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Abstract

This paper focuses on a linguistic-valued temporal logic based reasoning formalism for dynamically mod-
elling and merging information under uncertainty in some real world systems where the state of a system
evolves over time and the transition through states depends on uncertain conditions. We provide forward
and backward reasoning algorithms which, respectively, support simulation and query answering. These
algorithms are then explained through several examples based on Smart Homes applications.
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1. Introduction

Decision-making is an essential component in many
real world systems and has been the subject of re-
search for many years. One of the common prob-
lems is how to make the best possible decision based
on uncertain or incomplete information in dynamic
environments. This problem exists in many appli-
cations, such as smart homes, risk management, dis-
aster monitoring and management, weather forecast,
and stock market analysis. These real world systems
are characterized by uncertainty, where the states
and transition between states are not deterministic

due to various reasons, and temporality, where the
transition between states is dependent not just on
the current state but also on previous states. Solving
decision-making problems in such systems depends
on the formal mechanisms used, and logic is one of
them. To handle both temporality and uncertainty,
some non-classical logic systems have been exten-
sively investigated, e.g., many-valued/fuzzy logic
and temporal logic.

Substantial research has been done to handle un-
certainty (Ref. 1, 2, 3, 4, 5, 6, 7, 8) and temporal-
ity (Ref. 9, 10, 11, 12, 13, 14, 15) through logic ap-
proaches. In real applications, uncertainty and tem-
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porality may co-exist, so the ability to reason about
both time and uncertainty is very important and de-
sirable in a decision support system. For that reason
we have developed a computational system which
can handle both elements.

One approach to decision making under uncer-
tainty and temporality is by combining many-valued
and temporal logics. There is already work in this
approach, which includes (Ref. 16, 17, 18, 19). De-
tailed review of these work can be found in Section
2. In our recent work (Ref. 20), a novel reasoning
framework for decision making under uncertainty
and temporality, which integrates many-valued logic
(mainly focus on Łukasiewicz logic) and tempo-
ral logic (Ref. 21) was presented. Difference to
other proposals, our many-valued approach allows
the consideration of uncertainty not only on states
but also on rules. We adopted a many-valued logic
with truth values in the interval [0, 1] by using the
Łukasiewicz implication operator, i.e., Łukasiewicz
logic L[0, 1] (Ref. 1, 7, 22), where 0 means ’false’
and 1 means ’true’. For the temporal logic part,
we follow the work of (Ref. 21), which provided a
simple stratified causal rules to reason about the dy-
namic aspects of a system with little computational
cost.

Consistently with our previous work, see
(Ref. 20), in this paper we assume the truth-value
degree is taken from a linguistic term set instead of
a numerical value in the interval [0, 1]. This ap-
proach is called a linguistic-valued based approach,
where the symbolic reasoning is focused on linguis-
tic terms. This approach is more natural than a sim-
ple number in [0,1], especially when it is impossible
or unnecessary to obtain more accurate values, and
it also makes the reasoning qualitative in nature. Its
application is beneficial because it introduces a more
flexible framework for representing information in
a more direct and suitable way when it is not pos-
sible to express it accurately. Thus, the burden of
quantifying a qualitative concept is eliminated and
the systems can be simplified. The basic definitions
for syntax, semantic, inference rules, and the related
theorems over the defined logic system is provided
a theoretical foundation on the algorithms that we
have developed.

The paper is organized as follows. In Section 2,
some relevant work is reviewed. In Section 3, two
simple but realistic scenarios are provided. Section
4 gives an overview of our combined propositional
logic system including inference rules. The forward
and backward reasoning algorithms are detailed in
Sections 5 and 6 respectively, along with the corre-
sponding solutions for the scenarios introduced in
Section 3. Section 7 summarizes our contributions.

2. Related Work

Logic is used in most intellectual activity, but is
studied primarily in the disciplines of philosophy,
mathematics, and computer science (Ref. 23). How-
ever, after developing in many years, many ele-
ments have been introduced into logic, such as un-
certainty and temporality. Accordingly classical
logic has also been extended into non-classical log-
ics to handle such different elements, to solve more
specific real world problem, such as fuzzy logic
(Ref. 23, 24, 25, 26, 27, 28) and temporal logic
(Ref. 13, 29, 30, 31), etc.

2.1. Fuzzy Logic

As mentioned previously, uncertainty and temporal-
ity are two important features of decision-making
tasks. Uncertainty means that, due to some rea-
sons, the information available may not be always
accurate, and noise may occur during data trans-
mission. Consequently, the collected information
may be uncertain. To handle the uncertainty through
logic approaches, many works have been done by
researchers such as many-valued logic (including
fuzzy logic and lattice-valued logic), which, among
others, can be referred to (Ref. 1, 2, 3, 4, 5, 6, 7, 25).

Since not all the real decision-making prob-
lems can be represented only with ‘true’ or ‘false’
by logic systems, Łukasiewicz provided the three-
valued (‘true’, ‘unknown’, ‘false’) logic system and
its implication calculi (Ref. 32), which introduced a
new research area for logic, logic with uncertain in-
formation. Fuzzy logic is one of such logic systems
used to handle the uncertain information in decision-
making problem. “Fuzzy logic” provides two differ-
ent meanings, wide (FLw) and narrow (FLn). Ac-
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cording to Zadeh’s work (Ref. 24, 27), it provided
the following useful distinction:“In a narrow sense,
FLn is a logic system which aims at a formaliza-
tion of approximate reasoning. In this sense, FLn
is an extension of many-valued logic, · · · .” Hajek
indicated that the calculi of the many-valued logic
(Ref. 5) is the base of fuzzy logic in the narrow sense
(Ref. 3).

One of very important fuzzy logic (FLn)
branches is the Łukasiewicz truth-functional logic
(Ref. 33). This logic inherits the calculi from
Łukasiewicz implication, and extends it from three
values into [0,1] interval. Łukasiewicz logic is a
well known many-valued logic studied in numerous
papers on fuzzy and many-valued logic. Pavelka
(Ref. 1) incorporated internal truth value in the lan-
guage, established a fuzzy propositional logic sys-
tem whose truth value set is an enriched residuated
lattice and proved a lot of important results about its
axiomatizability. More importantly, he showed that
the only natural way of formalizing fuzzy logic (or
the only axiomatizable fuzzy logics) for truth values
in the unit interval [0, 1] or on a finite chain is by
using the Łukasiewicz implication operator or some
isomorphic forms of it. A logic defined by a seman-
tic is axiomatizable if there is a set of axioms and in-
ference rules which are sound and complete with re-
spect to that semantics, i.e., syntactic truth equals se-
mantical truth. Not only developing the FLn, many
researchers also did their work in Fuzzy Sets Theory
(FST) (Ref. 2, 25, 34, 35).

2.2. Temporal Logic

Temporal logic is one of many mechanisms avail-
able to reason about time. Literature in this
area is vast and we are not aiming to provide
an exhaustive review of this concept here, for
some samples of the various systems available see
(Ref. 9, 10, 11, 12, 13, 14, 15). One well known
system to reason about time is Allen’s Interval Tem-
poral Logic (ITL), and provided seven relations and
their inverses between them (Ref. 29, 30, 36):

1. Be f ore(i1, i2): the end of i1 is previous to the
beginning of i2.

2. Meets(i1, i2): i2 begins exactly when i1 fin-
ishes.

3. Overlap(i1, i2): i1 starts before i2 and i1 fin-
ishes before i2.

4. Starts(i1, i2): i1 starts simultaneously with i2
but it finishes sooner.

5. During(i1, i2): i1 starts after and ends before
i2.

6. Finishes(i1, i2): i1 starts later than i2 but they
finishes at the same time.

7. Equal(i1, i2): i1 starts and finishes at the same
time as i2.

In Allen’s work (Ref. 36), a transitivity table is
provided, which showed how to infer the temporal
relations between time intervals i and k, where there
are relations between i and j and the relation between
j and k from the knowledge base. This basic rela-
tions between intervals used by Allen has been ex-
tended by (Ref. 37), which introduced a new con-
cept called semi-intervals. The transitivity table ex-
tended by the author contained 29 relations.

Another type of temporal logic is based on the
use of temporal operators (Ref. 38):

• X next: represented as©s, which means s has to
hold at the next time state.

• G always: represented as �s, which means s has
to hold at all time states.

• F eventually: represented as ♦s, which means s
has to hold at some time states.

• U until: represented as s U s1, which means s has
to hold until s1 holds.

• R release: represented as s ℜ s1, which means at
the first position in which s is true (if such posi-
tion occurs), s1 ceases to be true; it is required to
be true until release occurs.

One common problem to most of these well
known options is computational complexity, their
expressiveness comes at a cost. The system we pro-
pose in a later section is mainly focused on the op-
erator “next” and is designed to be simple and com-
putationally less demanding.
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2.3. Fuzzy and Temporal Logic

Real world applications often require de combina-
tion of uncertain and temporal reasoning, therefore
researchers have proposed several options that can
accommodate both concepts. One such approach is
the combination of fuzzy logic and temporal logic.

For example, Escalada-Imaz (Ref. 16) provided
a many-value temporal reasoning method which ex-
tended the truth value of a state to indicate the uncer-
tainty of an element for real-time control systems. In
the uncertain part, it used the many-valued calculi
to handle the uncertain information and provided an
interval [0,1] to indicate the truth value degree of
state, where 0 means false and 1 means truth. The
calculation of the truth value degree of the state in
rules should be followed the many-valued calculi.
In temporality part, it implemented a valid period
for state, and suggested that the valid period of con-
clusion part in the rule should only be the interaction
of the valid period in condition part, which is one of
interval temporal logic applications. In this reason-
ing, it assumed that rules are always true, without
any uncertainty, however, in some real world prob-
lems, the provided rules may not always be trusted,
such that, it may occur uncertainty in rules as well
when an expert is unable to establish/predict a pre-
cise correlation between premise and conclusion but
only with degrees of certainty.

Cárdenas Viedma et al. (Ref. 17) extended
temporal constraint logic (TCL) into fuzzy temporal
constraint logic (FTCL) which allows FTCL to han-
dle uncertainty of time representation such as ‘ap-
proximately 90 minutes’, such that, within the im-
plementation of fuzzy set into time representation,
it improves the ability of system for handling the
decision-making problem which contains uncertain
time issue, however, the uncertainty of states and
rules was not the main issue and not addressed in
(Ref. 17).

