Frequency Distribution of 4-gram Feature Strings and 

Trendline in the Header Field 

 
(b) Frequency Distribution of 4-gram Feature Strings and 

Trendline in the From Field 
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(c) Frequency Distribution of 4-gram Feature Strings and 

Trendline in the ToCcBcc Field 

 
(d) Frequency Distribution of 4-gram Feature Strings and 

Trendline in the Subject Field 

 
(e) Frequency Distribution of 4-gram Feature Strings and 

Trendline in the Body Field 

Fig. 1.  Frequency Distributions of 4-gram Feature Strings and 
Trendlines in the Five Natural Text Fields. In each sub-figure, 

the horizontal-axis indicates the frequency rank of feature 
string (log scale), and the vertical-axis indicates the frequency 

of feature string (log scale). 

Fig. 1 includes five sub-figures corresponding to the 
five natural text fields of email documents. In each sub-
figure of Fig. 1, the horizontal-axis (x-axis) indicates the 
frequency rank of feature string (log scale), and the 
vertical-axis (y-axis) indicates the frequency of feature 
string (log scale). We can draw a trendline (y = a x + b) 
for each sub-figure of Fig. 1, which indicates that the 
number distribution of 4-gram feature strings 
approximately follows the power law. 

Our statistic shows that not only the number 
distribution of 4-gram feature strings follows the power 
law in every text field, but also that of 1-gram, 2-gram, 
and 3-gram feature strings follows the power law. Table 
2 shows the detailed trendline coefficients a and b. The 
ubiquitous power law brings a new opportunity to 
reduce storage space via deleting the low frequency 
feature strings. 

Table 2. Trendline (y = a x + b) Coefficients a and b for k-gram Feature Strings in the Five Natural Text Fields. 

 1-gram 2-gram 3-gram 4-gram 
 a b a b a B a b 

Header -0.8707 11.364 -0.8543 12 -0.8076 11.73 -0.7725 11.465 
From -0.8405 9.0269 -0.6313 7.3073 -0.5118 6.0107 -0.4789 5.6451 

ToCcBcc -1.2365 11.196 -1.1375 11.165 -1.0443 10.525 -0.9946 10.187 
Subject -1.3741 13.416 -0.9913 11.023 -0.8566 9.7211 -0.804 9.1304 

Body -1.4133 17.804 -1.1895 17.245 -0.9327 14.355 -0.8188 12.877 
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3. Compound Weight within the MFL 
Framework 

A full email is a typical multi-field text document. 
Applying the divide-and-conquer strategy, multi-field 
learning breaks a complex TC problem into multiple 
simple sub-problems according to the structural feature 
of multi-field text documents. Each sub-problem may 
have its specific text features, and the combined 

multiple classifying results will be expected to improve 
the final classification accuracy. 

3.1. Multi-Field Learning Framework 

Fig. 2 shows the multi-field learning framework for the 
binary TC of multi-field documents, including a splitter, 
several field classifiers, a combiner, and an immediate 
learner. 

 

 

Fig. 2. Multi-Field Learning Framework. 

The splitter analyses a multi-field document, and 
splits it into several sub-documents. There are two kinds 
of sub-documents: one is the natural field sub-document, 
and the other is the artificial sub-document. There are 
some explicit classifiable texts hard to be pretended by 
spammers in email documents. For instance, spammers 
try to camouflage the spam text, but they never conceal 
the email addresses with expectation to be called back 
from the spam receivers. So, by some regular expression 
rules, we can extract these specific texts to form 
artificial sub-documents which do not really exist in 
actual multi-field documents. The artificial sub-
document construction is equivalent to increasing the 
statistical weight for some specific texts. This paper 
implements a MFL framework of seven sub-documents 
for email documents, in which the splitter extracts five 
natural sub-documents (Header, From, ToCcBcc, 
Subject, and Body) according to the natural field 
structure and extracts two artificial sub-documents 
(H.IP, H.EmailBox) by regular expression rules. The 
H.IP sub-document contains IP address texts and the 
H.EmailBox sub-document contains email address texts 
within the Header field of email documents. 

