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Abstract 

A path planning method for mobile robots based on two dimensional cellular automata is proposed. The method 
can be applied for environments with both concave and convex obstacles. It is also appropriate for multi-robot 
problems as well as dynamic environments. In order to develop the planning method, environment of the robot is 
decomposed to a rectangular grid and the automata is defined with four states including Robot cell, Free cell, Goal 
cell and Obstacle cell. Evolution rules of automata are proposed in order to direct the robot toward its goal. CA 
based path planner method is afterwards modified by a colony technique to be applicable for concave obstacles.  
Then a layered architecture is proposed to autonomously implement the planning algorithm. The architecture 
employs an abstraction approach which makes the complexity manageable. An important feature of the architecture 
is internal artifacts that have some beliefs about the world. Most actions of the robot are planned and performed 
with respect to these artifacts. 
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1. Introduction 

Path planning problem of a mobile robot means finding 
a collision-free path between two specified positions in 
robot's configuration space1. The robot should move 
from initial configuration to goal configuration while 
avoiding obstacles. Path planning of mobile robots is a 
well studied problem if convex obstacles are assumed 
and exact map of environment is given. Conventional 
path planning methods can be classified into three major 
categories including cell decomposition, road map and 
potential field methods2. In cell decomposition methods 

free space of the environment is divided into some cells. 
By connecting adjacent cells a connectivity graph is 
made and a path is found by searching in the graph. 
Roadmap methods capture the connectivity of the free 
space in a network of one-dimensional curves called 
roadmap and then use it as a set of standard paths 
wherein the path of the robot should be determined. In 
potential field technique the robot is modeled as a 
moving object inside an artificial potential field whereas 
attractive potentials are assigned to the robot's goal and 
repulsive potentials are assigned to obstacles. All of 
these approaches need a complete representation of 
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configuration space which necessitates large 
computational efforts. In general, the complexity rises 
exponentially with the number of degrees of freedom of 
the robot and the dimensions of the configuration 
space3. Currently, the focus of studies is shifted to 
development of computationally low-cost path planning 
techniques.  

Cellular Automata (CA) as distributed spatially 
extended systems were originally developed by Von 
Neumann4 and then extended by Burks5,6. CA consists 
of a large number of simple components (cells) with 
local links. It has the ability of performing complex 
computations with a high degree of efficiency and 
robustness. CA can also be considered as an alternative 
for differential equations7. For these reasons, CA has 
been extensively used in technology, computer science, 
mathematics and natural science. Examples include 
image processing8, reconfigurable robots9, amino acid 
composition10 and modeling of phenomena such as 
urban growth11, earthquakes12 and galaxy formation13. It 
has also been used for high speed simulation of 
scientific models and for computational tasks (see Ref. 
14 for examples). According to the advantages of CA in 
fast and reliable parallel computation and their local 
computation properties, these architectures can be a 
good candidate to be employed as a path planning tool 
in robotics.  

Some researchers have used cellular automata as a 
path planning tool for mobile robots. Shu and Buxton 
presented a simple path planning algorithm for mobile 
robots in the presence of convex obstacles15. Tzionas et 
al introduced a collision-free path planning algorithm 
for a diamond-shaped robot based on retraction of free 
space onto a Voronoi diagram which is constructed 
through the time evolution of cellular automata16.  
Behring et al showed that a CA allows efficient 
computation of an optimal collision-free path from an 
initial to a goal configuration on a physical space 
cluttered with obstacles17. Marchese presented a reactive 
path-planning algorithm for a non-holonomic mobile 
robot on multilayered cellular automata18. He afterwards 
introduced a fast path planner for a multi-robot 
environment composed of robots with generic shapes 
and sizes (user defined) and different kinematics19. In 
his work the robot should have primary information 
about shapes and sizes of the obstacles. As preliminary 
works of this paper we introduced path planner cellular 
automata for mobile robots in Ref. 20. In Ref. 21 the 

method is modified for concave obstacles and in Ref. 22 
an autonomous architecture was employed to implement 
the planning method. In Ref. 23 a path planning method 
for convex obstacles was developed based on a newly 
introduced concept "best goal directing cell".  

None of above works represents a blind algorithm to 
deal with both concave and convex obstacles as well as 
being applicable for single-robot and multi-robot 
environments. In this paper we will unify our above-
mentioned preliminary works to introduce a planning 
method that does not need primary information of the 
environment and it is suitable for both convex and 
concave obstacles. It is also appropriate to be used in 
the presence of dynamic obstacles and meanwhile it is 
applicable for multi-robot environments. Moreover this 
paper exploits an autonomous architecture to implement 
the proposed algorithm.   