There are some other combined logic systems for
real-time decision-making problem, such as, Mu-
cientes et al (Ref. 18) suggested a fuzzy temporal
reasoning method for robot control; and Schockaert
and De Cock (Ref. 19) extended classic time in-
terval as used in temporal reasoning into fuzzy-time
interval to make the reasoning system more flexi-

ble, the proposed system is similar to the one in
(Ref. 17), but it provided more mathematical defi-
nitions, lemmas and theorems which built up a the-
oretical foundation.

The brief literature review above shows that
some of decision-making systems combining with
fuzzy logic and temporal logic still have some weak-
ness because they may face to different problems
and requirements. Some of them only considered
the uncertainty of state and extend the truth value of
state and gave the valid time interval for conclusion
part, some of them just focused on the uncertainty
of time issue. However, from the real world expe-
rience, we know that the rule may not always be
true in some special case, such that, the uncertainty
may not only exist in states; it still possibly exists
in rules. How to handle such a problem is one of
the main objectives in this paper. In addition, those
works always considered the numerical truth-value
degree, which also limited the applicability of the
system for qualitative reasoning and decision mak-
ing, this, however, is quite common in human deci-
sion making process.

3. Problem Description: Two Realistic
Scenarios

In this section, two scenarios are presented to illus-
trate the problem considered in this paper. The pro-
posed reasoning framework aims to help deal with
such problem within uncertain and time constrained
situations to make rational decisions.

3.1. Scenario 1: Health Care in Smart Home
Environment

A Smart Home can be described as a house that is
supplemented with technology, for example sensors
and devices, in order to increase the range of ser-
vices provided to its occupants reacting in an intelli-
gent way relies on data gathered by sensors, having
to deal with the storage, retrieval, and processing of
uncertain and time constrained data (Ref. 39).

We assume that a system is used to monitor
the status of a patient to decide whether the pa-
tient’s activities are normal or if help is needed
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(Ref. 40). We consider the following states: inBed
representing the sensor detecting the patient state
is in that specific position, inBedTime specifies
the time the patient is expected to be in bed,
standing/moving/sitting/laying representing that ac-
tivity of the patient has been detected, mt20u is
used to capture the passage of 20 units of time,
safe/undesirable represent the belief that the person
is in one of those situations. carerVisits/carerCalls
represents that currently the carer has been required
to take one of those actions, carerGivesOK is the
input given by the carer through the system inter-
face denoting s/he has checked or assisted the pa-
tient. All of such states and rules given below
will contain a truth value, and we define the truth
value set V = {v0,v1,v2,v3,v4,v5,v6}, which indi-
cates the levels of trust: {v0=false, v1=almost false,
v2=probably false, v3=unknown, v4=probably true,
v5=almost true, v6=true}.

In this scenario, we assume that the status of
the occupant is ‘safe’ and ‘desirable’ at start. It is
bed time, the occupant goes to bed and sit there.
The sensor catches that the occupant sit in bed for
a long time (20 units time setting in this scenario),
which is considered may be an indication of a prob-
lem, then the system will call the carer. After the
carer checked the situation, he/she gives an answer
to the system whether the situation is or not unde-
sirable. We represent this with a sequence of events
and causal rules as follows:

Independent States: ±inBed, ±standing,
±moving, ±sitting, ±laying, ±inBedTime,
±mt20u, ±carerGivesOK, ¬carerVisits,
¬carerCalls

Dependent States:
±sa f e,±undesirable,+carerVisits,+carerCalls

Same-time Rules:

Stage 1:

1. (¬inBed∧ standing→ sa f e),v6

2. (¬inBed∧moving→ sa f e),v6

3. (¬inBed∧ sitting→¬sa f e),v6

4. (¬inBed∧ laying→¬sa f e),v6

5. (inBed∧¬inBedTime→ undesirable),v6

6. (inBed∧ sitting∧ inBedTime→ sa f e),v6

7. (inBed ∧ sitting ∧ inBedTime ∧ mt20u →
undesirable),v6

Stage 2:

8. (¬sa f e→ carerVisits),v6

9. (undersirable→ carerCalls),v6

Next-time Rules:

(10) (¬sa f e∧ carerGivesOK→©sa f e),v6

(11) (undesirable∧carerGivesOK→©¬undesirable),v6

Events:

• occurs(ingr(¬inBed), 1*, v5)
• occurs(ingr(sitting), 5*, v4)
• occurs(ingr(inBed), 5*, v6)
• occurs(ingr(sitting), 7*, v5)
• occurs(ingr(mt20u), 28*, v5)
• occurs(ingr(carerGivesOK), 31*, v6)

Initial Setting:
Ic={(inBed,0,v0), (standing,0,v0), (sitting,0,v0),
(moving,0,v0), (laying,0,v0), (mt20u,0,v0),
(inBedTime,0,v5), (carerGivesOK,0,v0),
(sa f e,0,v6), (undesirable,0,v0),
(carerVisits,0,v0), (carerCalls,0,v0)} and λ = v3.
In this scenario, we wonder whether the system will
call the carer automatically if the system catches that
the patient is not safe or undesirable, and after the
carer visits and provides ‘OK’ information to the
system, the system should reset the status of the pa-
tient back to safe or desirable.

Notice that: (¬inBed ∧ standing → sa f e),v6
represents that the truth value of rule ¬inBed ∧
standing → sa f e is v6; occurs(ingr(¬inBed), 1*,
v5) represents that, there is an event occurs between
time slot 1 and 2, which changes the truth value of
¬inBed into v5, and ingr(¬inBed) is to denote an
ingression to ¬inBed; (inBed,0,v0) represents that,
the truth value of inBed at time = 0 is v0; and λ is
the trigger level.
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3.2. Scenario 2: Cooker Monitoring in Smart
Home Environment

Consider again a scenario where the task is to model
a kitchen monitored by sensors in a Smart Home
system. Let us assume the cooker is on (cookerOn, a
sensor detecting cooker being activated), but the mo-
tion sensor is not activated (¬atKitchen, atKitchen
is a sensor detecting location of the patient in the
kitchen). If no motion is detected after more than
a number n units of time (here to simplify we as-
sume n=3, umt3u), then we consider the cooker is
unattended (cu). In this case, at the next unit of
time, the alarm will be on (alarmOn) to notify the
user. In this scenario, cooker and user are both mon-
itored by sensors, but there may be a problem with
these sensors which can not return accurate infor-
mation about the status of cooker or position of the
user, and some causal relationships may not be al-
ways certain. For example, due to the likely mal-
function of sensor atKitchen, we can only assume
that the patient is in the kitchen with e.g., 80% cer-
tainty, or with ‘high’ confidence. What we want to
know is whether the alarm being on or off can be
automatically inferred under such uncertain and dy-
namic situation. The proposed reasoning framework
aims to help dealing with such uncertain and time
constrained situations to make rational decisions. To
identify the truth-valued level of the status of states,
we still used the 7 tiered truth-value set V given in
Scenario 1.

According to the above description, we can have
the following assumptions for the scenario:
Independent States:
cookerOn,±atKitchen,umt3u
Dependent States:
±cu,±hazzard,±alarmOn,¬umt3u,¬cookerOn
Same-time Rules

Stage 1:

1. (¬atKitchen∧ cookerOn∧umt3u→ cu),v6

2. (¬cookerOn→¬alarmOn),v6

3. (¬cookerOn→¬hazzard),v6

4. (¬cookerOn→¬umt3u),v6

5. (¬cookerOn→¬cu),v6

Stage 2:

6. (cu→ alarmOn),v6

7. (cu→ hazzard),v6

Next-time Rules

(8) (alarmOn→©(¬cookerOn)),v6

Events:

• occurs(ingr(atKitchen), 0*, v5)
• occurs(ingr(cookerOn), 0*, v5)
• occurs(ingr(¬atKitchen), 1*, v5)
• occurs(ingr(umt3u), 4*, v5)

Initial Setting:
Ic ={(cookerOn,0,v0), (atKitchen,0,v0),
(umt3u,0,v1), (cu,0,v1), (hazzard,0,v1),
(alarmOn, 0, v1)} and λ = v3.
This scenario is used to test whether the system will
turn on the alarm and shut down the cooker automat-
ically if the cooker is unattended.

4. Outline of Linguistic-valued Temporal
Propositional Logic Systems

This section briefly outlines the formal linguistic-
valued temporal propositional logic framework as
introduced in (Ref. 39, 41), only some necessary
concepts and notations are reviewed, more details
please referred to (Ref. 20).

4.1. Syntax and Semantics

Following the notations given in (Ref. 21), we
assume a set of atomic states, denoted as S, and
s1,s2, · · · ,sn ∈ S. We also assume a set of rules,
denoted as R, characterizing relationships amongst
states of the system. We provide Q = S∪R to refer
to as the full set of all states and rules. Each atomic
state contains two status, each positive atomic state s
being paired with its negation ¬s. s1∧s2 denotes the
(non-atomic) state holds if and only if s1 and s2 both
hold. SI denotes the set of the independent atomic
states which does not depend on other states and SD

Published by Atlantis Press 
      Copyright: the authors 
                   178



A LTR System and its Application to the Design of an Intelligent Environment

denotes the set of the dependent atomic states. An
independent state can only be initiated by the occur-
rence of initiating events. We also propose a set of
time slot, denoted as T, and t1, t2, · · · , tn ∈ T , and ev-
ery time slot is independent to each other. In this
system, it only considers two kinds of rules:

Same-time rules: s1∧ s2∧·· ·∧ sn→ s and
Next-time rules: s1∧ s2∧·· ·∧ sn→©s,

where each si is an atomic state and s ∈ SD. s1 ∧
s2∧·· ·∧ sn→ s represents the influence of s1∧ s2∧
·· ·∧ sn over s, and s1∧ s2∧·· ·∧ sn→©s represents
delayed (next time) influence of s1 ∧ s2 ∧ ·· · ∧ sn
over s. Same-time rules are required to be stratified,
which means they are ordered in such a way that
the states in a rule are either independent or depen-
dent on states which are heads of rules in previous
levels of the stratification, see more details on this
in (Ref. 21). Time is represented as a discrete se-
ries of atomic instances, labelled by natural numbers
(Ref. 20).

