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Abstract 

An image segmentation approach by improved watershed partition and DCT energy compaction has been proposed 

in this paper. The proposed energy compaction, which expresses the local texture of an image area, is derived by 

exploiting the discrete cosine transform. The algorithm is a hybrid segmentation technique which is composed of 

three stages. First, the watershed transform is utilized by preprocessing techniques: edge detection and marker in 

order to partition the image in to several small disjoint patches, while the region size, mean and variance features 

are used to calculate region cost for combination. Then in the second merging stage the DCT transform is used for 

energy compaction which is a criterion for texture comparison and region merging. Finally the image can be 

segmented into several partitions. The experimental results show that the proposed approach achieved very good 

segmentation robustness and efficiency, when compared to other state of the art image segmentation algorithms and 

human segmentation results. 
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1. Introduction 

In the literature, segmentation has been known as 

the process of dividing an image into a subset of 

connected regions based on an application defined 

criteria. For natural scenery images, it usually means the 

separation of the image into its constituent objects or 

feature types (e.g. sky, trees, buildings, etc) 2. Despite 

the plenty of research outcome on such topic, it still 

continues to be a challenging problem in image 

processing and computer vision2. The difficulties 

mainly results from the fact that different people can 

define textures in application-dependent ways or with 

different perceptual motivations, and there is no 

generally agreed-upon definition. 

Among the different segmentation methods, 

unsupervised image segmentation algorithms have been 

widely applied for its generalization, which can be 

broadly divided in three categories: region-based, 

graph-based and model-based ones. More specifically, 

region-based image segmentation approaches 3-6 try to 

separate connected image regions by grouping 

neighboring pixels based on brightness, color, and 

texture. Afterwards, adjacent regions are merged, under 

some criterion involving homogeneity or region 

boundary sharpness. In the past, many research efforts 

have been done regarding graph-based image 

segmentation algorithms 7-9. These approaches use an 
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undirected graph to represent the image pixels. For each 

graph edge, there is an edge weight representing pair 

wise pixels similarity. Therefore, the objective is to 

minimize the cost of splitting the graph into a number of 

disjoint subsets. Differently, the model based methods 

strive to capture the underlying structure of the texture 

and classify image pixels into different segmented 

regions 10-12. And a variety of different models are 

employed, including Hidden Markov Models (HMM), 

anisotropic diffusion model, and general statistical 

models based on filter responses. 

In this paper, our work focuses on the region-based 

algorithm, and a novel approach is proposed, which 

combines watershed and region merging by intensity 

and texture extraction. To the best knowledge of ours, 

the most widely investigated texture representation 

methods have been windowed Fourier transforms, the 

Gabor representation 13, 14, Wavelet transforms 15, 16, 

local histograms, and the local structure tensor, etc. 

However, the main drawback of Gabor filtering is that 

the excessive computational effort can‟t be avoided. To 

address these limitations, the discrete cosine transform 

is adopted for texture representation, resulting in a fast 

segmentation and energy compaction approach. 

Furthermore, the main procedure of the presented 

method can be summarized into three steps. Firstly, the 

improved watershed transform 17-19 is implemented in 

the input gray-scale image and the image is divided into 

several disjoint regions, while each region is labeled by 

a unique number. Second, the regions are combined 

according to their similarities which are calculated by 

intensity mean, intensity variance and region pixels until 

they reach a certain amount. Finally, the discrete cosine 

transform 20-22 is utilized to obtain the spectral 

information in a maximum rectangle of each region 23,24. 

The residual regions are merged corresponding to 

region similarities by involving texture information and 

region intensity. The flow chart of our method is given 

in Fig 1.  

The rest of the paper is organized as follows. In 

Section 2, we give a brief review on improved 

watershed transformation as well as the knowledge 

about discrete cosine transform. In Section 3, details of 

the proposed algorithm for cost computing and region 

merging will be described. Experimental results are 

presented in Section 4. Conclusions are given in Section 

5.  