Each field classifier is obligated to process its 
related field sub-documents. Text feature extracting, TC 
model training or updating, and sub-document 

predicting made by each field classifier are only 
localized in its related sub-documents. The output of 
each field classifier is not the traditional binary result 
but a spamminess score (SS), which is a real number 
reflecting the likelihood that the classified document is 
spam. The traditional Bayesian conditional probability 
P(spam|doc), shown in Eq. (1), reflects this likelihood. 

 
( | ) ( )

( | )
( | ) ( ) ( | ) ( )

P doc spam P spam
P spam doc

P doc spam P spam P doc ham P ham


 (1)

 
If the P(spam|doc) is applied to estimate the SS, 

then the SS threshold T, shown in Eq. (2), can be used 
to make a binary judgment. But the values of both SS 
and threshold are affected by the number distribution of 
labeled spams and hams, and the number of two 
categories labeled data is not fixed during the time of 
online filtering. 

 
( )

( ) ( )

P spam
T

P spam P ham



 (2)

 
In order to eliminate this number distribution 

influence and make the same SS value has the 
equivalent likelihood during the whole online filtering, 
this paper scales up the number of two categories 
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labeled data to make P(spam)=P(ham), and uses the 
scaled Bayesian conditional probability P(spam|doc), 
shown in Eq. (3), to represent the SS, then the SS 
threshold T=0.5 will be a fixed point. 

 
( | )

( | )
( | ) ( | )

P doc spam
P spam doc

P doc spam P doc ham



 (3)

 
The MFL framework is designed for a general 

purpose, easily to be applied to previous TC algorithms, 
because previous TC algorithms can be used to 
implement the field classifier by changing a binary 
result output to a continuous SS output. From the 
perspective of machine learning, the MFL framework 
adds a document-level category label to each sub-
document. Each field classifier can develop more 
sophisticate features and train a TC model in its own 
feature space, which reduces the feature disturbance 
between the sub-documents and makes the TC model 
more precise. 

The combiner combines multi-classifier’s scores to 
form the final SS. If the final SS [0, ∈ T], then the 
document will be predicted as a ham; otherwise, if the 
final SS (∈ T, 1], it will be predicted as a spam. 
Immediately after the classification decision, the 
immediate learner sends the user feedback (category 
label) to each field classifier for its TC model updating. 
The linear combination strategy in the combiner is the 
key point to guarantee good effectiveness within the 
MFL framework. 

3.2. Compound Weight 

The linear combination of spamminess scores from field 
classifiers is a simple and efficient method, which is 
defined in Eq. (4). Here SS denotes the final 
spamminess score, n denotes the number of field 
classifiers, and SSi denotes the spamminess score 
predicted by the ith field classifier. The coefficient αi 
(real number) can be set by different weighted strategies. 
The straightforward weighted strategy is arithmetical 
average calculating method: αi=1/n, abbreviated as 
strat1. 

 

1

n

i i
i

SS SS


  (4)

 
Email spam filtering is an online supervised learning 

process, so the normalized historical classification 

accuracy rates of field classifiers can be used to estimate 
the linear combination coefficients. Within the MFL 
framework, each field classifier’s historical SS values 
can be plotted to a receiver operating characteristic 
(ROC) curve. The percentage of the area below the 
ROC curve, abbreviated as ROCA, indicates the 
historical classifying ability. So each ROCA is 
reasonable to estimate the classification accuracy rate of 
each field classifier. This historical performance 
weighted strategy was proposed in our previous 
research [10], abbreviated as strat2, where the 
normalized current n values of ROCA were used to set 
the coefficient αi before an email was classified. Our 
research has also proved that the overall performance of 
strat2 overcomes that of strat1. 

Furthermore, the information amount of the current 
classified email will also influence the classification 
accuracy at the time of online predicting. The length of 
the text in each field sub-document can be used as the 
measure of the information for each field, which formed 
the current classifying contribution weighted strategy, 
abbreviated as strat3 combining strategy. In this 
strategy, the normalized number of characters in field 
sub-documents is used to set the coefficient αi. 

In fact, the strat2 and strat3 strategies are two sides 
of the same coin. The two strategies, the historical 
performance weighted strategy and the current 
classifying contribution weighted strategy, will affect 
the classification accuracy together. This paper presents 
a compound weight considering the strat2 and strat3 
strategies on the assumption that the two strategies 
contribute equally to a correct classification. Let αi

strat2 
and αi

strat3 denote separately the coefficient of the strat2 
and strat3, then a compound weight, shown in Eq. (5), is 
used as the coefficient αi. This compound weighted 
strategy is abbreviated as strat4. 