The semantic definition follows a universal alge-
braic point of view, as in (Ref. 1, 7, 22).

Definition 1. Let X be a set of propositional vari-
ables, TY = V ∪¬,→ be a type with ar(¬) = 1,
ar(→) = 2 and ar(a) = 0 for every a ∈ V . The
propositional algebra of the many-valued proposi-
tional calculus on the set of propositional variables
is the free T algebra on X and is denoted by LP(X)
(Ref. 20).

Note that V and LP(X) are the algebras with the
same type TY, where TY = V ∪¬,→. Moreover,
note that ∧, ∨, and ⊗ can all be expressed by ¬ and
→, so p∧q, p∨q, p⊗q ∈ LP(X) if p,q ∈ LP(X). In
addition, notice that Q = S∪R⊆ LP(X).

Definition 2. Let T be a time set and V be a truth
value set, if a mapping γ : LP(X)×T → V satisfies
the following properties:

1. For any α ∈V , t ∈ T , γ(α, t) = α;

2. γ is a propositional algebra homomorphism
with respect to the first argument;

3. For any t1, t2 ∈ T , if t1 6= t2, then γ(∗, t1) 6=
γ(∗, t2), where * means any state belong to S.

Then γ is called a temporal valuation of LP(X).

Definition 3. Let p ∈ LP(X), and α ∈ V . If there
exists a temporal valuation γ such that γ(p) > α at
time t, then p is said to be α-satisfiable at time t. If
γ(p)> α for every temporal valuation γ of LP(X) at
time t, then p is said to be valid with the truth-value
level α at time t. If α is equal to the maximum value
of V at time t, then p is valid in time t.

4.2. Łukasiewicz Linguistic Calculi and
Temporal Logic

In this paper, we present a reasoning framework for
decision making under uncertainty and temporal-
ity, which integrates fuzzy logic (mainly based on
Łukasiewicz linguistic truth-value logic) and tem-
poral logic (LTL, mainly based on the work in
(Ref. 22)). Different from other research works,
this reasoning scheme allows the consideration of
uncertainty not only on states but also on rules.
We apply the linguistic computational symbolic ap-
proach, acts by direct computation on linguistic val-
ues (Ref. 41, 42, 43, 44, 45), indicates that the set
of linguistic truth value as V and v0,v1, · · · ,vm ∈ V .
Łukasiewicz logic is applied because of its axiomati-
zability. According the truth-value algebra is called
as Łukasiewicz linguistic truth-valued implication
algebra and is defined as follows (Ref. 41).

Definition 4. Let V = {vi}, where i = 0, · · · ,m−
1,m, be a finite and totally ordered linguistic term
set. Any label, vi, represents a possible value for a
linguistic variable. Moreover, L must have the char-
acteristics below:

1. The set is ordered: vi 6 v j if i6 j;

2. There is a negation operator: (¬vi) = v j such
that j = m− i;

3. There is a maximization operator:
Max(vi,v j) = v j if vi 6 v j;

4. There is a minimization operator:
Min(vi,v j) = vi if vi 6 v j;

5. There is an implication operator, : →: V ×
V → V defined by vi → v j = vmin(m,m+ j−i),
where i, j ∈ {0, ...,m};
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6. There is a product operator (called
Łukasiewicz product): : ⊗ : V ×V → V de-
fined by vi⊗ v j = vmax(0,i+ j−m).

(V,6,→,¬), in short V, forms an algebra called as
Łukasiewicz linguistic truth-valued implication al-
gebra (Ref. 41).

Notice that, we say vk = vi→ v j = vm+ j−i, which
means that for a linguistic value vk, where k = m+
j− i, vi,v j,vk,vm ∈V and i, j,k = 0,1, · · · ,m.

The temporal logic element applied in our rea-
soning framework is simpler than those approaches
cited above. We follow the work of (Ref. 21), which
provided a simple stratified causal rule.

4.3. Inference Rules for Reasoning Algorithms

This section explains how reasoning with uncer-
tainty in a dynamic system is performed in our
system. The definitions below cover all the pos-
sible ways the system can use to compute the
value of a state based on other states and incom-
ing events (which can also alter the truth value of
states). Assume that s1,s2, ...,sn ∈ S, t1, t2, ..., tm ∈ T ,
v0,v1,v2, ...,vr ∈V , and s1∧s2∧ ...∧sn→ s, s1∧s2∧
...∧sn→©s∈R, and set the truth value of state si to
be vi, and the truth value of rule s1∧ s2∧ ...∧ sn→ s,
and s1 ∧ s2 ∧ ...∧ sn →©s to be vτ and vδ respec-
tively.

Definition 5. Same-time Rule (Rs):
(s1∧ s2∧ ...∧ sn→ s, vτ )

which means that if s1 and s2 and ... and sn holds,
then the truth-value level stating that s holds at the
same time slot is vτ .

Definition 6. Same-Time Linguistic-Valued Tem-
poral Modus Ponens Rule (s-LTMP):

((s1, t,v1), ...,(sn, t,vn)),(s1∧ s2∧ ...∧ sn→ s,vτ)

(s, t,vα ⊗ vτ)

where vα = Min(v1,v2, ...,vn),vτ ∈V .

Definition 7. Backward Same-Time Linguistic-
Valued Temporal Rule (s-BLTR):

Query(s, t,vβ ),(s1∧ s2∧ ...∧ sn→ s,vτ)

(Min(s1, t,vr−τ+β ), · · · ,Min(sn, t,vr−τ+β ))

where vβ ,vτ ,vr ∈ V , vβ 6 vτ and vr is the maximum
value in V.

Definition 8. Next-time Rule (Rn):
(s1∧ s2∧ . . .∧ sn→©s, vδ )

which means that if s1∧ s2∧ . . .∧ sn holds, then the
truth-value level stating that s holds at the next time
slot is vδ . The symbol ‘©’ indicates that the change
on the truth value of state s will be delayed and take
effect in the next time unit.

Definition 9. Next-Time Linguistic-Valued Tem-
poral Modus Ponens Rule (n-LTMP):

((s1, t,v1), ...,(sn, t,vn)),(s1∧ s2∧ ...∧ sn→©s,vδ )

(s, t +1,vα ⊗ vδ )

where vα = Min(v1,v2, ...,vn),vδ ∈V .

Definition 10. Backward Next-Time Linguistic-
valued Temporal Rule (n-BLTR):

Query(s, t,vβ ),(s1∧ s2∧ ...∧ sn→©s,vδ )

(Min(s1, t−1,vr+β−δ ), ...,Min(s,t−1,vr+β−δ ))

where vβ ,vδ ,vr ∈ V , vβ 6 vδ and vr is the maximum
value in V.

Unlike dependent states, independent states can
only be initiated by the occurrence of the initiating
events. We write (Ingr(s), t,vα) to denote an ingres-
sion to s, at t, with the truth-value vα ∈V .

Definition 11. Assume events occur instantly and
an instant between t and t + 1 is denoted as t*.
Occurs(Ingr(s), t*,vα) is used to express an event
occurrence such as:

Occurs(Ingr(s), t*,vα)↔ (s, t,vβ )∧ (s, t +1,vα),

where s ∈ SI and vα ,vβ ∈V .

Definition 12. Event Occurrence Rule (EOR):

(s, t−1,vβ ),Occurs(Ingr(s), t*,vα)

(s, t,vα)

Definition 11 and 12 provide a calculus for event,
such that, while an event occurs, then the truth value
of state should be changed by EOR.

Definition 13. (Persistency rule) An atomic state
is said to follow the persistency rule if there is no
event or rule that can be applied to affect the truth
value of state s at time t, and at time t + 1, it inher-
its the same truth value as that one at time t, i.e.,
(s, t,vβ )→ (s, t +1,vβ ) , where s ∈ S and vβ ∈V .
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Definition 14. Forward Persistency Rule (FPR):

(s, t−1,vβ ),Persistence(s, t−1,vβ )

(s, t,vβ )

The FPR is used to handle the state which is not
affected by any event or rule in a specific time slot,
such that, from the inference rule, we can see that it
just inherits the truth value from the previous time
slot.

Definition 15. Backward Persistency Rule
(BPR):

Query(s, t,vβ ),Persistence(s, t−1,vβ )

Min(s, t−1,vβ )

From the above definitions, there are four differ-
ent forward Modus Ponens inference rules and three
different backward inference rules in our logic sys-
tem. At a meta-logical level the following priority
applies in their application:

• Forward: EOP >> s−LT MP >> n−LT MP >>
FPR,

• Backward: EOP>> s−BLT R>> n−BLT R>>
BPR

which means they are considered from left to right
until one can be applied.

4.4. Logical Calculus

According to the definition of the Łukasiewicz lin-
guistic truth-valued implication algebra, s-LTMP
and n-LTMP, it shows that if we have a rule
(s1 ∧ s2 ∧ ...∧ sn → s,vτ), and we also know vα =
Min(v1,v2, ...,vn),vτ ∈ V , where v1,v2, ...,vn is the
truth value of s1,s2, ...,sn at time t, then according to
the Łukasiewicz linguistic truth-valued implication
algebra, the truth value of s should be vα ⊗ vτ , and
such calculi process we called it forward reasoning
calculi. However, according to s−BLT R and n−
BLT R, what it requires is that, we have known the
result (vβ ) of the conclusion (s) and the rule is given
(s1∧s2∧ ...∧sn→ s,vτ), then we want to know what
is the feasible condition vα = Min(v1,v2, ...,vn) of
the rule to match such case, then this calculi process

is called backward reasoning calculi. Hence, we
have the following theorem for the backward reason-
ing calculi according to the backward calculation of
Łukasiewicz linguistic truth-valued implication al-
gebra to support such calculi process:

Theorem 1. Suppose <V = {v0,v1, . . . ,vm},∧,∨,¬,
→,⊗ > is a Łukasiewicz implication algebra on a
finite chain truth value set V, vα ,vβ ,vθ ∈ V , and
vα ⊗ vβ = vθ , where vα is the truth value of condi-
tion (body of rule), vβ is the truth value of rule, and
vθ is the truth value of queried state (head of rule).
Then we can have vα 6 vm−β+θ and vθ 6 vβ .

Proof.

