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Abstract

In this paper, information energy metric (IEM) is obtained by similarity computing for high-dimensional
samples in a reproducing kernel Hilbert space (RKHS). Firstly, similar/dissimilar subsets and their cor-
responding informative energy functions are defined. Secondly, IEM is proposed for similarity measure
of those subsets, which converts the non-metric distances into metric ones. Finally, applications of this
metric is introduced, such as classification problems. Experimental results validate the effectiveness of
the proposed method.
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1. Introduction

Similarity measure in reproducing kernel Hilbert
spaces (RKHS) has attracted much attention of re-
searchers from diverse areas such as computer vi-
sion, machine learning and pattern recognition dur-
ing the past few years 1,2. In these applications, a
notion of similarity is induced by computing ker-
nel functions on arbitrary training sample pairs in
input space. However, many similarity measures
are developed based on metric distance under high-

dimensional setting and samples in the RKHS of-
ten violate one or more metric axioms 3,4, this may
impair the performance of machine learning algo-
rithms. Therefore, how to choose a “good” simi-
larity measure is one of the key concerns of these
algorithms.

Previous studies on similarity measure in the
RKHS can be divided into two modes, i.e., metric
distance mode and non-metric distance mode.

In the metric distance mode, distance was devel-
oped based on metrics satisfying the metric axioms.
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Euclidean distance is the most widely used similar-
ity measure, such as inner products 2 in kernel-based
machines. Edit distances, Hamming distance, and
the sophisticated distances are introduced in Ref.5;
information distance is studied in Ref.6. All these
similarity measures are encoded in the so-called ker-
nel matrix.

Although they have been widely used in many
applications, they may violate one or more met-
ric axioms under high-dimensional setting, which
is called non-metric distance 3,4,7,8. As indi-
cated by Cover and Thomas in Ref.9, the pro-
posed information-theoretic based metrics, such as
Kullback-Leibler (KL) divergence, can capture data
structure beyond second order statistics. The KL di-
vergence is often intuited as a distance metric, but it
is not a true metric. Actually, it can be derived from
Bregman divergence 10. It is similar to a metric, but
does not satisfy the triangle inequality or symmetry.
Distance based on these similarity measures often
deviate from the perceptual distance of human be-
ings, and may impair the performance of machine
learning algorithms 11,12,13.

Motivated and inspired by the above works, in
this paper, we introduce informative energy met-
ric (IEM) for similarity measure in the RKHS. Our
analysis suggests that the IEM method can convert
the non-metric problems into metric ones, and it
holds both for Euclidean distance and manifold set-
ting.

The rest of this paper is organized as follows:
Section 2 gives a brief review of preliminaries. Sec-
tion 3 presents the derivation of IEM, including
proof of IEM and the objective function to update
the output coefficient matrix. Performance evalu-
ation of IEM is shown in Section 4 based on the
benchmark problems in the area of projecting visu-
alization and classification. Conclusions based on
the study are highlighted in Section 5.

2. Preliminaries

In this section, we give all the necessary background
material needed for the development of IEM in Sec-
tion 3. We begin with a brief description of notations
for similarity measure.

Given a set of training samples {xi,ci}N
i=1, where

xi ∈X ⊂RN×d, d is dimensionality of the samples, X
is input space, ci ∈ C = {1,2, . . . ,Nc} is class label,
C is class label set, and Nc is the number of classes.
We now make use of a dual notation for the sample
x in the input space, it is written with a single sub-
script xi when its class is irrelevant, index 1 � i � N.
If the class is relevant, assume that we have Jp sam-
ples for pth class, we write xp j, where the class index
1 � p � Nc, and the index within class 1 � j � Jp.

We recall also briefly the notations and lemmas
which can also be found in Ref.14.

Definition 1. (Reproducing Kernel Hilbert Space)
Let X be a nonempty set and H a Hilbert space of
functions: f : X → R. Then H is called a repro-
ducing kernel Hilbert space endowed with the inner
product 〈·, ·〉 if there exists a function k : X ×X → R
with the following properties. (1) k has the repro-
ducing property 〈 f ,k(x, ·)〉 = f (x), for all f ∈ H; in
particular, 〈k(x, ·),k(x′ , ·)〉= k(x,x′). (2) k spans H .

