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Abstract 

Transactions with quantitative values are commonly seen in real-world applications. Fuzzy mining algorithms have 

thus been developed recently to induce linguistic knowledge from quantitative databases. In fuzzy data mining, the 

membership functions have a critical influence on the final mining results. How to effectively decide the 

membership functions in fuzzy data mining thus becomes very important. In the past, we proposed a fuzzy mining 

approach based on the Multi-Objective Genetic Algorithm (MOGA) to find the Pareto front of the desired 

membership functions. In this paper, we adopt a more sophisticated multi-objective approach, the SPEA2, to find 

the appropriate sets of membership functions for fuzzy data mining. Two objective functions are used to find the 

Pareto front. The first one is the suitability of membership functions and the second one is the total number of large 

1-itemsets derived. Experimental comparisons of the proposed and the previous approaches are also made to show 

the effectiveness of the proposed approach in finding the Pareto-front membership functions. 

Keywords: multi-objective optimization, genetic algorithm, fuzzy set, fuzzy association rules, data mining, Pareto 

front. 

1. Introduction 

Data mining is the process of extracting desirable 

knowledge or interesting patterns from existing 

databases for specific purposes [6]. Many types of 

knowledge and technology have been proposed for data 

mining. Among them, finding association rules from 

transaction data is most commonly seen. Most of the 

existing approaches handle items with binary values. 

Transactions with quantitative values are, however, 

commonly seen in real-world applications. Many 
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sophisticated data-mining approaches have thus been 

proposed in this research field [4, 31, 34]. 

As to fuzzy data mining, many approaches have also 

been proposed for mining fuzzy association rules [8, 20, 

25, 27, 28, 33]. The fuzzy mining algorithms developed 

earlier were mainly based on the Apriori algorithm and 

some based on the FP trees was recently developed. 

Fuzzy mining algorithms with multiple minimum 

supports of different items were developed as well [28]. 

In fuzzy data mining, the membership functions 

have a critical influence on the final mining results. 

How to effectively decide the membership functions in 

fuzzy data mining thus becomes very important. Most 

of the previous fuzzy data mining algorithms assume the 

membership functions are already known. Pre-defined 

membership functions are not, however, actually 

suitable in usage. Mining algorithms that can 

automatically derive both the appropriate membership 

functions and the fuzzy rules are thus required. Many 

approaches have thus been proposed for deriving 

membership functions [10, 11, 18, 19, 23, 24]. 

Besides, several criteria may be considered in a real 

application. The multi-objective evolutionary 

algorithms, that are used to find a set of solutions with 

trade-offs among different criteria, are thus very suitable 

for solving such a task [13, 14]. In the fuzzy-control 

field, many approaches have been proposed for tuning 

parameters and learning membership functions [2, 3, 7, 

17]. As to fuzzy mining, Kaya et al. proposed an 

approach that integrated the multi-objective genetic 

algorithm into clustering for fuzzy mining [5]. The 

number of large itemsets and the spent execution time 

were considered as two objective functions to derive 

appropriate membership functions for mining fuzzy 

association rules. Besides, Kaya also proposed an 

approach based on multi-objective genetic algorithms 

for mining optimized fuzzy association rules [26]. He 

defined three objectives, namely strongness, 

interestingness and comprehensibility, to derive 

appropriate membership functions for mining optimized 

fuzzy association rules. We also proposed a fuzzy 

mining approach based on the Multi-Objective Genetic 

Algorithm (MOGA) to find the Pareto front of the 

desired membership functions [9]. 

 In this paper, we adopt a more sophisticated multi-

objective approach, the SPEA2 [35], to find the 

appropriate sets of membership functions for fuzzy data 

mining. SPEA2 is usually regarded as having a better 

effect than MOGA. It adopts a fine-grained fitness 

assignment strategy, a density estimation technique, and 

an enhanced archive truncation method to derive better 

Pareto solutions [35]. Two objective functions are used 

here to find the Pareto front of membership functions. 

The first one is the suitability of membership functions 

and the second one is the total number of large 1-

itemsets derived. The suitability measure is used to 

reduce the occurrence of bad types of membership 

functions. Besides, using the number of large 1-itemsets, 

instead of the number of rules, can achieve a trade-off 

between execution time and rule interestingness. 

Experimental results first show the effectiveness of the 

proposed algorithm in items of Parent fronts and 

number of derived rules. Then, comparison results 

between the proposed and the previous approaches are 

made to show the effectiveness of the proposed 

approach in finding the Pareto-front membership 

functions. There are two main contributions of this 

paper. The first one is that the proposed approach 

provides an enhanced approach for deriving more 

appropriate Pareto front. The second one is that it can 

provide different options in terms of number of rules to 

users for further analysis.  

The remaining parts of this paper are organized as 

follows. The background knowledge of the multi-

objective optimization problem is stated in Section 2. 