1. According to the definition 4, we know that

vθ = Max{v0,vα+β−m},

so if we only consider the index calculation,
then we have

θ = Max{0,α +β −m}.

Such that,

θ = { 0, i f ,α +β −m6 0
α +β −m,otherwise

If α + β −m 6 0, then θ = 0, then α + β −
m−θ 6 0. Hence α 6 m−β +θ ;

If α +β −m> 0, then θ = α +β −m.
Hence α = m−β +θ ;

Therefore, α 6 m−β +θ .

2. Because vα ⊗ vβ = vθ 6 vα ∧ vβ , so vθ 6 vβ .

Within the definition of inference rules, the
Łukasiewicz linguistic truth-valued implication al-
gebra and its backward reasoning calculi, we could
have the definition of the deduction for our reason-
ing as below:

Definition 16. Let A ∈ FV (LP(X)) be a fuzzy
premise set, and C ∈ LP(X). An α-temporal deduc-
tion of C from A is defined as follows:
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1. At a specific time t, an α-deduction of C from
A at time t, denoted as (ω, t), is a finite se-
quence in the following form:

(ω, t) : (C1, t,α1),(C2, t,α2), . . . ,(Cn, t,αn),

where Cn =C, αn = α . For each i, 16 i6 n,
Ci ∈ LP(X), αi ∈V , and

(a) If Ci ∈ LP(X) and αi = A(Ci) at time t;
or

(b) If there exist j,k < i, such that Ci =
s− LT MP(C j,Ck) and αi = α j ⊗αk at
time t.

(c) If there exists an α-deduction of C from
A at t, then denoted it as A `(t,α) C.

2. If there exists a finite sequence in the follow-
ing form:

(ω, t) : (C1, t,α1),(C2, t,α2), . . . ,(Cn, t,αn),

where Cn =©C, αn = α . For each i, 16 i6
n, αn = α , and αi ∈ V . If i 6= n, (Ci, t,αi) is
the same as the above same time process, and
for i = n,

(a) If C ∈ LP(X) and α = A(C) at time t+1,
or,

(b) If there exist j,k < n, such that Cn =
n− LT MP(C j,Ck) and αn = α j⊗αk at
time t+1.

Then it is called an α-deduction of C from A
at time t+1, denoted it as A `(t,α)©C.

3. In case there is no event or rule changes the
truth value of a state at time t.

(a) If there is an event Occurs(C, (t-1)*, α),
where C ∈ LP(X) and α = A(C), oc-
curs between time t-1 and time t, then
C ∈ LP(X) and α = A(C) at time t.

(b) If C ∈ LP(X) and C is not taken effect
by the same-time rule, next-time rule, or
event occurring, and α = A(C) at time t-
1, then it should follow Persistence rule,
such that, we will have C ∈ LP(X) and
α = A(C) at time t.

Here we set Ded(A)(C) = ∨{α;A `(t,α) C} =
∨{B(C); B can be deduced from A at time t}.

4.5. Soundness and Completeness Theorems

Theorem 2. Soundness: Let A∈FV (LP(X)), α ∈V ,
and C ∈ LP(X). If there exists an α-temporal deduc-
tion of C from A in the following form:

(C1, t,α1),(C2, t,α2), . . . ,(Cn, t,αn),

where Cn =C or©C, αn = α . For each i, 16 i6 n,
Ci ∈ LP(X), and αi ∈V , then for any temporal valu-
ation γ in LP(X), γ satisfies A at time tn implies that
γ(C)> α at time tn.

Theorem 3. Completeness: Let A ∈ FV (LP(X)),
α ∈ V , and C ∈ LP(X). If C is an α-logical con-
sequence of A at time t, then there exists an α-
temporal deduction of C from A in the following
form:

(C1, t,α1),(C2, t,α2), . . . ,(Cn, t,αn),

where Cn =C or©C, αn = α . For each i, 16 i6 n,
Ci ∈ LP(X), and αi ∈V .

According to the soundness and completeness
theorems, it shows that although the system is sim-
ple, it is sound and complete, such that, both of them
provide a theoretical foundation for us to implement
such a system into a program (e.g. Prolog).

The above soundness and completeness theorem
mainly provided a support for the forward deduc-
tion, based on it, we have the soundness theorem for
backward reasoning calculi given as follow.

Theorem 4. (Soundness Theorem for Backward
Reasoning Calculi) Suppose we have sets of inde-
pendent states (SI), dependent states (SD), same-
time rules (Rs), next-time rules (Rn), events (E), ini-
tial setting (Ic), time (T) and truth value levels (V),
then we define S = SI ∪SD, and FL = SI ∪SD∪Rs∪
Rn ∪ Ic ∪E. Let A ∈ FL, s ∈ S, t ∈ T and vα ∈ V .
If s is an vα -logical consequence of A at time t
(Query(s, t,vα)), then there exists an vα -temporal
deduction of s from A as following form:

(s1, t1,vs1),(s2, t2,vs2), · · · ,(s1, tn,vsn)
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where Cn = s or©s, tn = t, and vsn = vα . For each
i, 16 i6 n, si ∈ S, vsi ∈V .

Proof. (Similar proof in (Ref. 20))

As the continuation of work (Ref. 20, 39), the
aim of this paper is to provide an executable reason-
ing algorithm, includes forward and backward rea-
soning algorithms, for prediction and enquiry pur-
pose, for decision-making system to solve the real-
world decision making problem. Within this sys-
tem, it should be able to solve the dynamic decision
making problem which contains uncertain states and
rules. We would like to build up a generic algorithm,
which allows users insert their owned problem and
situation and returns a reliable result which may lead
the most acceptable choice.

The reasoning system is actually a linguistic
truth-valued approximate reasoning system based on
a linguistic-valued logic in which the truth degree
of an assertion is a linguistic value in Łukasiewicz
linguistic-valued algebra. For example, in daily life,
when people are asked to assess the degree of a
person being “Old”, they usually give a verbal an-
swer like very or quite true rather than a numeri-
cal answer such as 0.3 or 0.6. A key insight be-
hind the linguistic-valued logic scheme is that we
can use natural language to express a logic in which
the truth values of propositions are expressed as lin-
guistic value, such as using true, very true, less true,
false, etc. instead of a numerical scale. It is expected
that such an approach could reduce approximation
errors that could be caused in quantification into nu-
merical values and also will treat vague information
in its true format, i.e., achieve reasoning with words.

5. Forward Reasoning Algorithm

Our forward reasoning algorithm allows the user to
consider a knowledge base, including states, rules,
events, and an initial setting. With such input, the
system will strictly follow this knowledge base by
time to calculate all the possible results and to list
them in a table as the output. Through the forward-
ing reasoning algorithm, users can simulate their as-
sumptions for decision-making problems, or to pro-
vide real data to the system to predict the possible
outcome of a real problem. This function provides a

way for users to verify their assumptions, or predict
possible results, which could help them with their
decision-making.

The classical forward reasoning algorithm for
stratified causal theory (Ref. 21) only provides two
possible statuses for a state: true or false, and it
also assumes that all the rules in the knowledge base
are equally true. This section extends the classical
forward reasoning algorithm into a linguistic-valued
one which allows users to do the prediction with
uncertain information, attached both to states and
rules.
Input:

• a stratified set of same-time rules (Rs),
• a set of next-time rules (Rn),
• a set of truth value V with r level V =
{v0,v1, ...,vr−1},

• an initial setting (Ic), which are specified by deter-
mining (si,0,vi) with si ∈ SI , vi ∈V and (r j,0,v j)
with r j ∈ R, v j ∈V ,

• an event occurrence list (E), which is a set of for-
mulae in the form Occurs(Ingr(s), t*,vi).

Output: a history of the values of all states up to a
time t.

We say a rule is live if it can be applied. A thresh-
old λ is assumed and used to determine if a state has
supportive evidence of holding (when its degree of
truth is in [λ ,vr−1]) or not (when its degree of truth
is in [v0,λ )). We compute the resulting history as
follows:

1. At t = 0, set all the truth value of states as the
declaration in Initial Setting. Apply any live
same-time rules under the order of increasing
stratification level. Once all possible same-
time rules were applied, then apply any next-
time rule.

2. For t = 1,2, .3,

(a) For each Occurs(Ingr(s), (t-1)*, vi) that
arrives, if (s, t − 1,v j) holds then assert
(s, t,vi), where vi,v j ∈V .

(b) For each independent state s, if (s, t −
1,vi) holds and (s, t,v j) was not as-
serted, then assert (s, t,vi). This is

Published by Atlantis Press 
      Copyright: the authors 
                   183



Z. Lu, J. Augusto, J. Liu, H. Wang

called ‘applying persistence’ to the state
s, where vi,v j ∈V .

i. For k=1, 2, 3, , apply any live same-
time rule of Stage k

ii. Apply persistence: For any co-k-
dependent state s, if (s, t − 1,v j)
has not been asserted, and (s, t −
1,vi), then assert (s, t−1,vi), where
vi,v j ∈V .

(c) Apply any live next-time rule.

Example 1. The algorithm given above provides
a methodology of simulation. We now apply such
algorithm into the scenarios in Section 3. Consider
the scenario 1, suppose the user wants to know the
projection of values into the future for this scenario
until t = 33, then the system will return the results
shown in the Table 1. We explain this results below:

Explanation:

t = 0: According to the initial setting, the truth value
of inbedTime and safe should be v5 and v6, the
rest should be set to v0.

t = 1: Since nothing happens, so all the truth value
of states should be kept the same as in t = 0
according to the persistency rule.

t = 2: occurs(ingr(¬inBed), 1*, v5), then the truth
value of inBed should be v1, the change of
inBed does not trigger any rule, so the rest of
states keeps the same value as in t = 1, by the
persistency rule.

t = 3: Since nothing happens, all the truth value of
states should be kept the same as in t = 2 ac-
cording to the persistency rule.

t = 4: Since nothing happens, all the truth value of
states should be kept the same as in t = 3 ac-
cording to the persistency rule.

t = 5: Since nothing happens, all the truth value of
states should be kept the same as t = 4 ac-
cording to the persistency rule.

t = 6: Event occurs(ingr(inBed), 5*, v6) and oc-
curs(ingr(sitting), 3*, v4) occur, then the sta-
tus of inBed is changed into v6 by EOR
and the truth value of sitting is changed
to be v4. Such changes activate the rule
(inBed ∧ sitting∧ inBedTime→ sa f e,v6), so
according to the s-LTMP, we have the
Min{vinBed ,vinBedTime,vsitting} = v4 and vr =
v4, then the truth value of safe should be
v4⊗ v6 = v4. All other states remain the same
as in t = 5.

t = 7: Since nothing happens, all the truth value of
states should be kept the same as in t = 6 ac-
cording to the persistency rule.

t = 8: occurs(ingr(sitting), 7*, v5), so it changes the
truth value of sitting to be v5. Such change
does activate the rule (inBed ∧ sitting ∧
inBedTime → sa f e,v6), such that, the truth
value of safe should change into v5 by s-
LTMP. The rest of states remain the same as
in t = 7.