Note that the RKHS uniquely determines k, we
know the following definition using the Mercer’s
theorem in Ref.14.

Definition 2. (Mercer Kernel Map) If k is a kernel
satisfying the Mercer’s theorem, we can construct
a mapping Φ into a space where k acts as an in-
ner product, 〈Φ(x),Φ(x′)〉 = k(x,x′), for almost all
x,x′ ∈ X . Moreover, give any ε > 0, there exist a
map Φn into an N-dimensional inner product space
such that |k(x,x′)−〈ΦN(x),ΦN (x′)〉|< ε .

In practice, we are given a finite amount of sam-
ples x1, . . . ,xN , we do not want to (or are unable to)
analyze a given kernel k analytically, we can still
compute a map Φ such that k corresponds to an inner
product in the linear span of the Φ(xi).

Lemma 1. (Data-Dependent Kernel Map 14) Sup-
pose the data x1, . . . ,xN and the kernel k are such
that the kernel matrix Ki j = k(xi,x j) is positive def-
inite. Then it is possible to construct a map Φ
into an N-dimensional feature space H such that
k(xi,x j) = 〈Φ(xi),Φ(x j). Conversely, given an arbi-
trary map Φ into some feature space H, the matrix
Ki j = 〈Φ(xi),Φ(x j)〉 is positive definite.

This is a kernel map defined from pairwise sim-
ilarities in the RKHS. For the sake of measuring
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the similarity between classes in the feature space,
a kernel-induced distance between data sets in the
input space needs to be defined. It can be expressed
in the entries of the kernel matrix16,

‖Φ(xi)−Φ(x j)‖2

= (Φ(xi)−Φ(x j))
T (Φ(xi)−Φ(x j))

= Φ(xi)
T Φ(x j)−2Φ(xi)

T Φ(x j)+Φ(x j)
T Φ(x j)

= k(xi,xi)+ k(x j,x j)−2k(xi,x j). (1)

As mentioned above, it implies that similarity in
the RKHS can be learned from metric distance.

3. Derivation of IEM

As we have seen in Section 2, by using the kernel
k, similarity measure can be carried out implicitly in
the feature space that Φ maps into, which can have a
very high (maybe infinite) dimensionality. However,
the non-metric distances will lead to inconsistency
and conflict, when the metric violate one or more
metric axioms as in Refs.3,4. So it is necessary to
change this metric distance. This section will give a
novel metric named as IEM in the case that it meets
the metric axioms.

3.1. Problem description

To facilitate understanding, we regard each data
sample in the RKHS as a physical particle experi-
encing force acting on it imposed by an overall “in-
formation energy” of the data set. This idea is sim-
ilar to the Ref.17, the main difference is that we add
a parameter to control the granularity of the simi-
lar/dissimilar subsets which can presents the force
acting on the considering particle. If we were given
a candidate particle yci = Φ(xci), the neighboring
particles can be divided into two subsets

S = {i | yci = Φ(xci), c ∈C, i = 1, . . . ,ks},
F = {l | ypl = Φ(xpl), p ∈C, p 
= c, l = 1, . . . ,kf},

(2)
where S and F are called the similar subset and
dissimilar subset, respectively. ks and kf are the
granularity parameters, which represent the similar
and dissimilar neighboring particles of the candidate

particle. Note that by the above definitions, two par-
ticles can be regarded as similar if they belong to
the same class. However, they may have relatively
big Euclidean distance, which could impair the per-
formance of the learning machines. For example,
Fig. 1(a) shows particles in manifold setting.

In this Figure, we can observe that two particles
are similar to each other with Euclidean distance,
but dissimilar in manifold setting. So we address
this problem with an informative energy criterion,
making the similarity setting become automatic and
adaptive in nature.

3.2. Method deduction

As mentioned before, we have modeled the neigh-
borhoods of the candidate particle. In this section,
we discuss how to induce the proposed metric holds
both for the Euclidean and manifold setting.

For this purpose, we learn a similarity measure
in the RKHS. Considering the candidate particle yci,
the learned distance function tries to put ks similar
particles close together and kf dissimilar particles
far away from each other. Then, the interactions be-
tween pairs of similar or dissimilar particle can be
obtained, which are computed using energy func-
tion proposed following. Actually, similarity be-
tween two praticles in high-dimensional RKHS can
be quantified by their energy, this is so called in-
formative energy. Finally, our metric IEM can be
derived from following three stages.