The details of the genetic process for membership 

functions and the two objective functions are explained 

in Section 3. The proposed algorithm for mining both 

membership functions and association rules are 

described in Section 4. An example to illustrate the 

proposed algorithm is given in Section 5. Experiments 

to demonstrate the performance of the proposed 

algorithm are stated in Section 6. Conclusions and 

future works are given in Section 7. 

2. GA-Based Multi-Objective Optimization 

Problems 

A multi-objective optimization problem can be defined 

as follows: 

Min/Max y = g(x) = (g1(x), g2(x), …, gm(x)), 

subject to x = (x1, x2, ..., xn) ∈ X and  

y = (y1, y2, ..., ym) ∈ Y, 

where x is the decision vector, y is the objective vector, 

X represents the decision space, and Y represents the 

objective space. In the past, several GA-based 

approaches were proposed to get the solutions. For 
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example, Schaffer proposed the Vector Evaluated 

Genetic Algorithm (VEGA) to solve the multi-objective 

optimization problem [30]. The difference between 

VEGA and the simple genetic algorithm lay in the 

selection strategy. Then, Fonseca et al. proposed a 

modified approach called Multi-Objective Genetic 

Algorithm (MOGA) by using the extended rank-based 

fitness assignment [16]. They also defined three 

relationships among chromosomes, namely inferiority, 

superiority and non-inferiority, which are shown in Fig. 

1 [16]. 
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Fig. 1. Three relationships among chromosomes in MOGA 

As shown in Fig. 1, the first relationship is 

inferiority. For example, since both the objective values 

of node N1 are larger than those of node N2, the latter is 

then said to be inferiority to the former (Fig. 1(a)). On 

the other hand, we can also say that N1 is superiority to 

N2 (Fig. 1(b)). The third relationship is non-inferiority. 

Take Fig. 1(c) as an example in which one objective 

value (x-axis) of node N1 is larger than that of node N3 

and the other one of N1 is smaller. In this case, N1 is said 

to be non-inferiority to N3. The MOGA strategy was 

thus proposed to find the set of non-inferiority solutions, 

also called Pareto optimal solutions or Pareto front. Fig. 

2 explains the three relationships and the Pareto optimal 

solutions. 
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Fig. 2. An example for the Pareto optimal solutions 

The goal of MOGA is to find the non-dominated 

points, also called Pareto optimal solutions. In this 

example, the chromosomes C1, C7, C8, C9 and C10 are 

non-dominated points. Besides, some variants of 

MOGA were also proposed. Two well-known 

approaches are NSGA-II [15] and SPEA2 [35]. Their 

main purpose was to get better Pareto fronts. NSGA-II 

used a fast non-dominated sorting procedure, an elitist 

strategy, and an approach without parameters to achieve 

this [14]. SPEA2 adopted a fine-grained fitness 

assignment strategy, a density estimation technique, and 

an enhanced archive truncation method to derive better 

Pareto solutions [35]. 

3. The SPEA2-based Multi-objective Genetic- 

Fuzzy Mining Approach 

In this paper, we propose a SPEA2-based approach to 

derive the set of non-dominated solutions for fuzzy 

mining problems. The details of the proposed approach 

are described below. 

3.1.  Chromosome Representation 

It is important to encode membership functions as string 

representation for GAs to be applied. Several possible 

encoding approaches have been described in [1, 12, 29, 

32]. In this paper, the set of membership functions for 

an item is encoded as shown in Fig. 3. 
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1
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R j2
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Fig. 3. The set of membership functions for an item Ij 

In Fig. 3, each membership function is assumed to 

be isosceles-triangle and represented by a pair (c, w), 

with c indicating the center abscissa and w representing 

half the span. Rjk denotes the membership function of 

the k-th linguistic term of item Ij. All pairs of (c, w)'s for 

a certain item are concatenated to represent its 

membership functions. Since both c and w are numeric 

values, a chromosome is thus encoded as a fixed-length 

real-number string rather than a bit string. 

Note that other types of membership functions (e.g. 

non-isosceles triangles and trapezes) can also be 
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adopted in our method. For coding non-isosceles 

triangles and trapezes, three and four points are needed 

instead of two for isosceles triangles. Besides, the 

numbers of membership functions for given items can 

be different. 

3.2. Initial Population 

A genetic algorithm requires a population of feasible 

solutions to be initialized and updated during the 

evolution process. As mentioned above, each individual 

within the population is a set of isosceles-triangular 

membership functions. Each membership function 

corresponds to a linguistic term in a certain item. The 

initial set of chromosomes is randomly generated with 

some constraints for forming feasible membership 

functions. 

