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Abstract 

Inspired by the phenomenon of bio-parasitic behavior in natural ecosystem, this paper presents a novel particle 
swarm optimizer named PSOPB, in which particles are composed of the host and the parasite population. In the 
presented algorithm, the two populations mimic facultative bio-parasitic behaviour and exchange particles 
according to particles’ fitness values sorted of each population in a certain number of iterations. The parasite 
mutation and the host immunity are also considered to tie it closer to bio-parasitic behaviour as well as improve the 
algorithm performance. In order to embody the law of "survival of the fittest" in biological evolution, the particles 
with poor fitness value in the host population are removed and replaced by the same numbers of the re-initialization 
particles to maintain constant population size. The experimental results of a set of 10 benchmark functions 
demonstrate the presented algorithm’s efficacy. 
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1. Introduction 

Particle swarm optimizer (PSO) is a kind of stochastic 
optimization algorithm, inspired by the sociological 
behaviors associated with birds flocking1,2. In the 
original version of PSO algorithm, the trajectory of each 
particle in the search range is adjusted by dynamically 
altering its velocity, according to two factors: each 
individual’s best position ever found and its neighbors’ 
best position ever found2. Comparing with other 
stochastic optimization algorithms, PSO is easy to 
implement and has been empirically shown to perform 
well on many optimization problems. For this reason, 
PSO has already been widely used in many areas, 
including power systems3, artificial neural network 
training4 and bandwidth prediction5. However, it has 
difficulties in keeping balance between exploration and 

exploitation6. Therefore it is prone to suffer from 
premature convergence when strongly multimodal 
problems are being optimized. In the past decades, 
numerous researches have provided some improved 
methods to overcome the drawback of trapping in the 
local optima. The most part of these improved methods 
can be summarized into the following categories: tuning 
the parameters7, designing different population 
topologies8, combining PSO with other evolutionary 
optimization operators9 and adopting new learning 
strategies10,11.  

As PSO algorithm is derived from modeling 
sociological behaviors of animals, it is natural to 
incorporate other proper biological mechanisms into the 
canonical PSO, which may be a viable way to improve 
the algorithm’s performance. So far, there have been 
some related papers concerning this topic. Silva 
constructed a predator-prey PSO model12, in which 
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particles are divided into two categories: predator and 
prey, the former are used to force the particles stagnated 
in the local optima to escape, whereas the latter are 
subject to predator’s exclusion and gradually close to 
the global optimum. He provided a new type of PSO 
(PSOPC) according to passive congregation behavior in 
animals13. In PSOPC, message can be transferred among 
individuals of the whole swarm. In accordance with the 
bacterial chemotactic behavior, Niu presented an 
improved PSO14, in which each particle is not only 
attracted by its personal best position and the group’s 
best position, but also repulsed by the worst position of 
itself and the whole group. Gleaned from ideas from the 
co-evolution of the symbiotic species, Chen proposed a 
novel multi-species optimizer (PS2O)15. From the 
existing literatures, the method of incorporating the 
biological mechanism into PSO has showed its efficacy, 
and will be a good way to improve the performance of 
PSO in the future.  

An idea of incorporating bio-parasitic behavior into 
canonical PSO was addressed in this paper. The 
presented algorithm called PSOPB, in which particles 
are composed of two populations, to be specific, the 
host and the parasite population. The two populations 
mimic facultative bio-parasitic behavior of the host-
parasites relationship in natural ecosystem. The host 
immune response and the parasite mutation are also 
formulated in PSOPB. The dynamics of the parasite 
population is the same as the canonical PSO, but the 
host population has a big difference. Experiments on 
some benchmark functions are conducted. The results 
demonstrate that our proposed PSO algorithm has a 
remarkable performance, especially for complicated 
problems. Hence, PSOPB may be a good alternative to 
deal with optimization problems, in particular the 
complicated.  