In the first stage of IEM, we propose two infor-
mative energy functions. The main idea is that we
quantify the amount of information between parti-
cles according to their graph energy 18. Our goal is
to transform the kernel space so that the distance in
the transformed space correlated with the difference
of the labels of particles. So, we need to define the
informative energy.

The graph energy in Ref. 18 is defined as

E(σ) =
1
Z

N

∑
i=1

G(x j − xi)H(x j,xi), (3)

where G(y) = exp

(−yT y
2σ2

)
is Gaussian kernel

function, σ is the kernel width parameter, Z =
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∑N
j=1 ∑N

i=1 G(x j − xi) is a normalization variable. H
is an indicator function, its value is one when the
particles xi and xj are in the same class, otherwise
zero when they are in the different class.

If we were given a candidate particle yci =Φ(xci)
in the kernel space, we define its informative en-
ergy function according to the graph energy model
as Eq. (3). The main difference is that we consider
each sample in the kernel space as a particle, and
pull or push other particles in the transformed space.
This means that the resultant effect of a particle is
the sum of the effects between the particle pairs in
the same or different classes. For each particle we
defined two informative energy functions: similar
and dissimilar energy. The first one is computed as
follows

Ec(yci) =
1
N

Jc

∑
j=1

G(yc j − yci). (4)

Then the dissimilar energy function considering
particles in set F is computed as

Ep
=c(yci) =
1
N

Nc

∑
p=1

Jp

∑
l=1

G(ypl − yci). (5)

These two informative energy functions vary be-
tween zero and one. A high Ec indicates that two
particles in the same class are quite similar. But a
low Ep
=c indicates that two particles in the different
class are quite different. We can use these two val-
ues to quantify the amount of information between
any particles.

In the second stage of IEM, we derive the in-
formative energy model as an objective function.
As mentioned above, we have the simple idea that
Ec(yci) should be as large as possible, and Ep
=c(yci)
should be as small as possible. This can ensure that
separation between the different classes and aggre-
gation within the same classes. Then, the total resul-
tant effect can be computed as

Etotal(y) =
1
N

Nc

∑
c=1

Jc

∑
i=1

Ec(yci)−Ep
=c(yci). (6)

The above equation implies that the optimal
transformation of the kernel space is achieved only

when the first term is maximized and the second
term is minimized. From the definition of the in-
formative energy function, we observe that Ec(yci)
and Ep
=c(yci) are controlled not only by the parti-
cles in the same class but also those in the different
classes. So we add a constrain condition 0 � α � 1
into Eq. (6) and denote ktotal = ks + k f as the to-
tal number of those particles influence the candidate
particle. Then, it can be computed as

α =

⎡
⎢⎣
(

1− Jc

ktotal +1

)2

+
Nc

∑
p=1
p
=c

(
Jp

ktotal +1

)2

⎤
⎥⎦ . (7)

where
Jc

ktotal +1
is a priori probability of particles

(in cth class) in all neighboring particles, so the first
term represents the total effects from other particles
except those in cth class. Simultaneously, the sec-
ond term means the sum of other classes’ individual
effects. In this way, ktotal can be considered as the
number of neighborhood of the candidate particle.
Then we can modify the objective function as

Etotal(y) =
1
N

Nc

∑
c=1

Jc

∑
i=1

αEc(yci)− (1−α)Ep
=c(yci).

(8)
In the third stage, we reformulate the objective

function of Eq. (8) as an instance of semidefinite
programming 19,20 in the following steps.

Step 1: Reformulate the candidate particle in the
kernel space as another form

yci = 〈v,Φ(xci)〉= ∑ j Lk(x j,xci),

where v is a projection vector, L is a coefficient ma-
trix needs to be determined.

Step 2: For simplicity, we denote kh,l =
(∑h k(xh,xi)−∑l k(xl ,x j)), then, similarity measure
for those particles

(yi − y j)
T (yi − y j) = kT

h,lL
T Lkh,l

= kT
h,lMkh,l

= DM(k(xh,xi),k(xl ,x j)).

In this way, we work in term of a new variable
M = LT L. With this change of variable, we can
transform the similarity measure to a coefficient ma-
trix learning problem.
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Step 3: Reformulate Eq. (8). The first term in
Eq. (8) penalizes large distance between each input
and its similar particles. In terms of the coefficient
matrix, it can be given by

ξpull(M) =
1
N

Nc

∑
c=1

Jc

∑
i=1

αEc(yci).