3.3.  The Two Objective Functions 

Kaya et al. proposed an approach to derive membership 

functions for mining problems [23]. It could get a 

maximum profit (maximum number of large itemsets) 

within an interval of user specified minimum support 

values. The derived membership functions were then 

used to mine fuzzy association rules. In our previous 

work, we have also proposed a genetic-fuzzy approach 

to learn an appropriate set of membership functions for 

mining problems [19]. In that paper, the fitness values 

were evaluated by the numbers of large 1-itemsets over 

the suitability of membership functions. The two factors 

(numbers of large 1-itemsets and suitability of 

membership functions) usually show a trade-off 

relationship. In this paper, we thus consider the mining 

of membership functions and fuzzy association rules as 

a multi-objective optimization problem, in which the 

above two factors are used as two objectives functions. 

A SPEA2-based mining algorithm is thus proposed to 

find the Pareto optimal solutions. The first objective 

function (Obj1) for a chromosome Cq is defined as 

follows: 

)()(1 qq CysuitabilitCObj = , 

where suitability(Cq) represents the shape suitability of 

the membership functions with Cq. Suitability(Cq) is 

defined as: 

)],(_)(_[
1

qjqj

m

j

CfactorcoverageCfactoroverlap +∑
=

 

where m is the number of items. Overlap_factor(Cqj) 

represents the overlap factor of the membership 

functions for an item Ij in the chromosome Cq and is 

defined as: 

∑
≠
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where overlap(Rjk, Rji) is the overlap length of Rjk and 

Rji. Coverage_factor(Cqj) represents the coverage ratio 

of a set of membership functions for an item Ij in the 

chromosome Cq and is defined as: 

,

)max(

)...,,(

1
)(_coverage

1

j

jlj

qj

I

RRrange
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where range(Rj1, Rj2, …, Rjl) is the coverage range of the 

membership functions, l is the number of membership 

functions for Ij, and max(Ij) is the maximum quantity of 

Ij in the transactions. The suitability factor is used to 

reduce the occurrence of the two bad kinds of 

membership functions shown in Fig. 4, where the first 

one is too redundant and the second one is too separate. 
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Fig. 4. Two bad membership functions 

The second objective function is the total number of 

large 1-itemsets in a given set of minimum support 

values {ms1, ms2, …, msh}. It is formally defined as 

follows: 

∑
=

==

h

g

ms

qqq

gLCtotalNumL1CObj
1

12 ||)()( , 

where || 1
gms

qL  is the number of large 1-itemsets 

obtained when the minimum support value is msg. Using 

the number of large 1-itemsets can achieve a trade-off 

between execution time and rule interestingness. 

Usually, a larger number of 1-itemsets will result in a 

larger number of all itemsets with a higher probability, 

which will thus usually imply more interesting 

association rules. In this paper, the proposed approach 

uses the above two objective functions to find 

appropriate Pareto solutions for the genetic-fuzzy 

mining problems. 
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3.4. Fitness Assignment 

The fitness assignment is similar to that used in SPEA2 

[35]. The fitness of a chromosome Cq is calculated by 

using the formula as follows: 

f(Cq) = R(Cq) + D(Cq), 

where R(Cq) is the raw fitness of a chromosome, and 

D(Cq) is the density information of a chromosome. The 

raw fitness is used to exhibit the strength of each 

chromosome, and is defined as follows: 

,)()(
,∑ +∈

=
qjPPjq jSCR

f

 

where the strength value S(j) is the number of solutions 

it dominates of chromosome Cj, and is calculated as 

follows: 

S(j) = |{j | j ∈ P + P ∧ ji f }|, 

where |˙| means the cardinality of a set, + represents 

multiset union and the symbol f  means the Pareto 

dominance relation. In other words, the raw fitness of a 

chromosome is determined by the strength of its 

dominators in both the population P and the archive P . 

Thus, the lower the raw fitness is, the better the 

chromosome is. The density information of a 

chromosome Cq is defined as follows: 

,
2

1
)(

+
=

k
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qCD
σ

 

where σq
k 

is the distance of Cq to its k-th nearest 

chromosome in both the population P and the archive 

P , and k is calculated by NN + . The density 

information is used to distinguish the difference of 

chromosomes which have the same raw fitness. 

3.5. Genetic Operators 

Genetic operators are very important to the success of 

specific GA applications. Two genetic operators, the 

max-min-arithmetical (MMA) crossover proposed in [22] 

and the one-point mutation, are used in the proposed 

approach. Assume there are two parent chromosomes: 

Cu
t 
= (c1, …, ch, …, cz), and Cw

t 
= (c1

’
, …, ch

’
, …, cz

’
). 