From t = 9

to t = 28: Since nothing changes during these time slots,
all the status of states remains the same by the
persistency rule.

t = 29: According to occurs(ingr(mt20u), 28*, v5),
then the truth value of mt20u is v5. Since
(inBed ∧ sitting ∧ inBedTime ∧ mt20u →
undesirable,v6) is triggered, then the sta-
tus of undesirable is changed into v5 by
s-LTMP. Similarly, for (undersirable →
carerCalls,v6), the truth value of carerCalls
should changed into v5. The rest remains the
same as in t = 27.

t = 30: Since nothing changes during these time slots,
all the status of states remains the same by the
persistency rule.

t = 31: Since nothing changes during these time slots,
all the status of states remains the same by the
persistency rule.

t = 32: There is an event, occurs(ingr(carerGivesOK),
31*, v6), then the status of carerGivesOK
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Table 1. Scenario 1 by Forward Reasoning
0 1 2 3 4 5 6 7 8 ... 29 ... 32 33

inBed v0 v0 v1 v1 v1 v1 v6 v6 v6 ... v6 ... v6 v6

standing v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v0 ... v0 v0

moving v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v0 ... v0 v0

sitting v0 v0 v0 v0 v0 v0 v4 v4 v5 ... v5 ... v5 v5

laying v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v0 ... v0 v0

inbedTime v5 v5 v5 v5 v5 v5 v5 v5 v5 ... v5 ... v5 v5

mt20u v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v5 ... v5 v5

safe v6 v6 v6 v6 v6 v6 v4 v4 v5 ... v5 ... v5 v5

undesirable v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v5 ... v5 v1

carerVisits v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v0 ... v0 v0

carerCalls v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v5 ... v5 v5

carerGivesOK v0 v0 v0 v0 v0 v0 v0 v0 v0 ... v0 ... v6 v6

is set to be v6 by EOR. Such change ac-
tivates a next-time rule, (undesirable ∧
carerGivesOK → ©¬undesirable,v6), then
according to n-LTMP, the truth value of
¬undesirable is v5, because the truth value of
¬undesirable is equal to v5⊗ v6 = v5. Such
that the truth value of undesirable can be rep-
resented as vundesirable = vmax− v¬undesirable =
v(6−5) = v1 at t = 33.

t = 33: Since a next-time rule activated at t = 32, then
the truth value of undesirable change into v1.
The rest remains the same as in t = 32.

This simulation shows all the procedure over time,
in case the user only wants to know the process until
t = 33, the simulation is stopped at t = 33 and pro-
vides a table which shows the result more clearly.

Example 2. Consider scenario 2, suppose the user
wants to know the simulation of this scenario until
t = 6, then the system will return the result as in Ta-
ble 2.

Table 2. Scenario 2 by Forward Reasoning
0 1 2 3 4 5 6

cookerOn v0 v5 v5 v5 v5 v5 v1

atKitchen v0 v5 v1 v1 v1 v1 v1

umt3u v1 v1 v1 v1 v1 v5 v1

cu v1 v1 v1 v1 v1 v5 v1

hazzard v1 v1 v1 v1 v1 v5 v1

alarmOn v1 v1 v1 v1 v1 v5 v1

Explanation:

t = 0: According to the initial setting, we
have (cookerOn,0,v0), (atKitchen,0,v0),
(umt3u,0,v1), (cu,0,v1), (hazzard,0,v1),
(alarmOn,0,v1), then the truth value of
cookerOn, atKitchen, umt3u, cu, hazzard and
alarm are set to be v0, v0, v1, v1, v1, and v1.

t = 1: Since occurs(ingr(atKitchen), 0*, v5) and
occurs(ingr(cookerOn), 0*, v5), then the truth
value of both atKitchen and cookerOn is set
to be v5, but neither of them triggers any rule,
then the rest of states remain the same status
as in t = 0 by the persistency rule.

t = 2: For occurs(ingr(¬atKitchen), 1*, v5), then we
have the truth value of atKitchen is back to v1,
and the rest keeps the same as in t = 1.

t = 3: Since nothing changes during these time slots,
all the status of states remains the same by the
persistency rule.

t = 4: Since nothing changes during these time slots,
all the status of states remains the same by the
persistency rule.

t = 5: According to the event occurs(ingr(umt3u),
4*, v5), then the truth value of
umt3u is changed to be v5 by EOR,
and rule (1) is activated. Since
Min(vcookerOn,v¬atKitchen,vumt3u) = v5, and the
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truth value of rule (1) is v6, the truth value
of cu is v5 ⊗ v6 = v5 at t = 5 by s-LTMP.
Since the change of cu, then it triggers rules
(6) and (7), which changes the truth value
of alarmOn and hazzard into v5 by s-LTMP
also. The change of alarmOn also triggers the
next-time rule (8), such that we should have
the truth value of cookerOn to be v1 at t = 6
by n-LTMP.

t = 6: Since the next-time rule (8) was triggered at
t = 5, then we have (cookerOn, 6, v1), the
rules (2), (3), (4) and (5) are activated, and
we have the truth value of umt3u, cu, hazzard,
and alarmOn changed back to v1 by s-LTMP.

From the above two scenarios, we can see the for-
ward reasoning algorithm will search time by time,
such that, it provides a full result of all states from
t = 0 to the time specified by the users.

Notice that, we assume that the uncertainty could
also exist in rules, if we change the uncertain value
associated with a rule, the final result may be differ-
ent, some examples follow.

Example 3. Assume the truth value of rule
¬cookerOn→ ¬cu is v5, then the final result will
be as presented in Table 3.

Table 3. An Example with Uncertainty of Rule(5) in Scenario 2
0 1 2 3 4 5 6

cookerOn v0 v5 v5 v5 v5 v5 v1

atKitchen v0 v5 v1 v1 v1 v1 v1

umt3u v1 v1 v1 v1 v1 v5 v1

cu v1 v1 v1 v1 v1 v5 v2

hazzard v1 v1 v1 v1 v1 v5 v1

alarmOn v1 v1 v1 v1 v1 v5 v1

Example 4. Assume the truth value of rule
¬kitchen∧ cookerOn∧ umt3u→ cu is v5, then the
final result should be as presented in Table 4.

Table 4. An Example with Uncertainty of Rule(1) in Scenario 2
0 1 2 3 4 5 6

cookerOn v0 v5 v5 v5 v5 v5 v2

atKitchen v0 v5 v1 v1 v1 v1 v1

umt3u v1 v1 v1 v1 v1 v5 v2

cu v1 v1 v1 v1 v1 v4 v2

hazzard v1 v1 v1 v1 v1 v4 v2

alarmOn v1 v1 v1 v1 v1 v4 v2

The two examples above show that although
there is only one rule containing uncertainty com-
pared to the original setting, the result could be dif-
ferent. In example 3, since the truth value of rule (5)
changed into v5, it only affect the final output of cu.
However, for the second example, although it only
changes the truth value of rule (1), such change has
an effect in several states. According to these two
examples, we can see that, the uncertainty of rules
play a very important role in our system. While set-
ting up such uncertainty of rules in real world prob-
lems, we must be very careful to avoid large amount
of information loss.

6. Backward Reasoning Algorithm

This section explains the process used to answer
specific queries from users in our reasoning sys-
tem. Sometimes, users may only want to focus on
some particular states under certain specific condi-
tions. In those circumstances, using forward reason-
ing, which fully explores the evolution process of
the problem will incur in unnecessary computation.
Hence, a backward reasoning algorithm can be used
more effectively to trace the particular state without
exploring the whole searching space.

The backward reasoning algorithm takes a query
as a starting point and then reason backwards in time
from the goal to the facts that sustain the conclu-
sion. The advantage of this strategy is that focused
by a goal (a specific query) it only explores part of
the Knowledge Base (KB) which is related and nec-
essary to answer the query, such that it avoids the
system exploring the whole Knowledge Base which
is computationally inefficient. It leads the whole
searching process and is more accurate and efficient
than the forward reasoning mode. The cost of saving
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time depends on the type of KB. Some have many
small trees because there are many rules which are
not connected with each other, some KBs generate
few bigger trees because many rules are interlinked
with each other.

To explain the backward reasoning algorithm,
we first introduce three main concepts, Supporting
Tree (ST), Activation time list of ST (AcTimes), and
searching process.

6.1. Supporting Trees

In this section, a tree-like representation of the
Knowledge Base will be given and the example of
how to build a tree will also be provided.

Definition 17. A supporting tree of state s (STs)
should include the following properties:

• The head of the tree is the queried state (s).
• All the states in the leaves are independent states.
• The states in the same level is in ‘AND’ relation-

ship.
• The link between two different levels is a rule, and

‘parent’ is the head of the rule, whereas, ‘children’
is the body of the rule.

This can be defined informally: Each Query(s, t,v)
has associated one or more ST with s ∈ SD, all non-
leave nodes belong to SD and leave nodes belong to
SI .

s
PPPP��

����
s1 · · · sn

HHH
���

s
′
1 · · · s

′
n

For each

s
HHH
���

s1 · · · sn

it means there is r ∈ R, such that, s1∧·· ·∧ sn→ s.