The rest of this paper is organized as follows. 
Section 2 introduces the canonical PSO. In section 3, 
the bio-parasitic behavior and PSOPB framework are 
presented. We describe the experimental settings and 
results in section 4. The paper is concluded in section 5. 

2. Canonical PSO 

A swarm of particles are represented as potential 
solutions and the ith particle is associated with two 
factors, i.e., the velocity vector 1 2[ , , , ]t

i i i iDV v v v= K  and 

the position vector 1 2[ , , , ],t t t t
i i i iDX x x x= K where 

{1,2, , }i N∈ K , N  is the population size; D  stands for 
the dimensions of the solution space and t denotes the 
current iteration number. [ , ]id d dx l u∈ , {1,2, , }d D∈ K , 
where dl  and du are the lower and upper bounds of the 
dth dimension, respectively. The velocity and the 
position of each particle are initialized by random 
vectors within corresponding ranges. During the 
evolutionary process, the swarm is manipulated 
according to the following equations: 

  1
1 1 2 2( ) ( )t t t t t t

id id id id gd idv v c r p x c r p xω+ = + − + −              (1) 
1 1t t t

id id idx x v+ += +                                                     (2) 

In  Eq. (1), ω , called inertia weight, is to assist with the 
balance between exploration and exploitation. 1r  and 2r  
are random numbers, uniformly distributed with the 
interval [0,1] . 1c and 2c  are acceleration coefficients . 

1 2[ , , , ]t t t t
i i i iDP p p p= K is the best previous position with 

best fitness value has been found so far by the ith 
particle; and 1 2[ , , , ]t t t t

g g g gDP p p p= K is the best position 
discovered by the whole swarm. Generally, a maximum 
velocity on each dimension, max,dv , is specified to 
control excessive roaming of particles outside the user 
defined search space. If idv  exceeds max,dv , then it is 
assigned to max,( )id dsign v v . 

The value of ω  is linearly decreasing with the 
iterations as 

max max( ) ( )start end endt t tω ω ω ω= − × − +                 (3) 

where maxt  is the predefined maximum number of 
allowable iterations; startω  and endω , usually are set to 
0.9 and 0.47, denote the initial and final values of the 
inertia weight, respectively. In the paper, this version of 
PSO is referred to standard PSO (SPSO). 

Another important variant of PSO is proposed in 
form of constriction factor (CPSO), which is an 
alternative method for controlling the behavior of 
particles in the swarm16. In CPSO, the velocity is 
updated by the following equation: 

1
1 1 1 2[ ( ) ( )]t t t t t t

id id id id gd idv v c r p x c r p xλ+ = + − + −          (4) 
where λ  is called constriction factor, given by: 

22 2 4λ ϕ ϕ ϕ= − − −                                           (5) 

Usually the value of λ  is set to 0.729 with 
1 2 4.1c cϕ = + = . 1c  and 2c are usually both set to 2.05.  
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3. PSOPB 

3.1 Bio-parasitic behavior  

The term symbiosis, first proposed in 1879 by the 
German mycologist Anton de Bary17, commonly 
describes close and often long-lasting physical 
relationships between different biological species. There 
are three different categories of symbiotic relationships: 
mutualism, commensalism and parasitism18. Mutualism 
describes a kind of symbiotic relationship that is 
actually beneficial to both species involved. 
Commensalism describes a relationship between two 
living organisms where one benefits and the other is not 
significantly harmed. Parasitism is a relationship in 
which one organism, known as the parasite, lives in or 
on another organism, known as the host, from which the 
parasite derives nourishment and the host is harmed18. 
Parasites are usually divided into two categories, 
facultative parasites and obligate parasites, in terms of 
their living style. Facultative parasites mostly live 
independent of a host but seldom hold the charge of a 
parasite. By contrast, obligate parasites are that cannot 
live elsewhere except on the living protoplasm of its 
host19. 