The max-min-arithmetical (MMA) crossover 

operator will generate the following four candidate 

chromosomes from the two parents: 
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The parameter d is either a constant or a variable 

whose value depends on the age of the population. The 

best two chromosomes among the four candidates are 

then chosen as the offspring. The one-point mutation 

operator will create a new fuzzy membership function 

by adding a random value ε (between -wjk to + wjk ) to 

the center or to the spread of an existing linguistic term, 

say Rjk. Assume that c and w represent the center and 

the spread of Rjk. The center or the spread of the newly 

derived membership function will be changed to c + ε or 

w + ε by the mutation operation. Mutation at the center 

of a fuzzy membership function may however disrupt 

the order of the resulting fuzzy membership functions. 

These fuzzy membership functions then need 

rearrangement according to their center values. Besides, 

the selection strategy used in the proposed approach can 

be the elitist or the roulette-wheel strategy. 

4. The Proposed Mining Algorithm 

According to the above description, the proposed 

SPEA2-based genetic-fuzzy mining algorithm for 

deriving both membership functions and fuzzy 

association rules is described below. 

 

Notations used in this paper:  

n: the total number of transaction data; 

m: the total number of  items; 

Ij: the j-th item, 1 ≤ j ≤ m; 

|Ij|: the number of fuzzy regions for Ij; 

D
(i)

: the i-th transaction datum, 1 ≤ i ≤ n; 

Rjk: the k-th fuzzy region of Ij, 1 ≤ k ≤ |Ij|; 

vj
(i)

: the quantitative value of Ij for D
(i)

; 

fj
(i)

: the fuzzy set converted from vj
(i)

; 

fjk
(i)

: the membership value of vj
(i)

 in Region Rjk; 

countjk: the summation of fjk
(i)

 for i = 1 to n; 

msg: the g-th minimum support; 

G: the number of generations; 

N: the population size; 

N : the archive size; 

P : the non-dominated (archive) set; 

Cq: the q-th chromosome in the population; 

|| 1
gms

qL : the number of large 1-itemsets obtained by 

chromosome Cq with the minimum support msg; 

R(Cq): the raw fitness of chromosome Cq; 

D(Cq): the density information of chromosome Cq; 

 

The SPEA-based Genetic-Fuzzy Mining Algorithm: 

INPUT: A body of n quantitative transactions, a set of m 

items, each with a number of linguistic terms, a 
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set of minimum support values {ms1, ms2, …, 

msh}, a population size N, an archive size N , a 

crossover rate Pc, a mutation rate Pm, a number 

of generation G and a confidence threshold λ. 

OUTPUT: A set of non-dominated solutions (sets of 

membership functions) with their fuzzy 

association rules. 

STEP 1: Randomly generate a population P of N 

individuals, with each one being a set of 

membership functions for all the m items, 

encode each set of membership functions 

into a string representation according to the 

schema stated in Section 3, and initialize the 

non-dominated (archive) set P  as empty. 

STEP 2: For each chromosome Cq, calculate its two 

objective values, the suitability and the total 

number of large 1-itemsets according to the 

given set of minimum support values {ms1, 

ms2, …, msh}, by the following substeps. 

SUBSTEP 2.1: For each transaction datum Di, i = 1 to n, 

and for each item Ij, j = 1 to m, transfer the 

quantitative value vj
(i)

 into a fuzzy set fj
(i)

 by 

using the corresponding membership 

functions encoded in the chromosome and 

represented as: 

,....
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

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
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




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f
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f  

where Rjk is the k-th fuzzy region (term) of 

item Ij, fjk
(i)

 is vj
(i)

’s fuzzy membership value in 

region Rjk, and l (= |Ij|) is the number of 

linguistic terms for Ij. 

SUBSTEP 2.2: For each item region Rjk, calculate its 

scalar cardinality on the transactions as 

follows: 

∑
=

=

n

i

i

jkjk fcount
1

)( .  

SUBSTEP 2.3: For each Rjk , 1 ≤ j ≤ m, 1≤ k ≤ |Ij|, check 

whether countjk is larger than or equal to the 

set of minimum support values {ms1, ms2, …, 

msh} . If Rjk satisfies the above condition, set 

|| 1
gms

qL  = || 1
gms

qL  + 1, where || 1
gms

qL  is the 

number of large 1-itemsets obtained by using 

the set of membership functions in 

chromosome Cq and the minimum support 

value msg. The second objective value of Cq is 

shown as follows: 

,||)(totalNumL1
1

1∑
=

=

h

g

ms

qq

gLC  

SUBSTEP 2.4: Calculate the suitability value 

suitability(Cq) by using the formula defined in 

Section 3; set it as the first objective value of 

Cq. 

STEP 3: Calculate the raw fitness R(Cq) of each 

chromosome Cq by using following formula: 

∑ +∈
=

qjPPjq jSCR
f,

)()( , 

where the strength value S(j) is the number of 

solutions it dominates of chromosome Cj, and 

calculate as follows: 

S(j) = |{j | j ∈ P + P ∧ ji f }|, 

where |˙ | means the cardinality of a set, + 

represents multiset union and the symbol f  

means the Pareto dominance relation. 