The second term penalizes small distance be-
tween dissimilar particles and can be given by

ξpush(M) =
1
N

Nc

∑
c=1

Jc

∑
i=1

(α −1)Ep
=c(yci).

Then, we combine the two terms ξpull(M) and
ξpush(M) into a single informative function for sim-
ilarity measure learning. The two terms can have
competing effects, a weighting parameter μ ∈ [0,1]
balances these goals

ξtotal(M) = (1−μ)ξpull(M)+μξpush(M). (9)

Generally, the parameter μ can be tuned via cross
validation, though in our experience, the results
from maximizing the informative energy function in
Eq. (9) did not depend sensitively on the value of μ .
In practice, the value μ = 0.4 worked well.

Finally, we introduce a margin E0, it is used
to measure the amount of informative energy when
push away the dissimilar particles. For convenient,
we compute the proportion of the number of dissim-
ilar particles and the total number N. Then, E0 can
be computed as

E0 =
k f

N
,

and the objective function Eq. (9) can be formulated
as a semidefinite programming problem

max
M

(1−μ)ξpull(M)+μξpush(M)+E0,

s.t.

{
(1) ξpull(M)+E0 � ξpush(M),

(2) M � 0.

(10)

While semidefinite programming problem in this
form can be solved by standard solver packages 20,
we can obtain the coefficient matrix M.

3.3. Characteristic of IEM

We show that IEM has some advantages which are
useful for similarity measure and obtain the follow-
ing theorems.

Firstly, we prove IEM meets the metric axioms.

Theorem 2. (Informative Energy Metric, IEM)
Given a feature space H and the informative en-
ergy metric E, E satisfies the metric axioms, for all
x,y,z ∈ H.

Proof. (1) Non-negativity and symmetry.
Without loss of generality, suppose the training

sample x belongs to the cth class, y belongs to the
pth class. We can compute the total informative
energy as Etotal(x,y) = Etotal(x) +Etotal(y) according to
Eqs. (4,5). We can get{

Etotal(x) = αEc(x)+ (1−α)Ep
=c(x),

Etotal(y) = α ′Ep(y)+ (1−α ′)Ec
=p(y).
(11)

Because we only consider two particles x and
y, according to Eqs. (4,5), we know that Ec(x) =
Ep(y) = 1 and α = α ′ = 1/2, so we can rewrite
Eq. (11) to

Etotal(x,y) = 1− Ep
=c(x)+Ec
=p(y)

2
.

From the characteristics of the Gaussian kernel
function in Ref. 16, we know

Ep
=c = Ec
=p = G(x− y),
here 0 � G(x − y) � 1, and G(x − y) = G(y − x).
Then, we can obtain

Etotal(x,y) = 1−G(x− y) = Etotal(y,x) � 0.

(2) Distinguishability.
Assume that x belongs to the cth class, we can

compute its informative energy as
Etotal(x,x) = Etotal(x) +Etotal(x),

where Etotal(x) = αEc(x)− (1−α)Ep(x).
Here, we only consider the candidate particle x, it

has 0 neighborhood in the same or different classes.
Then, from Eq. (7), we know that Jc = 1, Jp = 0,
ktotal = 0 and α = 0. So, Etotal(x) = αEc(x)− (1−
α)Ep(x) is reformulated as Etotal(x) = αEc(x) ac-
cording to Eq. (8). From Eqs. (4,5), Ec = 1, Ep = 0,
we can obtain

Etotal(x,x) = 0.
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(3) Triangle inequality.
Assume that x, y belong to the cth class, z be-

longs to pth class. Because we only consider three
samples here, so we found that Jc = 2, Jp = 1, k = 2.
We can obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Etotal(x,z) =
2G(x− y)

9
− 8G(x− z)

9
− G(y− z)

9
+

11
9
,

Etotal(x,y) =
4G(x− y)

9
− 7G(x− z)

9
− 7G(y− z)

9
+

4
9
,

Etotal(y,z) =
7G(x− y)

9
− G(x− z)

9
− 3G(y− z)

9
+

15
9
.

then we know

Etotal(x,z) � Etotal(x,y) +Etotal(y,z).