Many researches have shown that parasite evolved 
from free-living organisms. In the long co-evolutionary 
process, the free-living organisms gradually changed its 
physical shape or morphological structure to adapt the 
new living style and become parasites19. The hosts 
harmed increases their immunity, called acquired 
immunity which is in contrast to innate immunity, to 
resist the invasion behavior of the parasites. There are 
many cases demonstrated this phenomenon in nature 
ecosystem. Such as, vertebrates infected by parasites 
will produce a strong immune response in the case of 
subjecting to the second same parasitic infection20; 
Plants and inferior animals also can improve their 
immunity after being infected by parasites. The co-
evolutionary process between parasites and hosts 
commonly reduce the “negative effect” of the parasitic 
harm behavior, or even parasitism evolves into 
mutualism21. 

3.2   PSOPB Framework 

In the proposed PSO algorithm, particles are divided 
into two populations: the parasite population ( )PSwarm , 
in which the number of particles is denoted as PN , and 
the host population ( )HSwarm , the size of which is 
denoted as HN . We believe that facultative bio-
parasitism relationship between two populations is 
suitable to be incorporated into the canonical PSO. If 

parasitic behavior occurs, PSwarm  obtains nourishment 
from HSwarm ; Otherwise, PSwarm  and HSwarm are 
evolved independently. The facultative host-parasite 
relationship is simulated as the exchange of particles in 
the two populations in a certain number of iterations, 
which we called reconstruction gap and denoted as k , 
in PSOPB. Therefore, PSwarm  get some particles with 
good fitness from HSwarm  and the same numbers of 
particles with bad fitness in it leave to HSwarm . In this 
paper, we define the fitness values the larger the better, 
which means that when solving minimization problems, 
we will use the negative functions values as the fitness 
values.  

During the host-parasite interactions, there are two 
kinds of immunity, innate immunity and acquired 
immunity, in HSwarm . In our paper acquired immunity 
is modeled according to two ways: one is the numbers 
of exchanged particles decrease with increasing of 
iterations; the other is that particles in HSwarm  learn 
from the global best particle in PSwarm  to speed up 
convergence and improve its performance. In PSOPB, 
the numbers of exchanged particles is set to the rounded 
value of PNµ × , and µ  is set to linearly decrease with 
the iterations as: 

( ) ( )max maxstart end endt t tµ µ µ µ= − × − +             (6) 

startµ  and endµ  denote the initial and final values of µ , 
respectively. Conversely, HSwarm  forfeits particles with 
good fitness values and get the bad particles 
from PSwarm . Another acquired immune response 
embodied in the proposed algorithm is as follows: when 
the best particle’s fitness value in HSwarm  is worse than 
that in PSwarm , particle i  in HSwarm fly in accordance 
with three directions: H

iP , H
gP and P

gP , where H
iP  is the 

best previous position of particle i  in HSwarm , H
gP and 

P
gP represent the particle with best fitness value in 

HSwarm  and PSwarm , respectively; Otherwise, each 
particle in HSwarm  evolves according the canonical 
PSO. In this paper, PSOPB adopts the form of 
“constriction factor”. Through the analysis above, the 
velocity of PSwarm  is updated by the Eq.(4) and the 
velocity of HSwarm is set to update according to the 
following equations: 

11 11

12 12 , 13 13 , , ,1

1 1

2 2 , , ,

[ ( )

( ) ( )]   

[ ( )

( )]                                   

t t t
id id id

t t t t t t
gd H id gd P id g H g Pt

id t t t
id id id

t t t t
gd H id g H g P

v c r p x
c r p x c r p x fp fp

v
v c r p x

c r p x fp p

λ

λ
+

 + − +


− + − <
= 

+ − +
 − ≥

 (7) 
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where 11 12 13 1, , ,c c c c  and 2c are acceleration coefficients, 

,
t
g Hfp  and ,

t
g Hfp  are the best particle’s fitness value at 

tth iterations in HSwarm  and PSwarm , respectively, 
11 12,  r r and 13r  are random numbers uniformly distributed 

with range [0,1] , the meaning of other parameters in Eq. 
(7) is the same as in Eq. (4).  