Example 5. Same-time Rule Tree Structure. Sup-
pose s1,s2,s3,s4,s5,s6 ∈ S, and we have a truth value
set V. Assume that we have the following rules,
(s1 ∧ s2 → s3,vβ1), (s3 ∧ s4 → s5,vβ2), and (s5 →

s6,vβ1), then we can express it as the following sup-
porting tree structure:

T={(s1∧ s2→ s3,vβ1), (s3∧ s4→ s5,vβ2),
(s5→ s6,vβ1)},

which can be represented as in the following figure:
s6

s5
cc##

s4 s3
ee%%

s2 s1

Same-time Rule Tree Structure

Example 6. Next-time Rule Tree Structure. Sup-
pose s1,s2,s3,s4,s5,s6 ∈ S, and we have a truth value
set V. Assume that we have the following rules,
(s1∧s2→©s3,vβ1), (s3∧s4→©s5,vβ2), and (s5→
©s6,vβ1), then we can express it as the following
supporting tree structure:

T={(s1∧ s2→©s3,vβ1), (s3∧ s4→©s5,vβ2),
(s5→©s6,vβ1)},

which can be represented as in the following figure:

s6
HHH
���

s5
HHH
���

s4 s3
cc##

s2 s1

Next-time Rule Tree Structure
So, with the definitions of the tree structure of the

same-time rule and next-time rule, then we can ex-
press the ST with both same-time rule and next-time
rule.

Example 7. Same-time Rule and Next-time Rule
Tree Structure. Suppose s1,s2,s3,s4,s5,s6 ∈ S, and
a truth value set V. Assume that we have the follow-
ing rules, (s1 ∧ s2 → s3,vβ1), (s3 ∧ s4 →©s5,vβ2),
and (s5 →©s6,vβ1), then we can express it as the
following supporting tree structure:

T={(s1∧ s2→ s3,vβ1), (s3∧ s4→©s5,vβ2),
(s5→©s6,vβ1)},

which can be represented as in the following figure:
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s6
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s2 s1

Same-time Rule and Next-time Rule Tree Structure

6.2. Activation Time List

The list of activation times when there are event oc-
currences can be used to show the search on mean-
ingful times only. To create AcTimes list, it needs to
know two parts of the Knowledge Base: the list of
the independent states in ST and the event list in the
Knowledge Base. We say the independent states in
ST are the activation points of ST because ST is only
activated by those independent states, every time the
truth value of those independent states changes, then
the specific ST is activated. Therefore, with the list
of independent states of specific ST and the event
list, we can know the activation time of that ST. We
will use the following terminology:

‘Obtain list AcTimes of Activation Times’ means
AcTimes is the decreasing order list that is obtained
from merging the decreasing ordered lists of acti-
vation times for STs and ST¬s, denoted as AcTimess
and AcTimes¬s For example if the rules in STs are
triggered by events occurring at 3, 1 and 5 then this
forms a list [5, 3, 1] and if the rules in ST¬s are trig-
gered by events occurring at 2, 2 and 5 then this
forms a list [5, 2, 2]. The result of AcTimes list is
[5, 5, 3, 2, 2, 1].

‘t becomes the next available time closest to time
in AcTimes’ means t is made max(AcTimes) and that
time is extracted from the AcTimes list. In the previ-
ous example t = 5 and the remaining AcTimes list is
[5, 5, 3, 2, 2, 1]. Notice that, the initial setting time
should always be included in the activation time list,
in the previous example, if we assume that the ini-
tial setting time is t = 0, then the final outcome of
the list AcTimes should be [5, 3, 2, 2, 1, 0].

6.3. Detailed Backward Reasoning Algorithm

Suppose there is a query about s given as
Query(s, t,vα), then:

Step 1

(a) Form all trees,

(b) Find those trees supporting s is above
threshold and those trees supporting s is
below threshold,

(c) According on whether the winner ST has
same sign than the query, or not, then re-
turns ‘true’ or ‘false’, respectively

(d) If there is more than one ST winner,then
choose one according to a domain de-
pendent or domain independent heuris-
tic.

Step 2

(a) Collect the list IS of independent states
of ST;

(b) Create the list AcTimes of ST by using
the list IS and events from the Knowl-
edge Base;

(c) Use s as start, and search ST backwards
until it reaches activation points (inde-
pendent states) of ST;

Step 3: Return the answer of the query.

With such basic idea and structure of the algo-
rithm, we can build the full backward reasoning al-
gorithm as follows.

Notation: suppose that we want to know whether
Query([¬]s, t,vα) is true or not (i.e., whether
([¬]s, t,vβ ) : vβ > vα or not). Here we use [¬]s as
an abbreviation for s or ¬s. We represent with λ a
vi ∈ L, one of many possible linguistic values which
is considered the minimum level of credibility for
a proposition (a ‘credibility threshold’). For a tree
to be activated each rule (s1 ∧ s2 ∧ ·· · ∧ sn → s,vτ)
or (s1∧ s2∧ ·· ·∧ sn→©s,vδ ) in the tree should be
such that for all si : (si, t,vβi),∈ L, vθ = Mini(vβi)>
vr+α−τ > λ or vθ = Mini(vβi)> vr+α−δ > λ respec-
tively, i = 1, · · · ,n (in fact assume vθ = Mini(vβi)),
to find the suitable vθ supporting a given state s
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such that Query([¬]s, t,vα) is true, it requires vα >
vθ ⊗ vτ following the n-LTMP rule, it leads to the
condition that is vθ > vr+α−δ .

Notice that same-time rules are requested to be
cycle free and ‘stratified’. Each cycle generated by a
query at time t will have a finite number of iterations
until they are evaluated at 0. Another thing needs to
be noticed is that if the supporting tree is only made
of one independent state (use s as an example), then
the ST should only be the state itself, which means
STs = [s].

The full algorithm is:
Input:

• the sets of independent and dependent states: SI ,
SD

• a set of non-cyclic Same-Time Rules, Rs

• a set of Next-Time Rules, Rn

• a set of truth value degree V, where V =
{v1,v2, · · · ,vr}

• a set of facts called initial conditions (Ic) provides
the truth values of states in SI ∪SD at time=0

• a set of known events, E, describing state ingres-
sion

• a credibility threshold λ

• Query([¬]s, t,vα)

Output:
whether Query([¬]s, time,vα) is true or not and an
explanation for the answer.

1. IF ([¬]s, time,vβ )∈ Ic or occurs(ingr([¬]s),(time−
1)*,vβ ) ∈ E

THEN IF vβ > vα

THEN answer ‘true’ and give fact as expla-
nation.
ELSE answer ‘false’ and give fact as expla-
nation.

2. ELSE (Query([¬]s, time,vα) must be inferred
by deduction, possibly by persistency rule)

Obtain the sets of trees STs and ST¬s

Obtain list IS of Independent States for
the sets of STs or ST¬s

Obtain list AcTimes of Activation Times
for the sets of STs or ST¬s

Set t = Max(AcTimes) and t 6 time
Select the first STs or ST¬s from the sets
of trees STs or ST¬s

REPEAT
(a) IF STs∪ST¬s 6= /0

(i) find a main rule in STs or ST¬s

A. IF r: (s1 ∧ s2 ∧ ·· · ∧ sn →
[¬]s,vτ) ∈ Rs and vτ > vα

THEN
* for each si ∈ SI:

Query(si, t,vθ ) where vθ =
vr+α−τ , or

** for each sd ∈ SD:
Query(sd , time,vθ ) where
vθ = vr+α−τ

B. IF r:(s1 ∧ s2 ∧ ·· · ∧ sn →
©[¬]s,vδ ) ∈ Rn and vδ > vα

THEN
* for each si ∈ SI:

Query(si, t ′,vθ ) where t’ is
max(AcTime 6 time-1) and
vθ = vr+α−δ , or

** for each sd ∈ SD:
Query(sd , time − 1,vθ )
where vθ = vr+α−δ

(ii) IF [¬]s can be proved true from
a tree
THEN answer ‘true’ [‘false’] and
use the tree as the explanation
ELSE THEN SELECT next STs
or ST¬s from the sets of trees STs
or ST¬s

(b) ELSE THEN Query([¬]s, t”,vα),
where t” = max(AcTime < t)

UNTIL ([¬]s can be proved)

Notice that, according to our definitions, if the
truth value of rules (vτ or vδ ) is smaller than the
queried value (vα ), then the reasoning system will
consider result from these rules as false by default.

Theorem 5. Termination of all queries to the back-
ward reasoning algorithm is guaranteed.
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Proof.
1. Basic Case: Query(s,0,vα) is answered by

the Ic.

Hypothesis: assume for t > 0, it always fin-
ishes (t is a finite number). Then for time =
t +1 (time is finite),

2. Query(s, time,vα) the algorithm can proceed
only as in any of the following cases:

(a) There is an event from E, which
is Occur(ingr([¬]s),(time− 1)*,vβ ), if
vβ > vα , then answer ‘true’, otherwise,
answer ‘false’ and the algorithm termi-
nates.

(b) There is a same-time rule

s1∧ s2∧·· ·∧ sn→ s,vτ

because same-time rules are cycle-free
and stratified, then there are no loops,
therefore, each ST will be finite and the
leaves of that tree can be checked for sat-
isfaction through (1) or (2b).

(c) There is a next-time rule

s1∧ s2∧·· ·∧ sn→©s,vδ ,

the answer will depend on queries,
Query(si, t ′,vθ ) if si ∈ SI , where
t ′ = Max(AcTimes 6 time − 1), or
Query(si, time− 1,vθ ) if si ∈ SD, where
i = 1,2, · · · ,n and vθ = vr+α−δ and by
the induction hypothesis they all finish.

(d) Neither (a), (b), or (c) applies,
then assumes that the last occur-
rence of an event that changed s
occurred in the past, the value of
Query(s, time,vα) = Query(s, t”,vα),
where t” = Max(AcTimes).

Notice both (c) and (d) always change the truth value
of states at an earlier time. Hence, if there is no ex-
plicit data, then the algorithm eventually reaches 0
where the query answer is provided by Ic. Reach-
ing 0 can not be jumped over as time in our system
is discrete and always jumped to a legal decreas-
ing time, where Occurs(si, t*,vβ ) until it eventually
reaches 0 and stops decreasing.

6.4. Application of the Algorithm to a Practical
Case

In this section, we apply the backward reasoning al-
gorithm to the scenarios mentioned in Section ??.

Scenario 1: the user wants to know what will be
returned as feedback about the following queries:

• Is it probably the case the patient is in bed at
time=6?

• Is it highly possible the patient is safe at time=4?