In conclusion, IEM meets the metric axioms.

Secondly, we found that different setting of pa-
rameter α will lead to special versions of IEM met-
ric, which are highly related to the popular criterion
mutual information (MI)17. We have the following
theorem.

Theorem 3. Let α in Eq. (7) a constant, when
ktotal = N −1, then our objective function in Eq. (8)
is the same as MI criterion.

Proof. In Ref. 17, MI is computed by Renyi en-
tropy, according to definitions in our method, we can
rewrite the MI computed in Ref.17 as

MI =VIN +VALL −2VBTW , (12)

where the quantities appearing in Eq. (12) are as
follows

VIN =
1

N2

Nc

∑
p=1

Jp

∑
k=1

Jp

∑
l=1

G(ypk − ypl), (13)

VALL =
1

N2

(
Nc

∑
p=1

(
Jp

N

)2
)

N

∑
k=1

N

∑
l=1

G(yk − yl), (14)

VBTW =
1

N2

Nc

∑
p=1

Jp

N

Jp

∑
j=1

N

∑
k=1

G(yp j − yk). (15)

Substituting Eqs. (12), (13) and (14) into Eq. (11),
we can obtain the MI values.

In our IEM, the objective function in Eq. (8) can
be modified by step one in the third stage as

Etotal(M) =
1
N

Nc

∑
c=1

Jc

∑
i=1

αEc(yci)− (1−α)Ep
=c(yci),

(16)
where α is computed as Eq. (7).

When we consider all N −1 particles in the ker-
nel space as neighborhoods of certain particle yci,
this means ktotal = N − 1. Then, we can computed
the parameter in Eq. (7) as

α = 1+

(
Jc

N

)2

+
Nc

∑
p=1
p
=c

(
Jp

N

)2

− 2Jc

N
. (17)

Substituting Eq. (17) into Eq. (16), we rewrite the
objective function as

Etotal(M) =
1

N2

(
E1+E2+E3) ,

where E1, E2, E3 are computed as follows

E1 =
Nc

∑
c=1

Jc

∑
i=1

Jc

∑
j=1

G(yc j − yci),

E2 =
Nc

∑
c=1

(
Jc

N

)2 Jc

∑
i=1

(
Jc

∑
j=1

G(yc j − yci)

+
Nc

∑
p=1
p
=c

Jp

∑
l=1

G(ypl − yci)

⎞
⎟⎠

+
Nc

∑
p=1
p
=c

(
Jp

N

)2 Nc

∑
c=1

(
Jc

∑
i=1

G(yc j − yci)

+
Jp

∑
l=1

G(ypl − yci)

)
,

E3 =−2
Nc

∑
c=1

Jc

N

Jc

∑
i=1

(
Jc

∑
j=1

G(yc j − yci)

+
Nc

∑
p=1
p
=c

Jp

∑
l=1

G(ypl − yci)

⎞
⎟⎠ .
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For E1, it computes informative energy in the
same class, this is the same as VIN in Eq. (13) except
the normalization factor 1/N2, so, E1 =VIN/N2.

For E2, we can find that ∑Jc
j=1 G(yc j − yci) com-

putes informative energy for class c(c 
= p), the other
term ∑Jp

l=1 G(ypl − yci) computes informative energy
for class p(p 
= c). The sum of these two terms
can be merged into one term without considering the
class label. Then, E2 can be modified as

E2 =

(
Nc

∑
p=1

(
Jp

N

)2
)

N

∑
k=1

N

∑
l=1

G(yk − yl).

For E3,

Jc

∑
j=1

G(yc j − yci)+
Nc

∑
p=1
p
=c

Jp

∑
l=1

G(ypl − yci)

computes informative energies for class c(c 
= p)
and class p(p 
= c), they can be merged into one term
as ∑Jc

i=1 ∑N
k=1 G(yk − yci). Then, E3 can be modified

as

E3 =−2
Nc

∑
p=1

Jp

N

Jp

∑
j=1

N

∑
k=1

G(yp j − yk),

substituting E1, E2 and E3 into Etotal(M), we obtain

Etotal(M) =VIN +VALL −2VBTW .

Compare E1, E2 and E3 with Eqs. (13), (14) and
(15), we know that when k = N−1, Etotal(M) is equal
to the value of MI.