STEP 4: Calculate the density information D(Cq) of 

each chromosome Cq by using following 

formula: 

2

1
)(

+
=

k

q

qCD
σ

, 

where σq
k 

is the distance of Cq to its k-th 

nearest chromosome in both population P and 

archive P , and k is calculated by NN + .  

STEP 5: Set fitness value of each chromosome as 

follows: 

f(Cq) = R(Cq) + D(Cq). 

STEP 6: Copy nondominated chromosomes to 

archive P . In other words, chromosomes with 

their fitness values smaller than one will be 

copied to the archive.  

STEP 7: Execute environmental selection according to 

the number of chromosomes in the archive. 

There are three cases. The first case is if the 

number of chromosomes in the archive | P | 

equals to N , then go to next step. In second 

case, if the number of chromosome in the 

archive is smaller than N , then the best N - 

| P | dominated chromosomes with fitness 

values larger than one are selected from 

previous population and archive. Otherwise, if 

number of chromosomes in the archive 

exceeds N , truncation operator is used to 

reduce the size of archive. At each iteration, 

the chromosome Cq with the smallest σq
k
, 

which is the distance of Cq to its k-th nearest 

chromosome in archive, is removed until | P | 

= N . In case of many chromosomes have the 

same minimum distance, and then the second 
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smallest distance is chosen for removal, and so 

on. 

STEP 8: Use the selection operation to choose 

appropriate individuals from the archive P   to 

form the next generation. Here, the binary 

tournament selection is performed. 

STEP 9: Execute the crossover operation on the 

population. 

STEP 10: Execute the mutation operation on the 

population. 

STEP 11: If the termination criterion is not satisfied, go 

to Step 2; otherwise, do the next step. 

STEP 12: Mine fuzzy association rules from the given 

database and based on the derived 

chromosomes in archive P , where each 

chromosome represents a set of membership 

functions. The fuzzy mining algorithm 

proposed in [21] is then adopted to achieve 

this purpose for each set of membership 

functions. 

STEP 13: Output the archive P  and their corresponding 

fuzzy association rules. 

5. An Example 

In this section, a simple example is given to illustrate 

the proposed multi-objective genetic-fuzzy mining 

algorithm. Assume there are four items in a transaction 

database: milk, bread, cookies and beverage. The 

dataset includes the six transactions shown in Table 1. 

 

Table 1. The six transactions in the example 

TID Items 

T1 (milk, 5), (bread, 10), (cookies, 7), (beverage, 7). 

T2 (milk, 7), (bread, 6), (cookies, 12). 

T3 (bread, 8), (cookies, 12); (beverage, 3). 

T4 (milk, 2); (bread, 5); (cookies, 5). 

T5 (bread, 9). 

T6 (milk, 10), (beverage, 6). 

 

Assume each item has three fuzzy regions: Low, 

Middle and High for simplicity. Thus, three fuzzy 

membership functions must be derived for each item. 

Note that the numbers of fuzzy regions for the items are 

not necessarily the same for the proposed approach. For 

the data shown in Table 1, the proposed mining 

algorithm proceeds as follows. 

STEP 1: P individuals are randomly generated to 

form the initial population. The non-dominated set NDS 

is also initialized as empty. In this example, P is set at 

10. Each individual is thus a set of membership 

functions for all the four items including milk, bread, 

cookies, and beverage. Assume the following ten 

individuals are generated: 

 

C1: 5, 2, 6, 4, 10, 4, 1, 1, 3, 1, 4, 2, 2, 1, 4, 1, 7, 2, 6, 5, 7, 3, 9, 3,  

C2: 5, 1, 7, 3, 9, 3, 1, 1, 9, 1, 10, 1, 5, 2, 6, 5, 7, 5, 1, 1, 3, 1, 4, 1,  

C3: 5, 3, 7, 2, 8, 5, 4, 3, 6, 3, 8, 3, 2, 1, 3, 2, 8, 5, 1, 1, 6, 3, 10, 4,  

C4: 4, 1, 7, 5, 9, 1, 3, 1, 4, 3, 10, 3, 1, 1, 3, 2, 10, 1, 1, 1, 5, 1, 7, 4,  

C5: 3, 1, 6, 2, 9, 4, 7, 3, 8, 2, 10, 1, 4, 1, 5, 2, 7, 3, 3, 2, 5, 2, 7, 3,  

C6: 4, 3, 6, 4, 8, 3, 2, 1, 4, 1, 5, 1, 5, 1, 8, 3, 9, 2, 2, 1, 8, 1, 10, 4,  

C7: 4, 2, 5, 1, 10, 4, 3, 1, 4, 3, 10, 3, 1, 1, 3, 2, 6, 1, 6, 1, 7, 3, 10, 1,  

C8: 4, 1, 6, 1, 9, 4, 3, 1, 4, 3, 10, 2, 5, 1, 7, 4, 9, 4, 1, 1, 2, 1, 4, 1,  

C9: 2, 1, 8, 3, 9, 5, 4, 1, 6, 5, 9, 5, 2, 1, 3, 2, 5, 4, 2, 1, 7, 3, 10, 1,  

C10: 3, 1, 5, 1, 9, 4, 5, 1, 6, 5, 7, 1, 5, 1, 8, 1, 9, 2, 1, 1, 2, 1, 7, 3. 