 
2 3

2

strat strat
i i

i

  
  (5)

 
The total space-time cost within the MFL 

framework depends on the space-time complexity of 
each field classifier. Unfortunately, most TC algorithms 
often have a complex training process, which is 
unsuitable to be implemented as the field classifier for 
the practical application. So this paper next explores a 
lightweight field text classification algorithm to 
implement the field classifier. 
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4. Lightweight Field Text Classification 

Previous TC algorithms normally use a VSM 
representation to train a TC model, which has to align 
vector dimensions, select features, and often leads to 
high dimensional sparseness and time-consuming 
problems. The online TC algorithm faces an open 
incremental text feature space, and cannot foreknow the 
vector space dimension. This paper presents a data 
structure of string-frequency index (SFI), based on 
which the proposed lightweight field text classification 
algorithm (named as SFITC-R algorithm) converts the 
supervised online training and classifying processes into 
index incremental updating and retrieving processes. 
The SFITC-R algorithm smoothly solves the online 
open text feature space problem, and is space-time-
efficient owing to the SFI data structure and suitable to 
implement the field classifier. 

4.1. String-Frequency Index 

The feature string frequency of historical labeled 
documents, the key of online supervised machine 
learning, gives rich classification information and must 
be stored effectively. This paper applies the overlapping 
word-level 4-gram model to define feature strings, and 
lets a sub-document D be represented as a sequence of 
feature strings in the form D=Sj, (j=1, 2, ..., N). The 
string-frequency index is a data structure to store the 
feature string information of labeled data, from which 
we can conveniently calculate spamminess score of 
each feature string according to the scaled Bayesian 
conditional probability P(spam|Sj), and 
straightforwardly combine the scores to form the sub-
document’s final score. 

 

 

Fig. 3. String-Frequency Index. 

Fig. 3 shows the SFI including two integers and a 
hash table. The integral Fspam and Fham denote separately 
the total number of labeled spams and hams, which are 
then scaled up in order to make P(spam)=P(ham). Each 
table entry is a key-value pair <Key, Value>, where 
each key is a feature string and each value consists of 
two integers. Similarly, the integral Fspam(Sj) and Fham(Sj) 
denote separately the number of occurrences of feature 
string Sj in labeled spams and hams, and the Sj denotes 
the jth feature string. The hash function maps the feature 
string Sj to the address of two integers Fspam(Sj) and 
Fham(Sj). 

The data structure of SFI is a little similar to the 
widely used word-frequency matrix (WFM). The main 
difference between SFI and WFM is their design 
motivations: the SFI is designed to represent a 
frequency distribution of strings within two categories, 
and the WFM is designed to represent a frequency 
distribution of words within documents. Due to different 
motivations, the SFI has more advantages comparing to 
the WFM for binary TC applications. The WFM storage 
space is proportional to the number of documents, while 
the SFI storage space is proportional to the number of 
categories. In the binary TC, the number of documents 
is usually larger than two, so the SFI is more efficient 
than the WFM considering the storage space. 

 
// SFITC-R: String-frequency index text classification algorithm (with random sampling). 
// D: Sub-Document; L: Binary Category Label; SFI: String-Frequency Index; R: Training Feature Loss Rate. 
SFITC-R (D; L; SFI; R) 
(1) If (L = null) Then: PREDICT (D; SFI); 
(2) Else: UPDATE (D; L; SFI; R). 
 
// PREDICT: Online classifying procedure. 
PREDICT (D; SFI) 
(1) String[] S := FEATURE(D); 
(2) Integer Is := SFI.Fspam; 
(3) Integer Ih := SFI.Fham; 
(4) New ArrayList<Float> F; 
(5) If (Is = 0) Or (Ih = 0) Then: Float SSi := 0.5; 
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(6) Else: 
(6.1) Loop: For Each Sj∈S Do: 

(6.1.1) If (SFI.containKey(Sj)) Then: 
(6.1.1.1) Integer Isj := SFI.Fspam(Sj); 
(6.1.1.2) Integer Ihj := SFI.Fham(Sj); 
(6.1.1.3) Float SSj := (Isj/Is)/(Isj/Is+Ihj/Ih); 
(6.1.1.4) F.add(SSj); 

(6.2) Integer N := F.length; 
(6.3) If (N = 0) Then: Float SSi := 0.5; 
(6.4) Else: Float SSi := (1/N)∑SSj; // SSj∈F 

(7) If (SSi > 0.5) Then: Label L := spam; 
(8) Else: Label L := ham; 
(9) Output: SSi and L. 
 