HSwarm  is harmed after bio-parasitic behavior. In 
order to show the law of “survival of the fittest” in 
biological evolution, some poorest particles, the number 
of which is set to the rounded value of HNγ × , are 
removed and replaced by the re-initialization of the 
particles in order to maintain constant population size in 

HSwarm . 
In subsection 3.1, we have known that organisms 

from free-living to parasitic life style should change its 
physical form or morphological structure. This 
phenomenon was simulated as a mutation operator in 
our presented algorithm. When the best particle’s fitness 
value in PSwarm  is not improving with the increasing of 
a certain number of iterations, denoted as η . The 
velocity of one dimension of particle i  uniformly 
randomly selected within PSwarm  is randomly chosen 
to mutate. Only one dimension is chosen because the 
local optima particle is selected which is likely to have 
good structure of the global optimum, this should be 
protected. As every dimension has the same probability 
to be chosen, this mutation operation can be regarded to 
perform on every dimension in a statistical sense. The 
mutation operator performed in PSwarm can be 
mathematically represented as follows: 

If , , 0t t
g P g Pfp fp η−− =  

max, 3 4

max, 3

0.5 ,                       0.5        
0.5                     otherwise. 

dt
id

d

v r r
v

v r
× × <=  − × ×

     (8) 

End 
where 3r and 4r .are random numbers uniformly 
distributed within [0,1] , t

pfgB  is the fitness best 
particle’s fitness value in PSwarm  at the tth iterations. 
The complete pseudocode for PSOPB is as follows. 
 
Begin 

Initialization; 
Set 0t =  
While (the termination conditions are not met) 

Do in parallel 
For each population ( ,H PSwarm Swarm ) 
Evaluate the fitness value of each particle 
Update the velocity of each population 

max maxmin(max( , ), )t t
id idv v v v= −  

Update the position of each population 
Update t

ip , t
gp  of each population 

Calculate ,
t
g Hfp  and ,

t
g Pfp  

End Do in parallel 
If mod( , ) 0t k =  & 0t ≠  

Exchange particles; 
Remove particles in HSwarm  
Re-initialize particles in HSwarm  

End If 
If , , 0t t

g P g Pfp fp η−− =  

Velocity mutated in PSwarm  
End If 

Set 1t t= +  
End While 

End 

4. Experiments and discussions 

4.1 Benchmark functions 

A set of 10 benchmark functions are conducted this 
experiments to evaluate the performance in terms of the 
optimum solution after a predefined number of 
iterations. In this paper, all benchmark functions are 
divided into two groups. The first group includes from 
function 1f  to function 7f  seven classical benchmark 
functions. In the first group, the distribution of local 
optima in some functions is regular and the variables are 
separable11. They can be solved by using divide-and-
conquer methods, such as references [22]. The second 
group includes three rotated functions 8 9,f f  and 10f , in 
which the original variable x  is rotated by left 
multiplying the orthogonal matrix M , i.e, y M x= × .  

Global optimum *x , the corresponding fitness 
value *( )f x , dimensions, search range, simplified as 
range, and initialization range of all benchmark 
functions are given in Table 1. Asymmetric 
initializations, in which the population is initialized only 
part of the search range, are used for all functions.  