Then, the MI criterion is a special case of our
objective function as Eq. (16).

As mentioned above, we can get the same crite-
rion as MI, the main difference is that we can change
the parameter ktotal to obtain the high performance of
similarity measure, and it meets the metric axioms.
This characteristic is especially desirable for kernel-
based methods such as those yield very large kernel
matrices for important feature extraction. Experi-
mental results show that IEM appears promising in
the contexts of projection and classification tasks.

4. Applications of the main result

In this section, using the main result of Section
3, we demonstrate the validity of the proposed ap-
proach. In order to facilitate the comparison, we du-
plicate the main algorithm in Ref.17 by ourselves,
and denote their maximization mutual information
as MMI. We will conduct two experiments on real
benchmark data sets. The kernel width parameter σ
is learned as the method described in Ref.21. Once
the final coefficient matrix M is obtained, it can be
used to low-dimensional visualization and classifier
training. All experiments were run on the platform
of Windows XP with 2.50GHz CPU and 2GB RAM
using Matlab software.

4.1. Low-dimensional projection on manifold

We first evaluate whether our informative energy
metric based feature space transformation method
actually results in a new space that holds both for
Euclidean distance and manifold setting. To this
end, we evaluate whether our method improves vi-
sualization of low-dimensional projection task for
Swiss Roll data.

The Swiss Roll data was used in Isomap and
Kernel-Isomap, we used 2000 samples. In order
to learning the informative energy metric for sim-
ilarity measure, we defined “o” as the first class
(C1) and “x” as the second class (C2). Two ex-
isting dimensional reduction methods are dupli-
cated for comparison: maximization mutual in-
formation (MMI)17 and Kernel-Isomap22. MMI
finds a low-dimensional projection of the data
points that best preserves their nonlinear fea-
tures as measured in the high-dimensional in-
put space. Kernel-Isomap is a manifold learn-
ing algorithm, which extends classical multidimen-
sional scaling (MDS) by considering approximate
geodesic distance instead of Euclidean distance.
The parameter ktotal is set to six, which is also
used as neighborhood parameter in kernel-Isomap.
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(a) Swiss Roll data

(b) projection result by the MMI

(c) projection by the Kernel-Isomap

(d) projection using IEM
Figure 1. Comparison of IEM with existing methods for

the case of Swiss Roll data.

Fig. 1 shows the visualization results on Swiss
Roll data. Fig. 1(a) shows the three-dimensional
Swiss Roll data. We sampled two samples belong
to different classes, which are connected by a line.
These two samples can be considered as similar
samples using Euclidean distance, but they are ac-
tually belong to the dissimilar set. Fig. 1(b) shows
the projection result by the MMI, we can observe
that two samples may be considered as in the same
class, these two classes are highly overlapped. So
we show the projection result by the kernel-Isomap
in Fig. 1(c), which is a nonlinear dimensionality re-
duction method. From Fig. 1(c), we can observe that
kernel-Isomap can find a smooth embedded mani-
fold. Those two samples are separated as far as pos-
sible and can be considered belonging to the dissimi-
lar set. Fig. 1(d) shows projection result by IEM, we
can find that the samples of the first class are pro-
jected onto one line. Those two samples are moved
away and can be useful for classification task.

As mentioned above, we can find that IEM can
preserve the high-dimensional manifold features.

4.2. Performance of classification

In this experiment, we consider the classification
task using the IEM in the RKHS. We use Statlog
data for this problem. The Statlog data is the Statlog
satellite image database cited from the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml),
it has 4435 features for training, and 2000 for test-
ing. Its dimensional is 36 and the number of classes
is six, we randomly sample 1800 from the training
data and use total testing data. Those six classes are
according to the label in Fig. 2, where C1 represents
red soil, C2 is cotton crop, C3 is grey soil, C4 is
damp grey soil, C5 is soil with vegetation stubble,
and C6 is very damp grey soil. This data is one
of the many sources of information available for a
scene. The interpretation of a scene by integrating
spatial data of diverse types and resolutions includ-
ing multispectral and radar data, is a difficult task.