// UPDATE: Online training procedure. 
UPDATE (D; L; SFI; R) 
(1) String[] S := FEATURE(D); 
(2) String[] SRS := RANDOMSAMPLING(S; R); 
(3) If (L = spam) Then: 

(3.1) SFI.Fspam := SFI.Fspam + 1; 
(3.2) Loop: For Each Sj∈SRS Do: 

(3.2.1) If SFI.containKey(Sj) Then: SFI.Fspam(Sj) := SFI.Fspam(Sj) + 1; 
(3.2.2) Else: SFI.putKey(Sj), And SFI.Fspam(Sj) := 1, SFI.Fham(Sj) := 0; 

(4) Else If (L = ham) Then: 
(4.1) SFI.Fham := SFI.Fham + 1; 
(4.2) Loop: For Each Sj∈SRS Do: 

(4.2.1) If (SFI.containKey(Sj)) Then: SFI.Fham(Sj) := SFI.Fham(Sj) + 1; 
(4.2.2) Else: SFI.putKey(Sj), And SFI.Fspam(Sj) := 0, SFI.Fham(Sj) := 1. 

 
FEATURE (D) //Extract the feature string sequence from D based on overlapping word-level 4-gram model. 
RANDOMSAMPLING(S; R) //Random sample the feature string sequence based on the training feature loss rate R. 

Fig. 4. Pseudo-Code for the SFITC-R Algorithm. 

Supported by the SFI, the SFITC-R algorithm takes 
the online classifying process of a sub-document as an 
index retrieving process, and also takes the supervised 
online training process as an incremental updating 
process of index. Fig. 4 gives the pseudo-code for the 
SFITC-R algorithm consisting of two main procedures: 
PREDICT and UPDATE. 

When a new (Label=null) sub-document arrives, the 
PREDICT procedure is triggered: 1) it extracts the 
feature string sequence from the sub-document based on 
the overlapping word-level 4-gram model; 2) it retrieves 
the current SFI and calculates each feature string’s SS 
according to the Eq. (6) scaled Bayesian conditional 
probability; and 3) it assumes that each feature string’s 
contribution to the final SS is equivalent and uses the 
arithmetical average to calculate the final SS as Eq. (7). 

 
( ) /

( | )
( ) / ( ) /

spam j spam
j j

spam j spam ham j ham

F S F
SS P spam S

F S F F S F
 


(6)

1

1 N

i j
j

SS SS
N 

   (7)

 
When a new labeled sub-document arrives, it is only 

required that the sub-document’s feature strings are put 
into the SFI. The UPDATE procedure firstly extracts 
the feature string sequence, and then randomly samples 
the feature string sequence to form a new compressed 
sequence based on a preset training feature loss rate R; 
and finally, updates the frequency or adds a new index 
entry to the SFI according to the feature strings within 
the compressed sequence. 

4.2. Space-Time Complexity 

The SFITC-R algorithm mainly makes up of PREDICT 
and UPDATE procedures, whose space-time complexity 
depends on the SFI storage space and the loops in the 
two procedures. 

The SFI storage space is efficient owing to two 
reasons: the inherent compressible property of index 

Published by Atlantis Press 
      Copyright: the authors 
                   512



Efficient Email Spam Filtering 

files and the random-sampling-based compressible 
property at the time of incremental updating. 

The SFI is an improved version of traditional 
inverted files [14], which simplifies the position and 
document ID information to two integers, only 
reflecting the occurrence frequency of feature strings. 
This hash list structure, prevailingly employed in 
Information Retrieval, has a lower compression ratio of 
raw texts. Though the training sub-documents will 
mount in the wake of the increasing of online feedbacks, 
the SFI storage space will only increase slowly. 
Theoretically, the inherent compressible property of 
index files ensures that the SFI storage space is 
proportional to the total number of feature strings, and is 
independent of the number of training sub-documents. 