 

STEP 2: The suitability value and the total number 

of large 1-itemsets in the given set of minimum supports 

values of each chromosome are calculated by the 

following substeps:  

SUBSTEP 2.1: The quantitative value of each 

transaction datum is transformed into a fuzzy set 

according the membership functions in each 

chromosome. Take the first item in transaction T1 using 

the membership functions in chromosome C1 as an 

example. The membership functions for milk in C1 are 

represented as (5, 2, 6, 4, 10, 4). The amount “5” of item 

milk is then converted into the fuzzy set  (1.0/Low + 

0.75/Middle). The results for all the items are shown in 

Table 2, where the notation item.term is called a fuzzy 

region. 

 

Table 2. The transformed fuzzy sets 

TID Fuzzy Set 

T1 
)

.

33.0

.

0.1

.

8.0
(

)
.

0.1
)(

.

0.1
)(

.

75.0

.

0.1
(

HighbeverageMiddlebeverageLowbeverage

HighcookiesHighbreadMiddlemilkLowmilk

++

+  

T2 )
.

0.1
)(

.

0.1
)(

.

25.0

.

75.0
(

HighcookiesHighbreadHighmilkMiddlemilk
+

 

T3 )
.

4.0
)(

.

0.1
)(

.

0.1
(

LowbeverageHighcookiesHighbread

 

T4 )
.

0.0
)(

.

0.1
)(

.

0.0
(

MiddlecokkiesHighbreadLowmilk

 

T5 )
.

0.1
(

Highbread

 

T6 )
.

66.0

.

1
)(

.

0.1
(

MiddlebeverageLowbeverageHighmilk
+

 

Published by Atlantis Press 
      Copyright: the authors 
                   349



Chen et al.
 

 
SUBSTEP 2.2: The scalar cardinality of each fuzzy 

region in the transactions is calculated as the count 

value. Take the fuzzy region milk.Middle as an example. 

Its scalar cardinality = (0.75 + 0.75 + 0.0 + 0.0 + 0.0 + 

0.0) = 1.5. The counts for all the fuzzy regions are 

shown in Table 3. 

 

Table 3. The counts of all the fuzzy regions 

Item Count Item Count 

milk.Low 1.00 cookies.Low 0.0 
milk.Middle 1.50 cookies.Middle 0.0 
milk.High 1.25 cookies.High 3.0 
bread.Low 0.0 beverage.Low 2.2 

bread.Middle 0.0 beverage.Middle 1.66 
bread.High 5.0 beverage.High 0.33 

 

SUBSTEPs 2.3: The suitability value of the 

chromosome C1 can be calculated as 8.38 according to 

the formulas in Section 3.  

SUBSTEP 2.4: The count of any fuzzy region is 

checked against the set of minimum support values. 

Assume the set of minimum support values is {0.08, 

0.09, 0.1, …, 0.17}. Take the minimum support value 

set at 0.08 as an example. Since the count values of 

milk.Low, milk.Middle, milk.High, bread.High, 

cookies.High, beverage.Low and beverage.Middle are 

larger than 0.48 (= 0.08*6), the number of large 1-

itemsets is thus 7. The number of large 1-itemsets for 

the other minimum support values can be similarly 

found. The total number of large 1-itemsets totalL1(C1) 

is thus 69 (= 7+7+7+7+7+7+7+7+7+6). The two 

objective values of the chromosome C1 are thus 8.38 

and 69. The results of all the ten chromosomes are 

shown in Table 4. 

 

Table 4. The suitability value and the totalL1 of each 

chromosome 

Cq (suitability, totalL1) Cq (suitability, totalL1) 

C1 (8.38, 69) C6 (8.51, 52) 
C2 (9.72, 85) C7 (7.79, 67) 
C3 (8.30, 78) C8 (8.36, 58) 
C4 (8.88, 48) C9 (9.98, 68) 
C5 (8.62, 87) C10 (8.09, 66) 

 

STEP 3: The raw fitness R(Cq) of each chromosome 

Cq is calculated. Take chromosome C1 as an example, 

we can know that the chromosome C1 is dominated by 

chromosome C3.  Thus, before calculating the raw 

fitness, the strength value of chromosome C3 is needed 

to be derived. In this example, the strength of 

chromosome C3 is 5. The raw fitness of chromosome C1 

is thus 5. In the same way, the results of other 

chromosomes are shown in Table 5. 