The aims of this paper are manifold. The first aim is 
to develop a CA based path planning algorithm. One 
major challenge in path planning of mobile robots is 
dealing with concave obstacles. The robot may be 
entrapped in the concave region due to local minima. 
According to the advantages of the ant colony 
algorithms in solving complex problems with large 
search spaces24, 25, we can nominate ant colonies to be 
employed in path planning algorithms of mobile robots 
more specifically in the environments with concave 
obstacles. As the second aim, an algorithm inspired by 
ant colonies will be incorporated with CA based path 
planning algorithm to extend it for concave obstacles. In 
order to implement the path planning algorithm the 
mobile robot must be capable of getting sensory data, 
analyzing information, making decisions and doing 
proper control commands. As ultimate expectation, all 
of these tasks should be put into operation in a unified 
autonomous architecture. Normally the first concern 
about biologically inspired algorithms is architecture of 
their implementation. In this paper, as the third aim, we 
will introduce a layered autonomous architecture to 
perform path planning algorithm. The architecture 
employs an abstraction approach which makes the 
complexity manageable.   

2. CAs Based Path Planning Method  

2.1. Cellular Automata 

A cellular automaton is a dynamical system which is 
discrete in state, space and time. It consists of a regular 
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lattice of cells in some dimension d4-7; each cell can be 
in one of a finite number of states and may identically 
interact with adjacent cells to update its state. Updating 
the states – or evolution of CA – is executed based on a 
local interaction rule which is the same for all cells4-7. 
Some basic concepts of cellular automata are as the 
sequel: 
• Cells: finite-state machines with identical pattern of 

local connections to other cells.  
•  State: a value which is assigned to a cell in a 

particular time step. The number of possible states 
is finite and states may be represented by some 
integers or by some symbols. The state of cell i at 
time t is symbolized as t

iS .  
• CA's rule: a local rule which takes current states of 

a cell and the states of its neighboring cells as 
inputs and returns the next state of the cell. CA's 
rules can be expressed as a lookup table. 

• Neighborhood: a cell itself and its adjacent cells in 
radius r. For one-dimensional arrays definition of 
neighborhood is simple, however, for two-
dimensional arrays there are different definitions 
for neighborhoods. Neumann neighborhood and 
Moore neighborhood are two well-known ones. 
The Neumann neighborhoods consider all adjacent 
cells of a middle cell as neighbors whereas the 
Moore neighborhoods only consider top, bottom, 
left and right cells as neighbors.  

Fig. 1 illustrates a one-dimensional, binary-state, 
nearest-neighbor (r=1) cellular automaton with array 
length I=8. Both the lattice and the rule table for 
updating the lattice are illustrated. The lattice 
configuration is shown at two time steps. 

2.2. Path Planning Algorithm 

2.2.1. Modeling of configuration space as CA 

The aim of this section is to model the robot and its 
configuration space as CA. The rational behind this 
modeling is that in CA the state of a cell is updated 

according its neighborhood; hence the resulting 
planning method would not need complete 
representation of workspace. 
       The robot's environment is characterized by the 
following assumptions:    
• The robot is encircled and changed into a circular 

robot (See Fig. 2.a) and it is assumed to be a free 
flying object. 

• Goal coordinates (xg ,yg ,θg) are given and the  robot 
can obtain its own coordinates (xt ,yt ,θt) at each 
time step (for example by GPS or dead reckoning).  

• The robot has only a short sensing depth in order to 
recognize if the adjacent cells are free not.  
In order to model the problem as cellular automata, 

we decompose the work-space into a I J rectangular 
grid where the robot can be totally located in a cell. Fig. 
2.b shows the discrete work-space of a robot. In this 
discrete work-space three types of cells can be 
recognized: Robot cell, Obstacle cell and Free cell. 
Robot cell is a cell wherein the robot is located, obstacle 
cells are cells that fully or totally occupied by obstacles 
and the other cells are free cells. These types of cells are 
denoted by R, O and F respectively.  One of the free 
cells that correspond to goal position is called Goal cell 
and is denoted by G. Now, we have a lattice of cells 
with a finite number of possible states: {R, O, F, G} that 
can be interpreted as two dimensional I J cellular 
automata with four states.  