The random-sampling-based compressible property 
of SFI is caused by the number distribution of feature 
strings in email documents and our SFI-based 
calculating method. During the whole filtering, if a 

feature string has less frequency (≤2) in the SFI, it can 
be believed that the feature string is useless for 
classification. As an extreme instance, if a feature string 
occurs only once all the time, it is useless because it will 
never be used in the future. The SFITC-R algorithm 
only utilizes the ratio of a feature string’s frequency in 
spams to that in hams. So the SFI’s classifying ability 
will not change after removing the useless feature 
strings. 

As the online spam filtering faces an open text space, 
you can not foreknow the feature string’s occurrence in 
the future. It has been found that the number distribution 
of feature strings follows the power law in email sub-
documents. According to this finding, we define the 
uselessness rate as the ratio of the number of feature 
strings with less frequency to the total number of feature 
strings in the SFI, and show the number of feature 
strings and related uselessness rate of trec07p email set 
in Table 3. 

Table 3. Number of Feature Strings and Uselessness Rate. 

Number of Feature Strings (num) Uselessness Rate (%) 
 

N(1) N(2) N(*) U(≤1) U(≤2) 

Body 5636342 2212571  9739679 58 81 

From   217976   14123   249322 87 93 

Header 3516042  505070  4720386 75 85 

H.EmailBox   406052   86012   641531 63 77 

H.IP     97120   47151   232521 42 62 

Subject     82711   15606   126788 65 78 

ToCcBcc     29755    5384    44472 67 79 

Multi-Field  9985998 2885917 15754699 63 82 

 
The N(1) and N(2) separately denote the number of 

feature string which only occurs once and twice in the 
trec07p email set. The N(*) denotes the total number of 
feature strings. The U(≤1) and U(≤2) are defined in 
Eq. (8) and Eq. (9) separately. 

 
(1)

( 1)
(*)

N
U

N
   (8)

(1) (2)
( 2)

(*)

N N
U

N


   (9)

 
Table 3 shows that the uselessness rates in seven 

fields are all higher, and the total uselessness rate is 
between 63% and 82%, which is the theoretical tolerant 
range of index entry loss rate. It indicates if we 
complete the whole trec07p filtering of immediate full 

feedback, the SFI will include 63% to 82% useless 
index entry. Lots of useless feature strings form the 
“long tail”, which confirm our conjecture. 

The number distribution of feature strings follows a 
power law, and our SFITC-R algorithm only requires 
the relative frequency cause that the random-sampling-
based feature strings selection can cut the “long tail” 
useless feature strings in the online situation. 

Both two compressible properties of SFI make that 
the online labeled email stream can be incrementally 
stored as the SFI space-efficiently. 

The incremental updating or retrieving of SFI has 
constant time complexity according to a hash function. 
The major time cost of the online classifying procedure 
is the cost for 3N+1 divisions in the loop (see 6.1 of Fig. 
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4). The online training procedure is lazy, requiring no 
retraining when a new labeled sub-document is added. 
From Fig. 4, it is found that the time cost of per 
updating is only proportional to the total number of 
feature strings in the sub-document. Except the only 
loop (see 3.2 and 4.2 of Fig. 4) according to the number 
of feature strings, there is no time-consuming operations. 
Above time complexity is acceptable in the practical 
online spam filtering application. 

5. Experiments 

The proposed work has been evaluated on a widely-used 
email spam filtering task of immediate full feedback, 
defined in the TREC spam track [15]. The hardware 
environment for running experiments is a PC with 1 GB 
memory and 2.80 GHz Pentium D CPU. Experimental 
corpus is trec07p email set, which contains total 75,419 
emails (25,220 hams and 50,199 spams). The TREC 
spam filter evaluation toolkit and the associated 
evaluation methodology [15] are applied. 

5.1. Implementation and Evaluation 

In the experiments described below, a seven fields MFL 
framework of email documents was implemented (see 
section 3.1). Within this MFL framework, each field 
classifier is implemented based on the SFITC-R 
algorithm and applies mechanical overlapping word-
level 4-gram model to define feature strings. According 
to the four different weighted strategies: the strat1, 
strat2, strat3 and strat4 strategy of the MFL framework 
(see section 3.2), we implement separately four email 
spam filters: the sfitc1, sfitc2, sfitc3 and sfitc4 filter. 