Input Image I0

Image I1 with hundreds of regions 

The Improved watershed transform

Merge I1 by statistical characteristic

Image I2 composed of less than 

100 regions

Spectral-based Region combination 

The ultimate Image I3

 
Fig 1. The flow chart of our proposed algorithm.  

 

2. The Related Work 

2.1. The Watershed Transform and Improvement 

In geography, a watershed is the ridge that divides 

areas drained by different river systems. A catchment 

basin is the geographical area draining into a river or 

reservoir. The well-known watershed segmentation 

algorithm is the classic discrete Vincent-Soille flooding 

watershed algorithm 17-19.  

Define D as a set of gray-scale image pixels. Let f : 

D→N be a function assigning an integer value to each 

p∈D, and hmin and hmax be the minimum and maximum 

gray value. Then, the recursion with the gray level h 

increases from hmin to hmax, where the implementation of 

the algorithm, can be defined as 

minhX  = {p∈D | f(p)= hmin }=
minhT                        (1) 

Xh+1 = MINh+1∪
1hTIZ (Xh),    h∈[hmin ,hmax)  (2) 

where Xh denotes the union of the set of basins 

computed at level h. 

Th = {p∈D | f(p) <= h}                                       (3) 

MINh+1 denotes the union of all regional minima at 

altitude h, 
1hTIZ  (Xh) is the union of the geodesic 

influence zones of the connected components of Xh. The 

watershed of (Wshed) f is the complement of 
maxhX  in 

D: 

(Wshed) f = D\ 
maxhX                                          (4) 
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Next, the output of the watersheds algorithm is the 

input image into its different catchment basins, each of 

which is characterized by a unique label. At the same 

time, watershed points are equidistant to two nearest 

connected catchment basins that are characterized by 0. 

However, the main disadvantage of this approach is 

that the watershed transformation may produce 

excessive over-segmentation for most natural images 

(Fig 4.a). Therefore, some pre-processing may be 

necessary to produce a segmentation that better reflects 

the arrangement of objects within the image. To achieve 

such purpose, we compute the gradient magnitude of the 

image which has high pixel values along object edges, 

and low pixel values everywhere else via Sobel liner 

filtering method ( See Fig 2. and Eq.(5) ), which can 

detect edge strength and direction resulting in a better 

noise-suppression (smoothing) characteristic.  

 

 

Z1 Z2 Z3 

Z4 Z5 Z6 

Z7 Z8 Z9 

 

Fig 2. Image pixel neighborhood 

 

The Sobel filter is 
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After using the filter to enhance the gradient, the 

marker-controlled method is employed to eliminate the 

ambiguous magnitude and reduce the number of 

regions. Firstly, the locations of all regional minima in 

an image are searched, and these extraneous minima are 

eliminated with the function which computes the set of 

"low spots" in the image that are deeper (set the height 

threshold 10) than their immediate surroundings. Then, 

the minima imposition technique modifies a gray-scale 

image so that regional minima occur only in marked 

locations. Finally, the watershed transformation is 

performed for marker-modified gradient image.  

The procedures of our improved watershed 

transform are shown in Fig 3, which is a detailed first 

step in Fig 1. Then the comparison between applying 

watershed transform directly and watershed after noise 

elimination is provided in Fig 4.  From Fig. 4 we can 

see that most of the insignificant regions in b are 

reduced contrast to a, and the segmentation performance 

of b is much better.   

 

The Sobel filter is applied to I0, resulting 

in I0_1

The marker-controlled method is applied 

to I0_1, resulting in I0_2,

I0_2 is applied by watershed transform 

and divided into hundreds of regions. 

The output of the step is I1

The improved watershed

 
 

Fig 3. The procedures of the improved watershed transform.  

 

 

 
Fig 4. (a) is the image “Lena” applied watershed transform 

immediately, (b) is “Lena” applied improved watershed 

transform.  