In order to facilitate the visualization, the simi-
larity measure method used here is MMI17 and IEM.
Once the coefficient matrix M is obtained, we can
project test data using this coefficient matrix. Firstly,
we show visualization of these test data in Figs. 2,3.
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From the Fig. 2, we observed that MMI sepa-
rates C2 and C5 but places other four classes almost
on the top to each other, this is the same to the re-
sult in Ref.17. The criterion of IEM is a combination
of representing each class as compactly as possible
and as separated from each other as possible. Fig. 3
has achieved this: all classes are represented as quite
compact clusters. But we should note that C1 is scat-
tered and has small cross parts with other classes.

Fig. 3 shows the classification result of the IEM,
we can find that C2 to C6 classes show better simi-
larity and high aggregation except for C1.

In order to evaluate how those particles trans-
form according to the IEM, we plot the gradient in-
formation of each particle. Fig. 3 shows the result
of MMI, the direction is computed by partial differ-
ential of mutual information to the candidate parti-
cle. From this figure, we may find out why MMI
cannot separate other four classes. The direction of
each particle represents its transfer in the RKHS re-
spect to the input space, it gives the trend of parti-
cle’s aggregation. We can found that the directions
of particles have no regular arrangement except C2,
therefore, C1, C3 to C6 cannot be separated clearly.

For comparison, we computed partial differential
of the energy function to the candidate particle. This
can give the same result as in Fig. 4. Fig. 5 shows
gradient information of the IEM, we observed that
all classes can be separated clearly. From the direc-
tion of C1 in Fig. 4, we find out that particles in
C1 have the tendency toward the within class center,
and C1 has little overlapping area with other classes.
This result is useful when the particle is difficult to
classify. We can predict its potential class label ac-
cording to its move direction in the RKHS.

Computed with the MMI, we can obtain the fol-
low conclusions: (1) MMI can separate the cotton
crop and vegetation stubble, but the other four soil
features cannot be separated well. (2) IEM firstly
separate the cotton crop from other soil features,
the other four soil features are separated well. So
our method can give better separation performance
which is useful for classification task.

Figure 2. Classification result of the MMI

Figure 3. Classification result of the IEM

Published by Atlantis Press 
      Copyright: the authors 
                   205



S.H. Liu et al.

Figure 4. Gradient information of the MMI

Figure 5. Gradient information of the IEM

Finally, we consider the influence of dimension-
ality to the classification performance. Here, we
consider the Isolet data set, it is cited from the UCI
Machine Learning Repository, which contains 6238
examples and 26 classes corresponding to letters of
the alphabet, its dimensionality is 617. We compare
our IEM with three existing methods: large margin
nearest neighbor (LMNN)23, MMI17 and Multiclass
SVM24, kNN is incorporated in the classification
stage in order to compute the final performance. Ta-
ble 1 shows the test error rates on Isolet, we averaged
over 10 runs with random sampling of 2000 training
examples and its original testing samples.

Table 1. Benchmark test error rates on Isolet data

Dimensionality 17 51 85 119 172

LMNN 17.65 7.84 6.64 5.93 5.13
Multiclass SVM - - - - 3.40
MMI 23.25 15.22 12.13 6.45 5.84
IEM 14.00 6.25 5.56 4.83 3.96

From Table 1, we can observe that IEM is com-
parable to the Multiclass SVM. The result of Mul-
ticlass SVM is cited from Ref.23. We also note that
IEM can obtain high classification accuracy under
low-dimensional setting.

5. Conclusions

In this paper, we address the non-metric distance
problem under manifold setting, a new similarity
metric in the RKHS is presented. Based on this new
metric, we show how it can be applied for manifold
setting tasks. Experimental results show its validity.

Other advantages of IEM are

• IEM can extract high order statistics and nonlinear
statistics from data sets. This method holds both
for Euclidean and manifold setting,

• IEM makes a crucial addition to the MMI in
Ref.17. The main difference is that we add a con-
strain condition α , and ktotal is used to set the
value of the constrain condition. Experimental re-
sults show that IEM can give better performance
on manifold setting and Statlog satellite image
database,
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• IEM can be used as a quantification of sample
similarity. It can improve the visual ability of pro-
jection, and can be used for classification task. We
expect that this metric can be used in bioinformat-
ics in future work.

In future work we intend to apply the proposed
method to bioinformatics. We also want to mod-
ify our method to parallel implementations, which
can alleviate the high computational complexity of
semidefinite programming. In addition, how to
choose the parameters used in this method is an in-
teresting topic.
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