To answer the questions given above, we have
the following queries for each question:

1. Query(inBed,6,v4)

2. Query(sa f e,4,v5)

1. For the first query, the algorithm asks to
search the event list in Step(1), then we
have an event occurs(ingr(inBed), 5*, v6),
we know that v6 > v4, which means that the
system will return the result as ‘true’, given
occurs(ingr(inBed),5∗,v6).

2. For the second query, by Step(1), there is no
event indicating. either safe or ¬sa f e occurs
at time=3*. In Step(2), we build up the fol-
lowing supporting trees of safe and ¬sa f e:
STsa f e = {T 1,T 2,T 3,T 4,T 5} and ST¬sa f e =
{T 6,T 7} where:

T1=[¬inBed∧ standing→ sa f e,v6].
T2=[¬inBed∧moving→ sa f e,v6].
T3=[inBed∧ sitting∧ inBedTime→ sa f e,v6].
T4=[(¬inBed ∧ sitting → ¬sa f e,v6), (¬sa f e ∧
carerGivesOK→©sa f e,v6)].
T5=[(¬inBed ∧ laying → ¬sa f e,v6), (¬sa f e ∧
carerGivesOK→©sa f e,v6)].
T6=[¬inBed∧ sitting→¬sa f e,v6].
T7=[¬inBed∧ laying→¬sa f e,v6].
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• Obtain the STsa f e = T 1, then create the IS =
[¬inBed,standing], according to the event list,
we have AcTimes = [2,0]. So, at Step(i), search
the main rule of T 1 and go to Step(A). Since
(¬inBed∧ standing→ sa f e,v6) ∈ Rs and v6 > v5
at Step(A), and because ¬inBed and standing are
independent states, Step(B*), produces queries
Query(¬inBed, 2, v5) and Query(standing, 2, v5).
• For ¬inBed, an event occurs at time=1*,

occurs(ingr(¬inBed), 1*, v5), so the answer to
this query is ‘true’.

• Since Query(standing, 2, v5) returns ‘false’,
given (standing,0,v0) and no event changes
that, then it does not support (standing, 2, v5).
The searching process is shown as Table 5.

Table 5. The Searching Process of T1
0 1 2 3 4

inBed v1(< v5?)
standing v0 v0(> v5?)
moving
sitting
laying

inbedTime
mt20u
safe (> v5?)

undesirable
carerVisits
carerCalls

carerGivesOK

• Then the system should obtain STsa f e = T 2, which is
not successful for similar reasons.

• Obtaining STsa f e = T 3, then it creates IS =
[inBed,sitting, inBedTime] and AcTimes = [2,0], and
searches the main rule of T 3: (inBed ∧ sitting ∧
inBedTime→ sa f e,v6) ∈ Rs, but v6 > v5, and since
inBed, sitting and inBedTime are independent states,
Step(B*), produces queries Query(inBed, 2, v5),
Query(sitting, 2, v5) and Query(inBedTime, 2, v5).
• Since Query(inBed, 2, v5) returns ‘false’, given

occurs(ingr(¬inBed),1∗,v5) and no event changes
that, then it does not support (inBed, 2, v5). So T3
can not support that (sa f e,4,v5). The searching pro-
cess is given as Table 6.

Table 6. The Searching Process of T3
0 1 2 3 4

inBed v1 v1(> v5?)
standing
moving
sitting
laying

inbedTime
mt20u
safe (> v5?)

undesirable
carerVisits
carerCalls

carerGivesOK

• If we consider instead the system obtains STsa f e =
T 4, then the list of independent states is IS =
{inBed,sitting} and the activation time list is
AcTimes = [2,0]. The main rule of T 4 is (¬sa f e∧
carerGivesOK →©sa f e,v6) ∈ Rs. In Step(B). Since
v6 > v5, and carerGivesOK is independent state, it
creates a new query Query(carerGivesOK,2,v5) at
Step(B*); because ¬sa f e is a dependent state, then it
creates a new query Query(¬sa f e,2,v5) at Step(B**).
• For Query(carerGivesOK,2,v5), there is no event

to consider in Step(1) about carerGivesOK or
¬carerGivesOK.

• In Step(2), since ±carerGivesOK are inde-
pendent states, from the event list and Ic,
we can infer the latest change of carer-
GivesOK is (carerGivesOK,0,v0) ∈ Ic. So,
Query(carerGivesOK,2, v5) returns ‘false’.

Since Query(carerGivesOK,2,v5) is ‘false’, then T 4
can not support that (sa f e,4,v5). The searching pro-
cess is shown as Table 7.

Table 7. The Searching Process of T4
0 1 2 3 4

inBed
standing
moving
sitting
laying

inbedTime
mt20u
safe (6 v1?) (> v5?)

undesirable
carerVisits
carerCalls

carerGivesOK v0 v0 (> v5?)
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• The procedure to obtain STsa f e = T 5 is similar to
STsa f e = T 4, which can not support (sa f e,4,v5) either.

• If we consider ST¬sa f e = T 6 to prove
Query(sa f e,4,v5) is false, we just need to prove that
Query(¬sa f e,4,v2) is true.
After obtaining ST¬sa f e = T 6, then the independent
state list should be IS = [¬inBed,sitting] and the acti-
vation time list is AcTimes[2,0]. So, by using the main
rule of T 6, (¬inBed ∧ sitting→¬sa f e,v6), and given
v6 > v2 we use Step(A). Since, both ¬inBed and sitting
are independent states, by Step(A*), we have two new
queries: Query(¬inBed,2,v2) and Query(sitting,2,
v2).

• For Query(¬inBed,2,v2), by Step(1) there is no
event about ¬inBed or inBed. Since ±inBed are in-
dependent states, according to the event list and Ic,
the latest change is so occurs(ingr(¬ inBed), 1*, v5),
and v5 > v2 such that, it returns ‘true’.

• For Query(sitting,2,v2), according to the Ic, we
have (sitting,0,v0) ∈ Ic, by Step(1), it returns
‘false’.

Since Query(sitting,4,v2) returns ‘false’, then T 6 can
not support (¬sa f e,4, v2). The searching process is
shown as Table 8.

• The procedure for obtaining ST¬sa f e = T 7 is similar
to ST¬sa f e = T 6, which can not support (¬sa f e,4,v2)
either.

Table 8. The Searching Process of T6
0 1 2 3 4

inBed v1 (< v4?)
standing
moving
sitting v0 (> v4?)
laying

inbedTime
mt20u
safe (6 v4?)

undesirable
carerVisits
carerCalls

carerGivesOK

• Since no tree supports Query(sa f e,4,v5) or
Query(¬sa f e,4,v2), the system investigates whether
there is an event earlier on which can influence this
state, in the absence of such evidence, it reaches 0,
when, according to Ic, we have (sa f e,0,v6) ∈ Ic, so it
supports Query(sa f e,4,v5) by persistency rule.

Such that, the system will return the final result is:
‘true, by (sa f e,0,v6) ∈ I′c.
Scenario 2: the user wants to know what will be
returned as feedback about the following queries:

1. Is the cooker probably off at time=1?

2. Is the cooker probably unattended at time=5?

To answer the questions given above, we have the fol-
lowing queries:

1. Query(¬cookerOn,1,v4)

2. Query(cu,5,v4)

1. For the first query, at Step (1), there is no event
about ¬cookerOn or cookerOn at time = 1. At
Step(2), we obtain the ST¬cookerOn = T 1 and
STcookerOn = T 2, such that:

T1=[(¬atKitchen ∧ cookerOn ∧ umt3u →
cu,v6), (cu→ alarmOn,v6),
(alarmOn→©(¬cookerOn),v6)]
T2=[cookerOn]

We create IS = {¬atKitchen,cookerOn,umt3u},
obtain the activation time list AcTimes = [1,0],
then set t = 1.

• Select T1 as the main tree and the main rule
of T1 is (alarmOn → ©(¬cookerOn),v6), because
(alarmOn → ©(¬cookerOn),v6) ∈ Rn and v6 > v3,
then we go to Step(B). Such that, we have a new query
which is Query(alarmOn,0,v4)

• For Query(alarmOn,0,v4), there is an initial setting
about alarmOn in set Ic, which is (alarmOn, 0, v1),
and v1 < v4, such that, according to Step(1), it re-
turns ‘false’ to the previous step.

Since Query(alarmOn,0,v4) returns ‘false’, T1 can
not support (¬cookerOn,1,v4), then Select T2. The
searching process is shown as Table 9.

• T 2 = [cookerOn] 6= /0. Since cookerOn is independent
state. According to the event list, the latest change
is an occurrence occurs(ingr(cookerOn), 0*, v5), and
v5 > v2, then returns ‘true’. Hence, T2 is supported ,
then Query(¬cookerOn,1,v4) returns ‘false’.
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Table 9. The Searching Process of Query(¬cookerOn,1,v4)

0 1
cookerOn (6 v2?)
atKitchen

umt3u
cu

hazzard
alarmOn v1 (> v4?)

So the final feedback for such simple query is:
‘false, T2=[cookerOn], occurs(ingr(cookerOn), 0*, v5)’

(2) For The second query, Query(cu,5,v4), at Step
(1), there is no event about cu or ¬cu at time = 5.
At Step(2), we obtain the STcu = T 1 and ST¬cu =
T 2, such that,

T1=[(¬atKitchen ∧ cookerOn ∧ umt3u →
cu,v6)];
T2=[(¬atKitchen ∧ cookerOn ∧ umt3u →
cu,v6), (cu→ alarmOn,v6),
(alarmOn → ©( ¬cookerOn), v6),
(¬cookerOn→¬cu,v6)]

We create the IS = {¬atKitchen,cookerOn,umt3u},
and obtain the activation time list as AcTimes =
[5,2,1,0], then set t = 5.

• Select T1 as the main tree, which provides the main
rule is (¬atKitchen∧ cookerOn∧ umt3u→ cu,v6) ∈
Rs, and v6 > v4, according to Step(A*), then we pro-
duce new queries which are Query(¬atKitchen,5,v4),
Query(cookerOn,5,v4), and Query(umt3u,5,v4).

• For Query(¬atKitchen,5,v4), because it is indepen-
dent state, and the closest instance of the event to
t = 5 is occurs(ingr(¬atKitchen), 1*, v5), where
v5 > v4, then it returns ‘true’.