1.  Schwefel Problem 1.2 
2

1
1 1

( )
D i

j
i j

f x x
= =

 
=  

 
∑ ∑  

2.  Rosenbrock function 

( ) ( ) ( )( )
1

2 2
2 1

1
100 1

D

i i i
i

f x x x x
−

+
=

= − + −∑  

3.  Rastrigin function 

( ) ( )( )2
3

1
10cos 2 10

D

i i
i

f x x xπ
=

= − +∑  
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4. Ackley function 

2
4

1

1

1( ) 20exp 0.2

1           exp cos 2 20

D

i
i

D

i
i

f x x
D

x e
D

π

=

=

 
= − −  

 
 − + + 
 

∑

∑
 

5.Griewank function 

( ) 2
5

1 1

1 cos 1
4000

DD
i

i
i i

xf x x
i= =

 
= − + 

 
∑ ∏  

6. Schwefel function 

( )( )6
1

( ) 418.9829 sin
D

i i
i

f x D x x
=

= × − ∑  

7. Weierstrass function 

( )( )

( )

20

7
1 0

20

0

( ) cos 2 0.5

           cos 2 0.5

D
k k

i
i k

k k

k

f x a b x

D a b

π

π

= =

=

  = +   

 − ⋅ 

∑ ∑

∑
    

0.5,  3a b= = , 1, 2, , .i D= L  

8. Rotated Rosenbrock function 

( ) ( )( )
1

2 2
8 1

1
( ) 100 1

D

i i i
i

f x z x z
−

+
=

= − + −∑ , 

1 2* ,  [ , , , ]Dz M x x x x x= = …  
 9. Rotated Rastrigin function 

( )( )2
9

1
( ) 10cos 2 10

D

i i
i

f x z zπ
=

= − +∑ , 

1 2* ,  [ , , , ]Dz M x x x x x= = …  
10. Rotated Griewank function 

2
10

1

1

1( ) 20exp 0.2

1           exp cos 2 20

D

i
i

D

i
i

f x z
D

z e
D

π

=

=

 
= − −  

 
 − + + 
 

∑

∑
 

              1 2* ,  [ , , , ]Dz M x x x x x= = …  

Table 1 Global optimum, search ranges and initialization ranges of benchmark functions 

Functions  Dimension Range Initialization range *x  *( )f x  

1f  30 ( 100,100)D−  (50,100)D  {0}D  0 

2f  30 ( 30,30)D−  (15,30)D  {1}D  0 

3f  30 ( 5.12,5.12)D−  (2.56,5.12)D  {0}D  0 

4f  30 ( 32,32)D−  (10, 20)D  {0}D  0 

5f  30 ( 600,600)D−  (300,600)D  {0}D  0 

6f  30 ( 500,500)D−  (200,500)D  {420.97}D  0 

7f  30 ( 0.5,0.5)D−  (0.2,0.5)D  {0}D  0 

8f  30 ( 100,100)D−  (50,100)D  {0}D  0 

9f  30 ( 30,30)D−  (15,30)D
 {0}D  0 

10f  30 ( 5.12,5.12)D−  (2.56,5.12)D  {0}D  0 

4.2 Parameters settings for the involved PSO algorithms 

Experiments were conducted to observe the 
performance of the proposed PSOPB algorithm in 
comparison with SPSO, CPSO, PSOPC, FIPS(fully 
informed particle swarm)23 and FDR-PSO(fitness-
distance-ratio based particle swarm optimization)24. The 
population size for all algorithms was set to 80. As for 
PSOPB, 40H PN N= = were employed. Dimensions D  
of all benchmark functions were set to 30. In many 
practical problems, there are bounds on the variables’ 
range. In order to prevent particles from moving out the 
bounds, the method proposed in references [25] was 

used in this paper. The parameters used for SPSO, 
CPSO, PSOPC, FIPS and FDR-PSO were 
recommended in references [7,16,13,23,24]. The 
specific parameters setting for each algorithm are given 
in Table 2. 

In order to investigate whether the performance of 
PSOPB is sensitive to the parameter k  or not, we tested 
PSOPB with different value of k  , to be specific, 30, 50, 
100, 150 and 200, on  function. 1 2 3 4, , ,f f f f and 5f . The 
maximum number of allowable iterations is set at 3000. 