 

2.2. The Maximum Rectangle in an Irregular 

Region 

After watershed transform, the image is substituted 

by region adjacency graph and each region is disjointed 

with the others. The regions have irregular shapes but 

the DCT transform need to be implemented on 

rectangle, so we get the maximum rectangle in a region 

for substituting the texture of the whole region. 

Apparently, some deviation is brought with the 

substitution, but fortunately the primary features in the 

regions can be preserved 23, 24.  

Published by Atlantis Press 
      Copyright: the authors 
                   55



Chi-Man Pun, Ning-Yu An and C. L. Philip Chen 

 

In terms of this, one can firstly imagine a ball with 

a diameter of one pixel rolls pixel by pixel just inside 

the boundary (which means the rolling path borders on 

boundary of the region and included in the boundary) 

and allow the ball roll around clockwise until the ball 

encounters the start point again. The rolling path is 

composed of a series of pixels whose coordinates and 

the relative positions to the boundary are memorized. 

Suppose that one pixel ),( 00 yx  in the rolling path 

is on the inner position of the boundary, the initial 

distance between two obstacles along X direction is 

defined as w  and Y direction is defined as l . 

Then, we extend the width from the pixel along the 

direction of 
X  and 

X , until the boundary obstacles 

are encountered. Afterwards, the l  along the direction 

of 
Y and 

Y  is expanded pixel by pixel, each step the 

measure of width w  long the direction of 
X  and 

X  is performed over again once the length l  is 

increased, and the rectangle area is computed. The 

rectangle area equals wl * . The length is extended 

until it meets boundary obstacle. After the comparison 

of all the rectangles along the Y direction, the maximum 

rectangle at the position ),( 00 yx and its width and 

length are memorized.  

Next, by comparing all the maximum rectangle 

areas of each pixel on the rolling path, the largest area 

among all those rectangle areas can be determined. The 

result of the algorithm is shown in Fig 5.  

 

 

 
 

Fig 5. (a) includes 5 irregular regions, and (b) is the expression 

of the algorithm while the white blocks are 5 maximum 

rectangles in the 5 regions.  

2.3. The Discrete Cosine Transform and its 

application 

2.3.1. The DCT introduction its characteristic 

The most common 2-D DCT definition 20-22 is 
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The definition of )(v is the same as )(u . 

      

 The DCT transform transforms the whole image to a 

coefficient energy matrix by intensities, and also it 

depicts excellent energy compaction for highly 

correlated images. Since the uncorrelated image has 

more sharp intensity variations than the correlated 

image, the former has more high frequency content than 

the latter. 

For low frequency image, DCT operation provides 

ideal energy compaction in the low frequency region. 

Furthermore, when images have progressively high 

frequency and spatial contents, the transform 

coefficients spread over low and high frequencies. Some 

examples are shown in Fig 6. 

 

Fig 6 comprises of 4 image classes. The left images 

are the original images while the right images are 

energy compaction pictures. Comparing Fig 6.a with 

Fig 6.b, the former image has more sharp intensity 

variations than the latter one. Consequently, transform 

coefficients of the former spread over middle and high 

frequencies, while the ones of the latter spread over low 

and middle frequencies. Since the original images reside 

in periodicity, the pixels in energy matrix corresponding 

to particular frequency and intensity variation 

periodicity have more energy magnitude. 

The left image of Fig 6.c is a stochastic image, so it 

has progressively high frequency. Also, Fig 6.d has high 

spatial contents and more variation texture, therefore the 

energy is distributed over most part of the 

corresponding energy image. 
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Fig 6.  Energy compaction of DCT  

 

2.3.2. The application of DCT transform in our 

method 

As the texture images in Fig 6.a, b and c, we 

choose 40 synthetic texture images to test the DCT‟s 

performance of energy compaction. 

The resolution of the original images is 512*512. 

Since the size of different rectangles is unequal, so we 

get portion of the each original image by the resolution 

of 300*300, and discard the residual areas. Then the 

new image set is compared with the original one to 

match the textures.  