• For Query(cookerOn,5,v4), because it is indepen-
dent state, and the closest instance of the event to
t = 5 is occurs(ingr(cookerOn), 0*, v5), where v5 >
v4, then it returns ‘true’.

• For Query(umt3u,5,v4), because it is independent
state, and the closest instance of the event to t = 5 is
occurs(ingr(umt3u), 4*, v5), where v5 > v4, then it
returns ‘true’.

Since Query(¬atKitchen,5,v4), Query(cookerOn,5,v4)
and Query(umt3u,5,v4) all return ‘true’, then T1 sup-
ports Query(cu,5,v4) and returns ‘true’. The searching
process is given as Table 10.

Table 10. The Searching Process of Query(cu,5,v4)

0 1 2 3 4 5
cookerOn v5 (> v4?)
atKitchen v5 (> v4?)

umt3u v5 (> v4?)
cu (> v4?)

hazzard
alarmOn

• If we consider ST¬cu = T 2 to prove Query(cu,5,v4) is
false, we just need to prove that Query(¬cu, 5,v3) is
true.
Select T2 as the main tree, which provides
(¬cookerOn → ¬cu,v6) as the main rule, then
according to Step(A**), we have a new query
Query(¬cookerOn,5,v3).

• For Query(¬cookerOn,5,v3), for Step (1), there is
no event about ¬cookerOn or cookerOn at time = 5.
At Step(2), we obtain the ST¬cookerOn = T 3 and
STcookerOn = T 4, such that,

T3=[(¬atKitchen∧ cookerOn∧umt3u→ cu,v6),
(cu→ alarmOn,v6),
(alarmOn→©(¬cookerOn),v6)]
T4=[cookerOn]

Select T3 as the main tree and (alarmOn →
©( ¬cookerOn), v6) ∈ Rn as the main rule, ac-
cording to Step(B**), it creates a new query
Query(alarmOn,4,v3).
• For Query(alarmOn,4,v3), for Step (1), there is

no event about alarmOn or ¬alarmOn at time =
4. At Step(2), we obtain the STalarmOn = T 5 and
ST¬alarmOn = T 6, such that,

T5 = [(¬atKitchen ∧ cookerOn ∧ umt3u →
cu,v6), (cu→ alarmOn,v6)]
T6 = [(¬atKitchen ∧ cookerOn ∧ umt3u →
cu,v6), (cu→ alarmOn,v6),
(alarmOn → ©( ¬cookerOn), v6),
(¬cookerOn→¬alarmOn,v6)]

Select T5 as the main tree and (cu →
alarmOn,v6) ∈ Rs as the main rule, accord-
ing to Step(A**), it creates a new query that
Query(cu,4,v3).
• For Query(cu,4,v3), at Step (1), there is

no event about cu or ¬cu at time = 4.
At Step(2), we obtain the STcu = T 7 =
T 1 and ST¬cu = T 8 = T 2, such that, ac-
cording to T1, we obtain the independent
state as IS = {¬atKitchen,cookerOn,umt3u}
and the activation time list as AcTimes =
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[2,1,0], then it creates new queries as
Query(¬atKitchen,2,v3), Query(cookerOn,2,v3)
and Query(umt3u,2,v3) by Step(A*).

1) For Query(¬atKitchen,2,v3), because it is
independent state, and the closest event of it
to t = 2 is occurs(ingr(¬atKitchen), 1*, v5),
where v5 > v3, then it returns ‘true’.

2) For Query(cookerOn,2,v3), because it is in-
dependent state, and the closest event of it
to t = 1 is occurs(ingr(cookerOn), 0*, v5),
where v5 > v3, then it returns ‘true’.

3) For Query(umt3u,2,v3), because it is inde-
pendent state, and the closest event of it to
t = 0 is (umt3u,0,v1), where v1 < v3, then it
returns ‘false’.

Since Query(umt3u,2,v3) returns ‘false’, then
T1 does not support Query(cu,4,v3) and re-
turns ‘false’.

Since Query(cu,4,v3) returns ‘false’, then T5
does not support Query(alarmOn,4,v3) and re-
turns ‘false’.

Since Query(alarmOn,4,v3) returns ‘false’, then T3
does not support Query(¬cookerOn,5,v3) and re-
turns ‘false’.

Since Query(¬cookerOn,5,v3) returns ‘false’, then T2
does not support Query(¬cu,5,v3). The searching pro-
cess is given as Table 11.

Table 11. The Searching Process of Query(¬cu,5,v3)

0 1 2 3 4 5
cookerOn v5 (> v3?) (6 v3?)
atKitchen v5(> v3?)

umt3u v1 (> v3?)
cu (> v3?) (6 v3?)

hazzard
alarmOn (> v3?)

Therefore, according to the Table 10 and 11,
the answer for the query Query(cu,5,v4) should
be: ‘true, by T1=[(¬atKitchen ∧ cookerOn ∧
umt3u → cu,v6)], occurs(ingr(cookerOn), 0*, v5),
occurs(ingr(¬atKitchen), 1*, v5), occurs(ingr(umt3u),
4*, v5)’.

For the next query, we want to illustrate a finite loop,
which may occur in some cases. If we have the following
query, Query(¬cookerOn,3,v3), we apply the following
procedure:

(3) For the Query(¬cookerOn,3,v3), at Step(1), there
is no event about ¬cookerOn or cookerOn at

time = 3. At Step(2), we obtain ST¬cookerOn = T 1
and STcookerOn = T 2, such that:

T1=[(¬atKitchen ∧ cookerOn ∧ umt3u →
cu,v6), (cu→ alarmOn,v6),
(alarmOn→©(¬cookerOn),v6)]
T2=[cookerOn]

We create IS = {¬atKitchen,cookerOn,umt3u},
and obtain the activation time list AcTimes =
[2,1,0], then set t = 2.

• Select T1 as the main tree, which provides the main
rule is (alarmOn → ©(¬cookerOn),v6). Because
(alarmOn → ©(¬cookerOn),v6) ∈ Rn and v6 > v3,
according to Step(B**), then we produce a new query
which is Query(alarmOn,2,v3).
• For Query(alarmOn,2,v3), there is no event about

alarmOn or ¬alarmOn at time = 2 at Step(1). At
Step (2), for obtaining the STalarmOn = T 3 and
ST¬alarmOn = T 4:

T3=[(¬atKitchen∧ cookerOn∧umt3u→ cu,v6),
(cu→ alarmOn,v6)]
T4=[(¬atKitchen∧ cookerOn∧umt3u→ cu,v6),
(cu→ alarmOn,v6),
(alarmOn → ©( ¬cookerOn), v6),
(¬cookerOn→¬alarmOn,v6)]

To explain the loop case, we only focus on T4.
We create IS = {¬atKitchen,cookerOn,umt3u},
and obtain the activation time list AcTimes =
[2,1,0], then set t = 2 and select T4 as the main
tree, and the main rule of T4 is (¬cookerOn →
¬alarmOn,v6). Because (¬cookerOn →
¬alarmOn,v6)∈ Rs and v6 > v3, then go to Step(A).
By Step(A**), we produce a new query which is
Query(¬cookerOn,2,v3).
• For the Query(¬cookerOn,2,v3), there is no

event about ¬cookerOn or cookerOn at time=2,
then go to Step (2). At Step (2), for obtaining
the ST¬cookerOn = T 1 and STcookerOn = T 2. Then,
we create IS = {¬atKitchen,cookerOn,umt3u}
and obtain the activation time list AcTimes =
[2,1,0]. After that, set t = 2 and select T1
as the main tree, which provides the main
rule is (alarmOn → ©(¬cookerOn),v6). Be-
cause (alarmOn→©(¬cookerOn),v6) ∈ Rn and
v6 > v4, then go to Step(B). According to
Step(B**), we produce a new query which is
Query(alarmOn,1,v3).

The above process will run again and reaches
Query(alarmOn,0,v3), and there is an initial setting
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about alarmOn in set Ic, which is (alarmOn, 0, v1), and
v1 < v3, such that, according to Step(1), it returns ‘false’
to the previous step. The searching process is given as
Table 12.

Table 12. The Searching Process of Query(¬cookerOn,3,v3)

0 1 2 3
cookerOn (< v3?) (< v3?) (< v3?)
atKitchen

umt3u
cu

hazzard
alarmOn v1 (> v3?) (> v3?) (> v3?)

Since the final step returns ‘false’, then the whole
loop returns ‘false’ to the query, such that, the result for
this process is ‘false’ and the system needs to select an-
other ST to prove the query. From this example, we can
see that because all the same-time rules have been strati-
fied, a loop can only be created between next-time rules.
However, the loop will always be decreased by process-
ing next-time rules, such that, eventually it will reach the
initial condition set, and, the system always returns a spe-
cific feedback to the user.

6.5. Discussion

Compared to forward reasoning algorithm, the backward
reasoning algorithm does not cover all states and rules all
the time. It only focuses on the states and rules which are
related to the queried state, such that, it saves a lot of time
and memory during the running procedure and it is more
efficient than forward reasoning algorithm. Both algo-
rithms return an answer for any possible query. We have
illustrated how both, forward and backward reasoning,
algorithms work and how they provide different benefits
to the users.

7. Conclusion

This paper presents a combined logical system to reason
with uncertainty and time as well as two algorithms that
provides two different strategies: forward and backward
reasoning. The forward reasoning algorithm simulates a
typical decision-making process, which contain an initial
set of facts, and find all the entailed conclusions up to
the time slot specified by the users. The backward rea-
soning is constructed over three main concepts, support-
ing tree (ST), activation time list (AcTimes) and search-
ing process. Unlike forward reasoning, the main focus
of backward reasoning is to analyse the specific queries

from users, and return a result, which contain ‘true’ or
‘false’ to a certain degree, and an explanation. With these
two algorithms, this system can be used to predict the sta-
tus of a decision-making process and trace the status of
the specific state with the initial assumptions provided by
the users.

Two scenarios extracted from a Smart Home system
illustrated how the system works. For the simulations, the
results of both scenarios clearly show the status of states
in each time slot. We applied the backward reasoning al-
gorithm to both scenarios, providing four queries in two
scenarios, which included the following different cases:
pure same-time rule, pure next-time rule, multi rules and
STs, and loop. The backward reasoning system returned
a reasonable result to each query.
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