Published by Atlantis Press 
      Copyright: the authors 
                   69



Q.D. Qin, et al 
 

 

The average and standard deviation of the optimum 
solution for 25 trials are presented in Table 3. From the 
results; it is easy to find that the value of k  counts much 

for the performance of POSPB. When k  was set to 100, 
all test function are obtained good results. So, in the 
following experiments, 100k =  is used. 

Table 2. Parameters settings for the involved PSO algorithms 

Algotithms Parameters settings References 

SPSO : 0.9 ~ 0.4ω , 1 2 2c c= = , max, 0.2dv Range= ×  [7] 

CPSO 0.729λ = , 1 2 2.05c c= = , max, 0.5dv Range= ×  [16] 

FDR-PSO : 0.9 ~ 0.4ω , 1 2 1c c= = , 3 2c = , max, 0.2dv Range= ×  [24] 

FIPS 4.1ic =∑ , 0.729λ = , max, 0.2dv Range= ×  [23] 

PSOPC : 0.9 ~ 0.7ω , 1 2 0.5c c= = , 3 : 0.4 ~ 0.6c , max, 0.2dv Range= ×  [13] 

PSOPB 
0.729λ = , 1 2 2.05c c= = , 11 12 13 1.367c c c= = = , 0.5γ = , 50η = ,

: 0.5 ~ 0.3µ , max, 0.5dv Range= ×  
 

 Table 3 PSOPB performance with various values of the reconstruction gap k  

 PSOPB 

k  30 50 100 150 200 

1f  3.11e-010 
(3.53e-010) 

3.52e-010 
(3.27e-010) 

2.48e-010 
(2.21e-010) 

3.77e-009 
(4.31e-009) 

7.28e-009 
(9.84e-009) 

2f  3.69 
(3.05) 

4.29 
(2.38) 

2.49 
(2.65) 

4.33 
(4.85) 

4.42 
(4.54) 

3f  16.51 
(8.48) 

9.44 
(5.37) 

6.87 
(1.58) 

8.17 
(2.39) 

11.64 
(3.28) 

4f  4.51e-012 
(4.35e-012) 

2.56e-013 
(5.75e-013) 

6.75e-015 
(2.43e-015) 

6.58e-015 
(3.74e-015) 

6.24e-015 
(2.72e-015) 

5f  1.45e-002 
(1.73e-002) 

1.28e-002 
(1.44e-002) 

6.32e-003 
(8.29e-003) 

1.14e-002 
(1.54e-002) 

1.43e-002 
(1.82e-002) 

4.3 Comparisons with involved PSO algorithms 

The experiment runs 30 trials independently for the 
involved PSO algorithms on a set of 10 benchmark 
functions and the maximum number of allowable 
iterations is set at 6000. The representative results 
including the best, worst, mean and standard 

deviation(Std) of these benchmark function values were 
presented in the Table 4, in which numbers in bold 
represented were the comparatively best values. The 
graphs of the variation of the best function values with 
the evolution of iterations are showed in Fig. 1.  

Table 4 Search result comparisons of PSOs on all benchmark functions 

Function Index SPSO CPSO FIPS FDR-PSO PSOPC PSOPB 

1f  
Best 1.64e-001 3.05e-018 2.93e+001 4.78e-010 1.26e-004 1.06e-019 
Worst 1.51e+000 9.66e-017 8.11e+001 6.67e-008 2.49e-001 6.09e-017 
mean 5.90e-001 4.01e-017 5.96e+001 1.03e-008 4.37e-002 1.10e-017 
Std 4.45e-001 4.27e-017 1.73e+001 2.28e-008 8.37e-002 1.84e-017 