The matrices after image DCT transform are noted 

as iC , which have the same sizes as before 

transformation. 

1d  and 2d  are the width and length of one matrix 

1C with the resolution 512*512, 3d  and 4d are the 

width and length of DCT matrix rC _1  of the 300*300 

image. Owing to the DCT matrix has frequencies spread 

from low to high, we consider each side to be cut into 3 

parts which represents the low frequency, middle 

frequency and high frequency, and they are denoted as 

3_id  (i=1…4). 1d  and 2d  are not divisible, the 

rounding integers are obtained, so the 3_1d  and 3_2d  

are 170. Based on the sides cutting, the DCT matrices 

can be divided into 9 parts averagely. The top left of the 

matrix has the lowest frequencies; the top middle of the 

matrix has the low and middle frequencies, and etc. 

Therefore, the contrast of two DCT matrices is 

established between the corresponding two parts.  

Then sum the absolute value of each part in the 

DCT matrix, we can get the DCT frequency energy. 

Such as the left top part of 1C is given below, 

),(1

11

1_1

3_23_1

jiCVector

d

j

d

i




                              (8) 

Here iVector _1 (i = 1, 2,…,9) is defined as the i 

part of DCT energy in 1C . Similarly, iVector _2  is the 

i part of DCT energy in rC _1 . 

According to our experiments, iVector _1  and 

iVector _2  don‟t have correlations directly, they need 

be normalized by their size, which is formulated by 

formula (9). 

)9...1(
)4*3/(

)2*1/(

_2_2

_1_1





i

ddVectorVector

ddVectorVector

ii

ii
    (9) 

Finally, the difference of two DCT matrices is 

given as: 

)/( min_

9

1

max_ i

i

i VectorVector


                (10) 

Here iVectormax_  denotes the larger value 

between iVector _1 and iVector _2 , iVectormin_  
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denotes the smaller value between iVector _1 and 

iVector _2 . 

 can estimate the similarity of two texture 

regions. If two regions have analogous textures, their 

corresponding vectors will have approximate value and 

the ratio is close to 1, otherwise, the ratio is larger. 

Hence   will have smaller value when two compared 

region textures are similar, or it will hold a larger value 

when two regions have great discrepancies.  

Based on the characteristic of  , the two synthesis 

image sets, each of which contains 40 images, are used 

for texture matching. Each of images in the set riC _  is 

matched with all the images in the set iC , and totally 

40*40 times matching are required. The result is shown 

in TableⅠ. 

 

 

The 

Corresponding 

Texture matching value 
  

Times Ratio 

The minimum value 34 85% 

The three minimum 

value 
2 5% 

The five minimum 

value 
3 7.5% 

   others 1 2.5% 

Table Ⅰ.  The texture matching by DCT energy. 

 

In Table Ⅰ first row, the Corresponding Texture 

matching value means that each matrix in riC _  

corresponds to one matrix in iC  which has the same 

texture and is the original image‟s DCT matrix of riC _ . 

Also, riC _  is matched with the other matrices in iC  

and the relative magnitude of the corresponding value is 

extracted. Table Ⅰ demonstrates that 34 matrices in the 

set riC _ can find their same texture matrices in the 

set iC because they have the minimum value  , 

meanwhile only one image can‟t find its corresponding 

picture within 5 minimum  which means the 5 most 

similar images. 

Therefore, according to the characteristic of DCT 

transform, we can extract texture and distinguish 

regions with different texture by comparing their high, 

middle or low frequency energy compaction. 

3. Fast Region Merging Algorithm 

As introduced in Fig 1, the image denoted by 1I  is 

divided into hundreds of regions after improved 

watershed transform. The following are the fast region 

combination, an important aspect of which is how to 

define the similarities (We call it region cost) 

Here the region merging part in our algorithm which 

is composed of the next two stages, is described as 

follows: in stage 2, the over-segmented image 1I  is 

merged according to two region features: pixel intensity 

mean and pixel intensity variance, until a threshold 1T is 

reached. In stage 3, as the procedures in stage 2, the 

residual regions are incorporated sequentially. But the 

difference is the definition of region discrepancies 

which is region pixel intensity and texture similarity by 

DCT energy computation proposed in last section. 