Three other filters are chosen as baselines: 1) the 
bogo filter (bogo-0.93.4) [16, 17] is a classical 
implementation of VSM-based online Bayesian 
algorithm; 2) the tftS3F filter [18] is based on the 

relaxed online SVM algorithm and has achieved several 
best results at the TREC2007 spam track; and 3) the 
wat3 filter [7], the winner at the trec07p immediate full 
feedback spam track, is based on the online fusion of 
DMC and logistic regression with overall performance 
1-ROCA at 0.0055. These two filters can be run in the 
same environment with our filters, and compared on 
running time. 

Here reports the overall performance measurement 
1-ROCA, the area above the ROC curve percentage, 
where 0 is optimal, and the total running time to 
evaluate the filter’s performance. We also report two 
measurements: the spam misclassification percentage 
(Misspam) and the ham misclassification percentage 
(Misham) to show the validity of our strat4 strategy. All 
the above measurements are automatically computed by 
the TREC spam filter evaluation toolkit, which can also 
plot the ROC curve and the ROC learning curve for 
ROC analysis. The ROC curve is the graphical 
representation of Misham and Misspam. The area under 
the ROC curve is a cumulative measure of the 
effectiveness of the filter over all possible values. The 
ROC learning curve is the graphical representation of 
the filter’s behavior and the user’s expectation evolve 
during filter use. The ROC learning curve is that 
cumulative 1-ROCA is given as a function of the 
number of messages processed, which indicates that the 
filter has reached steady-state performance. 

5.2. Results and Discussion 

The experiments include two parts, one evaluates that 
the SFITC-R algorithm is time-efficient and can also 
achieve the best overall performance within the MFL 
framework; the other verifies that the SFI data structure 
has the random-sampling-based compressible property 
and the proposed approach is space-efficient. 

Table 4. Experimental Results: Time, 1-ROCA, Misspam, Misham Performance and TREC07 Rank. 

 Time (sec) 1-ROCA (%) Misspam (%) Misham (%) TREC07 Rank 

sfitc4  2834 0.0055 0.21 0.11  

wat3   0.0055   1 

sfitc2  2776 0.0067 0.16 0.15  

sfitc3  1910 0.0070 0.40 0.08  

sfitc1  1863 0.0074    

tftS3F 62554 0.0093   2 

bogo 25100 0.1558    
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In the first part of experiments, the bogo, tftS3F, and 
our four filters run on immediate full feedback task on 
the trec07p corpus separately, and our four filters set 
their training feature loss rate R=0. The detailed 
experimental results are shown in Table 4. The results 
show that the sfitc4 filter can complete filtering task in 
high speed (2834 sec), whose overall performance 1-
ROCA is comparable to the best wat3 filter’s (0.0055) 
among the participators at the trec07p evaluation. The 
time and 1-ROCA performances of our four filters 
exceed the bogo’s and the tftS3F’s more. Comparing the 
sfitc2 and the sfitc3 in the percent of misclassified 
spams and hams, we find that the strat2 strategy 
optimizes spam’s decision (0.16<0.40) and the strat3 
strategy optimizes ham’s decision (0.08<0.15). The 
Misspam and Misham of sfitc4 shows that compound 
weight can consider the both two aspects. 

Fig. 5 shows the ROC curves and Fig. 6 shows the 
ROC learning curves of the bogo, tftS3F, wat3, and our 
best sfitc4 filter respectively. In Fig. 5, the area 
surrounded by the left border, the top border and the 
sfitc4 curve is relatively small, which means that the 
overall filtering performance of sfitc4 filter is promising. 
Fig. 5 also shows that the overall performance is 
comparable among the tftS3F, wat3, and sfitc4 filters. In 
Fig. 6, around 7,000 training samples, the sfitc4 curve 
achieves the ideal 1-ROCA performance (0.01). 
Comparing the sfitc4, tftS3F and wat3 learning curves, 
we find that all the performances decrease near 20,000 
training samples. However, when close to 40,000 
training samples, the sfitc4 can quickly return the ideal 
steady-state, and the average overall performance 1-
ROCA can reach 0.0055. This indicates that the SFITC-
R algorithm applying strat4 strategy of the MFL 
framework has strong online learning ability. 