2f  
Best 1.95e+000 2.53e-003 2.38e+001 2.77e-001 1.31e+001 1.37e-004 
Worst 7.84e+001 1.16e+001 2.49e+001 7.18e+001 7.06e+001 6.13e-002 
mean 3.07e+001 6.20e+000 2.46e+001 2.19e+001 2.01e+001 1.47e-002 
Std 2.61e+001 3.78e+000 3.55e-001 2.95e+001 1.78e+001 2.07e-002 
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3f  
Best 7.96e+000 3.38e+001 3.79e+001 7.96e+000 8.95e+000 0 
Worst 2.98e+001 6.96e+001 6.44e+001 2.49e+001 3.98e+001 2.98e+000 
mean 1.98e+001 4.37e+001 5.02e+001 1.83e+001 1.99e+001 1.29e+000 
Std 5.35e+000 1.14e+001 9.96e+000 6.04e+000 9.11e+000 1.05e+000 

4f  
Best 4.53e-017 6.22e-015 4.84e-009 6.22e-015 2.32e-015 2.66e-015 
Worst 7.32e-014 1.78e+000 1.43e-008 1.33e-015 6.22e-015 6.22e-015 
mean 6.22e-015 4.77e-001 9.08e-009 7.11e-015 4.09e-015 5.44e-015 
Std 5.41e-015 7.74e-001 2.65e-009 2.51e-015 1.84e-015 1.26e-015 

5f  
Best 0 0 7.51e-014 0 0 0 
Worst 6.38e-002 2.97e-002 1.62e-007 4.92e-002 1.48e-002 7.44e-003 
mean 1.49e-002 1.18e-002 1.78e-008 1.41e-002 4.45e-003 1.81e-003 
Std 2.21e-002 1.07e-002 5.11e-008 1.66e-002 5.91e-003 3.72e-003 

6f  
Best 4.77e+002 6.51e+002 3.82e-004 3.82e-004 3.35e+002 3.82e-004 
Worst 2.02e+003 1.48e+003 6.47e+002 3.35e+002 1.44e+003 3.55e+002 
mean 1.06e+003 9.83e+002 2.71e+002 7.15e+001 1.01e+003 1.10e+002 
Std 5.24e+002 2.71e+002 2.68e+002 1.19e+002 3.56e+002 1.31e+002 

7f  
Best 0 2.73e-001 7.29e+000 7.63e-004 3.34e-004 0 
Worst 2.46e-002 5.62e+000 1.38e+001 9.64e-005 1.60e+000 2.82e-005 
mean 1.03e-002 3.19e+000 1.05e+001 1.71e-003 3.99e-001 1.88e-006 
Std 9.83e-003 1.99e+000 2.09e+000 2.73e-003 5.42e-001 7.29e-006 

8f  
Best 9.55e+000 9.36e-002 2.41e+001 1.66e+000 8.77e+000 9.46e-002 
Worst 2.66e+002 1.39e+001 2.75e+001 1.31e+001 1.40e+001 1.34e+000 
mean 5.96e+001 7.83e+000 2.52e+001 8.82e+000 1.15e+001 8.45e-001 
Std 6.98e+001 4.36e+000 9.33e-001 3.48e+000 1.61e+000 7.43e-001 

9f  
Best 3.88e+001 4.38e+001 1.22e+002 3.08e+001 4.28e+001 1.21e+001 
Worst 1.05e+002 9.85e+001 1.67e+002 8.56e+001 8.06e+001 4.03e+001 
mean 7.82e+001 7.15e+001 1.44e+002 6.56e+001 5.90e+001 3.01e+001 
Std 1.95e+001 1.76e+001 1.54e+001 1.82e+001 1.78e+001 1.13e+001 

10f  
Best 0 1.11e-016 4.84e-012 0 0 0 
Worst 3.69e-002 3.44e-002 1.87e-006 8.11e-002 4.17e-002 1.23e-003 
mean 1.62e-002 1.23e-002 3.37e-007 2.15e-002 1.23e-002 3.92e-003 
Std 1.40e-002 9.92e-003 5.52e-007 2.84e-002 1.32e-002 5.34e-003 
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Fig. 1. Variation of the best function values with the evolution of iterations (a) Schwefel problem 1.2. (b) Rosenbrock functions. (c) 
Rastrigin function. (d) Ackley function. (e) Griewank function. (f) Schwefel function. (g) Weierstrass function. (h) Rotated 
Rosenbrock function. (i) Rotated Rastrigin function. (j) Rotated Griewank function. 