3.1. Region Merging By Intensities 

In the stage, the initial image is 1I , which can be 

represented by an undirected adjacency graph, and the 

data structure is: 

  W)E, (V, 1 I                                                 

(11) 

Where   v,  , v,{v  V n21 , V is the set of nodes 

representing different regions in graph 1I , and iv  

memorizes three features in the region i: the number of 

pixels, the mean, and the variance in region i. 

 }),,...,2,1(,),,({ , jiNjiVVeE jiji       

(12) 

E denotes the set of edges between the adjacent 

regions; obviously it records the neighboring regions of 

each region. 

}),,...,2,1(,),(cos{ ,, jiNjietwW jiji       

(13) 

Here jiw , is the weight of each jie , and it denotes 

the adjacent region dissimilarity (region cost). 

The procedure of this stage in a flow chart is given 

in Fig 7, and the detailed description of Fig 7 is 

provided below.  

Input: 1I is represented by a graph, the pixels in 

each region ( iv ) is labeled by a unique number, 

different regions are labeled from 1 to N, and the pixels 

partition different regions are labeled by 0. 

Step 1: Search the whole graph and find the right or 

lower neighbors of each region as jie , .  
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Step 2: Here 1T denotes the region threshold and 

usually it is set to 50 to 100 for the reason that the small 

patches can be combined with other regions just by their 

size and intensity. In this step, we judge whether the 

region amount is less than the threshold. If not, iterate 

step3 to step5.  

Step 3: For each pair of adjoining regions, calculate 

the mean of pixels, the variance and the pixel‟s amount 

in each region. The variance is defined as 





N

i

i XX
N 1

2)(
1

                                       (14) 

Where, iX is the intensity of a pixel i and 

X denotes mean pixel value in a region. Variance is a 

measure of pixel intensities‟ variation and deviation in a 

region. And the formulation of the region cost between 

adjacent regions a and b is 

||

||

bav

bam

diff

diff








                                            (15) 

)()( 1

, vvmm

rV

baba diffwdiffwnnw       (16) 

Here, an denotes the number of pixels in region a, 

a  denotes the mean of pixel intensities in region a, 

and a  denotes the variance in region a.  Then mdiff  

and vdiff  are the difference of mean and variance 

between neighbor regions a and b. In Eq. (16), mw and 

vw  indicate the weight of mdiff  and vdiff ,  and 

usually mdiff  is several-fold bigger than vdiff . In 

terms of our experiments, mw and vw , which are set to 

1.5 and 0.2 separately, generate the better region 

combination results among all the weight values.  

Also, the parameter 1rV  is the weight of region 

size. When either of an  and bn is less than 1T , 1rV  

equals to 1, otherwise 1rV  equals to 1.5, such that the 

small patches are assigned smaller region cost for 

combined easier. 

Eventually, region cost of regions a and b is 

calculated and denoted by baw , . 

Step 4: In this procedure, the minimal baw ,  among 

all the region cost ),...,1,(, Njiw ji   is selected for 

merging. The region a, b and their boundary pixels are 

re-labeled by the smaller tag between a and b. 

Step 5:  WEV ,, are updated during the 

procedure. ,,n  and jiji we ,, ,  of the merged 

regions need to be re-calculated. 

From Eq. (16), we can find that the cost of merging 

is in direct relation to the area of regions, and the texture 

of small patches is more changeful, thus the texture will 

not be involved in the stage. Finally, the image is 

divided into 1T  regions. 

Region Amount

S<=T1

 Find minimal 

region cost and 

merge regions i,j

No

Yes

Partitioned

 Image I2

Update {V,E,W}

S=S-1

 Find neighbors of 

each region

Calculate region 

cost between 

adjacent regions

I1 after last stage

I1 = {V,E,W}

 Fig 7. Region cost calculation flowchart 

3.2. Merging Considering Region Textures  

Followed from stage 2, the initial condition in the 

stage is image 2I  composed of about tens of regions 

and the primary merging steps are the same as stage 2.  