 

Table 5. The raw fitness of each chromosome 

Cj R(Cq) Cj R(Cq) 

C1 5 C6 17 
C2 3 C7 0 
C3 0 C8 12 
C4 21 C9 12 
C5 0 C10 4 

 

STEP 4: The density information D(Cq) of each 

chromosome is then derived. Assume the archive size is 

set at 5, the parameter k is thus 3 ( = (10 + 5)
1/2 ). Take 

chromosome C1 as an example, the distance of third-

nearest chromosome is calculated as 0.083 ( = 1/12.0). 

In the same way, the density information of other 

chromosomes is shown in Table 6. 

 

Table 6. The density information of each chromosome 

Cj D(Cq) Cj D(Cq) 

C1 0.833 C6 0.055 

C2 0.047 C7 0.058 

C3 0.071 C8 0.045 

C4 0.045 C9 0.055 

C5 0.045 C10 0.049 

 

STEP 5: The fitness of each chromosome is then set 

at the summation of its raw fitness and density 

information. The results are shown in Table 7. 

 

Table 7. The fitness value of each chromosome 

Cj f(Cq) Cj f(Cq) 

C1 5.833 C6 17.055 

C2 3.047 C7 0.058 

C3 0.071 C8 12.045 

C4 21.045 C9 12.055 

C5 0.045 C10 4.049 

 

STEP 6: The chromosomes with their fitness values 

smaller than one are copied to the archive. In this 

example, the chromosomes C3, C5 and C7 are copied to 

archive P as non-dominated chromosomes. 

STEP 7: Since the number of chromosome in the 

archive is smaller than five, then first two dominated 
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chromosomes with fitness values larger than one are 

selected from population and archive. Here, 

chromosomes C2 and C10 are selected. 

STEP 8 to 11: The selection operation is then used 

to generate next population from archive. Here, the 

binary tournament selection is performed. Then, the 

crossover and mutation operations are used to produce 

new offspring. If the termination criterion is not 

satisfied, go to Step 2; otherwise, do the next step. 

STEP 12 to 13: The derived chromosomes in 

archive, where each chromosome represents a set of 

membership functions, are used to mine fuzzy 

association rules from the given database and based on 

the fuzzy mining algorithm proposed in [21]. At last, the 

archive P  and their corresponding fuzzy association 

rules are outputted. 

6. Experimental Results 

In this section, experiments made to show the 

performance of the proposed approach are described. 

They were implemented in Java on a personal computer 

with Intel Pentium IV 3.20 GHz and 512 MB RAM. 64 

items and 10000 transactions were used in the 

experiments. The initial population size P is set at 50, 

the archive size is set at 25, the crossover rate pc is set at 

0.8, and the mutation rate pm is set at 0.001. The 

parameter d of the crossover operator is set at 0.35 

according to Herrera et al.’s paper [22] and the set of 

minimum support values is {3%, 4%, …, 13%}. In the 

following subsections, we first give a description of the 

experimental dataset. We then analyze the evolution of 

the Pareto fronts obtained by the proposed approach. 

6.1. Description of the Experimental Datasets 

Two simulated datasets with 64 items and with 10000 

transactions were used in the experiments. One dataset 

followed exponential distribution and another one 

followed uniform distribution. The factors for the two 

datasets included the transaction length, the purchased 

items and their quantities. In the experiments, the 

number (transaction length) of purchased items in a 

transaction was randomly generated in a uniform 

distribution of the range [1, 19] for both the two datasets. 

The purchased items in each transaction were then 

selected from the 64 items in a uniform distribution of 

the range [1, 64] for the uniform dataset and in an 

exponential distribution with the rate parameter set at 16 

for the exponential dataset. Their quantities were then 

assigned from a uniform distribution of the range [1, 11] 

for the uniform dataset and from an exponential 

distribution with the rate parameter set at 5 for the 

exponential dataset. The simulation process was 

repeated until the dataset size was reached. An item 

could not be generated twice in a transaction. 

6.2. The Evolution of Pareto Fronts by the 

Proposed Approach 

The experiments were first made for demonstrating the 

evolution of the Pareto fronts by the proposed approach. 

The evolution of the Pareto fronts of chromosomes in 

the archive along with different generations by the 

proposed approach for two simulation datasets are 

shown in Fig. 5 and 6, respectively. 