 

 

Fig. 5. ROC Curves: Immediate Full Feedback on the Trec07p Corpus. 
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Fig. 6. ROC Learning Curves: Immediate Full Feedback on the Trec07p Corpus. 

In the second part of experiments, we run the sfitc4 
filter under different training feature loss rate R from 
10% to 90%. The sfitc4 filter repeatedly runs 30 times 

for each training feature loss rate, and here reports the 
mean performance among the 30 results for each 
training feature loss rate. 

 

 

Fig. 7. Time, Space and 1-ROCA Performance under Different Training Feature Loss Rates. 

Fig. 7 shows the time, space and 1-ROCA 
performance, where the space is the number of index 
entry in the final SFI storage. From Fig. 7, we find that 

the 1-ROCA performance is almost a constant (≈0.0055) 
while R varing from 0% to 70%, which indicates if we 
randomly delete up to 70% feature strings at the time of 
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online training, the 1-ROCA performance will not be 
influenced obviously. This result confirms the random-
sampling-based compressible property of SFI in our 

SFITC-R algorithm within the MFL framework for 
email spam filtering. 

Table 5. Training Feature Loss Rate, Index Entry Loss Rate and Performance. 

Training Feature Loss Rate (%) Index Entry Loss Rate (%) Time (sec) Space (num) 1-ROCA (%)

 0  0 2834 15754699 0.0055 

10  6 2715 14763087 0.0055 

20 13 2607 13660951 0.0054 

30 21 2481 12511131 0.0053 

40 29 2139 11257499 0.0053 

50 37 2130  9895697 0.0055 

60 46 2094  8467245 0.0053 

70 56 2066  6860210 0.0055 

80 68 2028  5071819 0.0064 

90 81 2006  2984139 0.0066 

 
The details of loss rate and performance are shown 

in Table 5. On average of 30 results, there are four 1-
ROCA performances exceed the best one (0.0055) 
among the participators at the trec07p evaluation. From 
Table 5, we find that the index entry loss rate 
approximates a direct ratio of the training feature loss 
rate, which proves that random-sampling-based feature 
strings selection according to theoretical index entry 
loss rate between 63% and 82% is effective in the online 
situation. 

Above experiments show that 1) the SFITC-R 
algorithm and the compound weight method can 
achieve high classification accuracy in low time 
complexity within the MFL framework; and 2) the SFI 
data structure, with two compressible properties, can 
largely reduce the space complexity of our approach. 

6. Conclusions 

For large-scale email spam filtering, a practical TC 
algorithm must manage to obtain high classification 
accuracy under the restriction of limited time and space. 
Compared with some advanced machine learning TC 
algorithms, our proposed approach makes use of the 
structural feature of email documents and obtains a 
comparable performance. The experimental results 
show that, applying the compound weighted strategy 
within the MFL framework and using the SFI data 
structure to store previous labeled emails, the SFITC-R 
algorithm can achieve the state-of-the-art performance 
at greatly reduced space-time cost, which adapts to 

practical requirements of large-scale email spam 
filtering. Based on the above researches, we can draw 
following conclusions: 

● The multi-field structural feature can support the 
divide-and-conquer strategy. Using an optimal linear 
combination strategy of multi-field learning, the 
straightforward occurrence counting of string features 
may obtain promising classification performance, even 
beyond that of some advanced algorithms. This 
straightforward counting will also bring time reducing. 

● The index data structure has the inherent 
compressible property of raw texts, by which the text 
retrieval approach can be used to treat the text 
classification problem. Each incremental updating or 
retrieving of index has constant time complexity, which 
may satisfy the space-limited and real-time 
requirements of online applications. 

● The ubiquitous power law is a very important 
distribution feature of random events. This paper 
elucidates that the number distribution of feature strings 
follows the power law in email documents, according to 
which we succeed in random-sampling-based feature 
strings selection at the time of online training. 

With the development of mobile computing and 
network communicating, the spam concept is 
generalized to email spam, instant messaging spam, 
short message service spam, and so on. This paper 
proposed filtering approach is more general and can be 
easily transferred to other spam filtering. Further 
research will concern online semi-supervised learning, 
active learning, and personal learning for spam filtering. 
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We will apply large-scale unlabeled data, select 
effective samples for training by mining differences 
among multiple field classifiers of the MFL framework, 
and improve the SFI structure for both global and 
personal labeled text storage. 
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