However, the dissimilarity is the computation of 

regions cost. The DCT energy comparison in maximum 

rectangles, which is proposed in subsection 2.3.2, is 

used for compared two texture regions. 

The maximum rectangle covers most area of a 

region, so most textures in a region are taken into 

account, and the region cost here between two regions a 

and b is defined: 

)*()( ,2,

2

, bacmm

rV

baba Wdiffwnnw       (17) 

The definition of an , bn and mdiff  is the same as 

Eq (16). ba,  denotes DCT energy difference between a 

and b. The parameter 2rV  is the weight of region size. 

In the stage, region merging mainly depends on texture 
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than region size, so 2rV is reduced and set to 0.5. 

2,mw and cw  indicate the weight of mdiff  and ba, , 

and they are set to 1 and 5 respectively in our program. 

At last, the same as Eq (16), baw ,  is region cost.  

In the stage, the threshold 2T which denotes the 

final output region number is also needed and input by 

user. Finally, the program can output the segmented 

image 3I , which has required number of regions 2T . 

 

4. Experimental Results 

4.1. Segmentation results of the first and second 

stages 

The results of the first stage are the images after 

improved watershed transform. During the second stage, 

the threshold 1T  need be fixed. Generally, the range of 

1T  is about 50 to 100. If the initial image‟s resolution is 

high, E. g. 512*512,  1T  can be larger since that each 

patch in 2I  is enough for feature extraction; otherwise 

1T  should be smaller. In the following experiments, the 

original images‟ resolution is 256*256, and 1T  is set to 

50. The two stages‟ results of “Lena”, “baboon” and 

“jet” are shown in Fig 8. Comparing the left images and 

right ones, many fragments that don‟t have great 

difference with their neighbors in intensity will get the 

high merging priority. 

From the results of the second stage, the regions 

are relative larger, consequently they are convenient to 

extract textures in next stage. Yet, we can find out that 

some regions, such as the hair in picture “Lena” and the 

tree in picture “Lake”, that has different mean gray 

value but analogous textures, aren‟t able to be combined 

with each other. Then the stage 3 is required. 

 

 
Fig 8. The results of three images “Lena”, “Lake” and “Jet” 

from top to bottom. The left column is segmentation results 

after stage 1, the improved watershed transform, and the right 

column is the results after stage 2. 

4.2. The final results and comparing with human 

segmentations 

The proposed technique is applied on the Berkeley 

segmentation dataset 25 which is constituted of a wide 

range of pictures from landscapes, animals to human 

beings, various objects. Moreover, the dataset include 

ground truth images which is hand-labeled by subjects.  

The comparison between the proposed 

segmentation obtained and the ground truth 

segmentation is obtained by computing the Precision 

and Recall, as defined in 26. Let MS be boundaries 

obtained by the proposed method for segmentation and 

GS  be boundaries of the ground truth segmentation, 

then the precision P is defined as 

)(#

)(#

M

GM

S

SS
P


                                           (18) 
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where )(# S  is the number of pixels of the boundaries 

in the segmentation S and )( GM SS  is the 

intersection of MS  and  GS . The recall is defined as 

)(#

)(#

G

GM

S

SS
R


                                           (19) 

The measure F is defined as: 

Rp

F
1

)1(
1

1

 

                                     (20) 

where  equal to 0.5 is an overall measurement of the 

quality of segmentation. A good segmentation has 

values of P, R and F close to 1. 

The implementation of our method is good at 

partitioning the graphs which have distinct objects, but 

our segmentations will not so accurate when the objects 

and background which are difficult to distinguish.  