4.4 Results and discussions 

From Table 4 and Fig. 1 we could observe that PSOPB 
obtained the remarkable search accuracy and fast 
convergence rate.  

As for typical unimodal function 1f  and 2f , 
PSOPB performs better compared to the involved PSO 
algorithms except CPSO does marginally performance 
for function 1f . Especially for deceptive function 2f , in 
which global optimum is inside a long, narrow and 
parabolic shaped flat valley, PSOPB does not trap in 
local optima easily and sustainably search the global 
optimum. As the two populations in PSOPB exchange 
information periodically, PSOPB has a good ability to 
keep the balance of exploration and exploitation. It is 
expected to that PSOPB can avoid local optima and 
bring about improved performance on multimodal 
functions. Indeed, the experimental results given in the 
table 4 and Fig. 1 support this intuition. PSOPB does 
not trap in local optima in the entire search process and 
find the remarkable solutions than other PSO algorithms 
in optimizing function 3f  which is a complex 
multimodal problem with a large number of local 
optima. All PSO algorithms compared have a good 
performance of solving functions 4f , but PSOPB has a 
faster convergence rate except CPSO and lowest 
standard deviation values. As for function  5f  in which 

has a 
1

cos
D

i

i

x
i=

 
 
 

∏  component causing linkage among 

variables and function 6f  , the complexity of which is 
due to deep local optima is far from the global optimum, 

it is difficult to find the global optimum. The 
performance of PSOPB to solving them is junior to 
FIPS and PSOPC. PSOPB can find good solutions in 
terms of accurate rate than other PSO algorithms for 
function 7f . Functions 8 9,f f  and 10f  are classical 
benchmark functions with coordinate rotation. Results 
for three rotated appears that all the PSO algorithms are 
affected by the coordination rotation; however, it is 
interesting to observe that PSOPB can still find good 
solutions. The robustness of the algorithms is tested 
based on standard deviation. The tabulated results show 
that PSOPB is a robust algorithm compared to the 
involved PSO variants for functions 1 2 3 4 7 8, , , , ,f f f f f f  
and 9f .  

As the mechanism of information exchange in 
PSOPB, the population diversity of PSOPB can be 
maintained. Therefore, PSOPB have high probability to 
find promising solutions. From Table 4 and Fig. 1, it 
can be observed that PSOPB is able to improve 
solutions steadily for a long period without being 
trapped in local optima. PSOPB appears to exhibit the 
strongest search ability among the involved PSOs  and 
we can concludes that PSOPB is a good choice for 
obtaining good mean results and lower standard 
deviation in optimizing many problems especially for 
complicated.  

5. Conclusions and Prospects 

Based on the deeper analysis of biological symbiotic 
relationship, the mechanism of facultative parasitic 
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behaviour was incorporated into the canonical PSO to 
construct a novel two-population PSO called PSOPB, 
composed of the host and the parasite population. The 
two populations periodically exchange particles, which 
are determined by fitness values sorted in each 
population, in a certain number of iterations. After that, 
the host population was harmed and the parasite 
population got nourishments, that is, the parasite 
population obtained the particles with good fitness from 
the host population. In order to be closer to bio-parasitic 
behaviour, the host immune response and the parasite 
mutation were considered in the proposed PSO 
algorithm. The law of "survival of the fittest" in 
biological evolution was also demonstrated in the host 
population. A set of 10 benchmark functions have been 
tested PSOPB in comparison with SPSO, CPSO, 
PSOPC, FIPS and FDR-PSO. The experimental results 
showed that PSOPB had a remarkable performance. 
However, the proposed algorithm only simulated bio-
parasitic behavior to some extent. In the future, we will 
study further and use our presented algorithm to 
optimize practical engineering optimization problems. 
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