 250300350400450500550600
60 70 80 90 100 110 120 130 140Suitability

Total Number of L1 Generation = 0 Generation = 100 Generation = 200Generation = 300 Generation = 400 Generation = 500
 

Fig. 5. The Pareto fronts derived by the proposed approach for 

the exponential dataset with different generations 150200250300350400
60 70 80 90 100 110 120 130 140 150Suitability

Total Number of L1 Generation = 0 Generation = 100 Generation = 200Generation = 300 Generation =400 Generation = 500
 

Fig. 6. The Pareto fronts derived by the proposed approach for 

the uniform dataset with different generations 

From Fig. 5 and 6, we can observe that the solutions 

derived from the two datasets were distributed on the 

Pareto fronts and the final solutions after 500 

generations were better than those in different 

generations. Additionally, we can also found that the 
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derived solutions on a Pareto front are trade-offs 

between the two objectives. It thus depends on the user 

preference to decide which solutions on a Pareto front 

are desired. In order to show the trade-off between the 

two objectives, experiments were then made to compare 

the number of rules derived by using the membership 

functions with the minimum suitability values (in short 

S) and with the maximum total number of large itemsets 

(in short L). The comparison results for the two datasets 

are shown in Fig. 7 and 8. 

 

05001000150020002500300035004000
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Mimimum ConfidencesNumber of rules ms=0.01(L) ms=0.02(L) ms=0.03(L) ms=0.04(L) ms=0.05(L)ms=0.01(S) ms=0.02(S) ms=0.03(S) ms=0.04(S) ms=0.05(S)

 
Fig. 7. The number of rules derived by the proposed approach 

for the exponential dataset  

01002003004005006007008009001000
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Mimimum CinfidencesNumber of rules ms=0.001(L) ms=0.001(L) ms=0.003(L) ms=0.004(L) ms=0.005(L)ms=0.001(S) ms=0.002(S) ms=0.003(S) ms=0.004(S) ms=0.005(S)

 
Fig. 8. The number of rules derived by the proposed approach 

for the uniform dataset  

From Fig. 7 and 8, the following two common 

phenomena could be observed. The first one was that 

the number of rules always decreased along with the 

increase of the minimum confidence, no matter rules 

were derived by the membership functions with the 

minimum suitability values or with the maximum total 

number of large itemsets. The second one was that the 

number of rules derived by the membership functions 

with the minimum suitability value was smaller than 

that by the membership functions with the maximum 

total number of large itemsets. This phenomenon was 

reasonable from the properties of the two objective 

functions. 

6.3. The Comparison Results with Previous 

Approaches 

The experiment was then made for comparing the 

final Pareto front of chromosomes in the archive of the 

proposed approach with the previous approach [9], and 

is shown in Fig. 9. 

 450500550600
65 70 75 80 85 90 95Suitability

Total Number of L1 The Proposed Approach The Previous Approach
 

Fig. 9. Comparison results of the final Pareto fronts for the 

exponential dataset 

From Fig. 9, it is easily to know that the Pareto front 

derived by using the proposed approach is better than 

the previous one.   

At last, experiments were made for showing the 

comparison results in terms of number of rules of the 

proposed approach and the mono-objective approach 

[18]. The results are shown in Fig. 10. 

 Min. sup. = 0.021350 568 22 0 01105 537 6 0 01118 433 6 0 002004006008001000120014001600
0.1 0.2 0.3 0.4 0.5Minimum ConfidencesNumber of Rules ms=0.02(max. Large Itemsets) ms=0.02(Mono-objective approach) ms=0.02(min. Suitability)

 
Fig. 10. The number of rules derived by the proposed 

approach for the uniform dataset 

It could be observed from Fig. 10 that when using 

membership functions with the maximum total number 

of large itemsets to mine rules, the number of rules 

derived by the proposed approach was more than that by 
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the mono-objective approach. On the contrary, when 

using membership functions with the minimum 

suitability, the number of rules derived by the mono-

objective approach was larger than that by the proposed 

approach. Thus, if users have different considerations 

for making decisions, the proposed approach could 

provide appropriate solutions. 

From the experimental results, we thus can conclude 

that the proposed approach is not only effective in 

finding an appropriate set of solutions, but also can 

provide different options to users for further analysis. 

7. Conclusion and Future Works 

The SPEA2 adopted a fine-grained fitness assignment 

strategy, a density estimation technique, and an 

enhanced archive truncation method to derive better 

Pareto solutions [35]. In this paper, we have utilized it 

to propose a more sophisticated multi-objective 

approach to find the appropriate sets of membership 

functions for fuzzy data mining. Two objective 

functions are used to find the Pareto front. They are 

minimizing the suitability of membership functions and 

maximizing the total number of large 1-itemsets, 

respectively. 

Experiments on two simulation datasets were also 

made to show the effectiveness of the proposed 

approach. The results show that the proposed approach 

is effective in finding an appropriate set of solutions. 

Further, the experiments also show that the proposed 

approach can derive better Pareto front than the 

previous one [9]. In the future, we will continuously 

enhance the multi-objective genetic-fuzzy approach for 

more complex problems. 
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