Some comparisons between human segmentation 

results and our benchmark results are provided in Fig 9 

and Fig 10. In the two figures, the left column is the 

human segmentations and the right column is results of 

the proposed method which is based on the original 

images. Fig 9 and Fig 10 shows that by controlling the 

final region number parameter 2T , our method can find 

the whole object from the background, however some 

details are ignored in our methods and the superiority of 

human segmentation is evident: indeed, in all images, 

humans provide a segmentation where objects are 

correctly extracted and identified from the background 

Table II illustrates a quantitative comparison 

between the proposed algorithm and the human 

segmentations. For each image of our proposed method 

results, we compare it with all of the human 

segmentations from the original image. The human 

segmentations of Table II images a-d are the left column 

of Fig 9.a-d, and the human segmentations of Table II 

images e-g are the left column of Fig 10.e-g. Here the 

region number threshold 2T is set to 15 for the reason 

that this threshold gives the better F value.  

The results of image a and g are best and F value is 

greater than 0.6, while image e has the worst 

segmentation result since the human segmentations of 

Fig 10.e has many textures and patterns which are hard 

to find in our method. Generally, most results of our 

method can give ideal segmentations. 

 
Fig 9. The left column is the human segmentations and the 

right one is our segmentation results 

 

Images P R F 

a 0.61 0.91 0.73 

b 0.43 0.62 0.51 

c 0.39 0.88 0.54 

d 0.52 0.69 0.59 

e 0.31 0.42 0.36 

f 0.50 0.81 0.62 

g 0.33 0.73 0.45 

Table II. Quantitative precision and recall comparison 

between our method and human segmentations 
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Fig 10. The left column is the human segmentations and the 

right one is our segmentation result 

4.3. The results and comparing with N-Cut 

method 

The obtained segmentation of „Lena‟ between our 

method and Normalized-Cut algorithm is shown in Fig 

11. The N-cut method segment the image with the 

resolution of 128*128. We implement the program 

with the resolution of 128*128. Our method partitions 

the object more accurately, which improves 

performance and convenient for some operations 

subsequently. 

 

 
Fig 11. The comparison of segmentation of „Lena‟ between 

our method and Normalize Cut algorithm. a and b are divided 

into 10 and 6 regions respectively by N-Cut algorithm.  c and 

d are divided into 10 and 6 regions respectively by our 

method. 

 

      Besides, the comparison of the image “Baboon” and 

“Lake” between our method and N-Cut algorithm are 

shown in Fig 12 and 13. The intensity‟ difference of 

regions is little in Fig 12; therefore the distinction of 

each part is evident by texture. From the results, it is 

obvious that our method is able to partition the different 

texture parts into the accurate regions compared with 

the other. Also in Fig 13, from visual perception 

perspective, the partitions of our method present more 

precise and reasonable.  
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Fig 12. The comparison of segmentation of „Baboon‟ between 

Normalize Cut (a, b) algorithm and our method (c, d). Figure 

a, c are 10 regions while b, d are 6 regions. 

        

 
Fig 13 The comparison of segmentation of „Baboon‟ between 

our method (c, d) and Normalize Cut (a, b) algorithm. Figure 

a, c are 10 regions while figure b, d are 6 regions. 

5. Conclusion 

In this paper, we propose a novel image 

segmentation approach based on watershed 

transformation, DCT transform and region merging. We 

improve the watershed transform by preprocessing 

techniques: edge detection and marker. Then during 

region merging, the region size, mean and variance 

features are used to calculate region cost for 

combination in the first stage, and in the second 

merging stage we utilize DCT transform for texture 

comparison. Finally the image is segmented into several 

partitions which can be controlled easily.  

The proposed algorithm is evaluated for several 

grayscale images, and the results are attractive with 

respect to most cases, which can accurately extract the 

segmentation. We also give a comparison between our 

method and N-Cut method. The experimental results 

demonstrate our method is more precise and reasonable, 

and is comparable with the human segmentation results. 

In the future work, the extension for the 

segmentation of color images is a possible research 

direction, and parameters adjustment using more 

adaptive approaches can also be studied.  
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