2.2.2. Evolution rules for single robot problem 

The CA defined in the previous subsection must be 
evolved in such a way that the robot cell approaches 
goal cell. Thus, appropriate construction of CA's 
evolutionary rules may result in path-planner cellular 
automata. If the obstacles assumed to be convex, we 
propose rule base described in Fig. 3 to build desired 
CA. In this rule base there are four rules R1, R2, R3 

         
         
         
         
         
         

Robot 

Obstacles

(b) Robot cell, obstacle cells and 
free cells in the work-space 

Fig 2. Decomposition of the workspace and constructing 
cellular autamata 

(a) The robot (considering 
different orientations) can 
be encircled and converted 

to a circular robot 

Network  
t=0  1 0 1 0 1 1 0 1 

  
 

t=1 1 0 1 0 0 0 0 1

Rule Base 
Neighborhood 000 001 010 011 100 101 110 

Output 0 1 1 0 1 0 0 

Fig 1. A binary one-dimensional CA 
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and R4. In these rules, at each time step the Robot cell 
is exchanged with a free cell that is the nearest cell to 
the goal cell. Thus the robot cell is evolved to the 

nearest cell to the goal cell. It is noteworthy to mention 
that only one of these rules is selected at each time step 
according to relative position of the robot cell and goal 
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            ------------------------------------------------------------------------------------------ 

Fig. 3. Rules of the path planner cellular automata. At each time step t only one of the rules is active. In these rules, (xt,yt) is 
position vector of robot at time t and (xg,yg) is the position vector of goal cell. Symbol ×  denotes the cells those states do not 
important at time step t. 
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cell. In these rules Neumann neighborhood is used.   
Lemma 1. If obstacles are convex, the rules shown in 
Fig. 3 will direct the robot cell in CA to goal cell in a 
finite time steps.   
Proof. In each time step the robot cell moves into the 
free adjacent cell which is the nearest to the goal cell. 
Since there is finite number of cells in the lattice and 
there is no concave obstacle, after a finite number of 
time steps the robot cell would reach into the goal cell.            

   
2.2.3. Multi-robot problem 

In multi-robot problems the number of robot cells and 
goal cells in CA will be increased. For example in a 

two-robot problem each cell can be in one of the states: 
{R1, R2, F, O, G1, G2} where R1 and R2 stand for robot 
cells and G1 and G2 stand for goal cells. In multi-robot 
problem the rule base remains unchanged and at each 
step time the same rule base (including R1, R2, R3 and 
R4) is sequentially applied to robot cells.  
Lemma 2. In multi-robot multi-goal problems, the rules 
in Fig. 3, by sequentially applying for all robots, will 
generate collision-free paths for robots from their initial 
positions to their goal positions.  
Proof. For moving each robot toward its own goal the 
same proof of Lemma 1 still holds. To confirm that the 
robots never collide with each other, without loss of 
generality consider two robots in Fig. 4. If the rules are 
firstly applied to R1 in Fig. 4.a, it moves into a free cell, 
for example central cell in the figure. Now in Fig. 4.b. 
the central cell is not a free cell anymore and R1 would 
not move into it.                                                             

To conclude this section a pseudo-code of evolution 
of path planner automata is illustrated in Fig. 5.  

3. Modification of Planning Method for Concave 
Obstacles Using Ant Colony Inspired Mechanism  

3.1. Single-robot problem 

In the planning algorithm introduced in Section 3 all 
obstacles assumed to be convex. To explain 
disadvantage of the algorithm in the presence of 
concave obstacles, consider the situation of Fig. 6 where 
the robot is initially located in cell R and goal is the 
button-right cell of the lattice. For all cells of the lattice 
we have (xt<xg & yt<yg); consequently among the rules 
of Fig. 3, R1 should be used. According to rule R1, if 

encounters sub-block ⎥
⎦

⎤
⎢
⎣

⎡
OO
OR  in its neighborhood, the 

robot cell would move to a cell which is farther to the 
goal cell. Therefore, applying R1 to the lattice, the robot 
cell travels along the path shown in Fig 6.a and moves 
back and forth between cells C1, C2. In fact the robot is 
entrapped in the concaveness. 

 In this section we use a colony mechanism to 
modify the planning algorithm in order to be applicable 
for concave obstacles.  In our colony a large number of 
robots (agents), those may be considered as ants, 
collaborate with each other to find a path in the 
environment. The key idea is that vanguard agents 
identify and mark the concave regions for backward 
agents. A vanguard agent checks states of three nearest 

(a) Before applying the rules 
 

Fig. 4. The robots do not collide with each other in multi-
robot problem 

R2 F F 

F F O 

F R1 O 

R2 F F 

F R1 O 

F F O 
(b) After applying the rules for R1 

while Robot cells Rk have not reached Goal cells Gk do  
t=t+1  
  for i=1:I 
  for j=1:J    // for cell C(i,j)  
    if FS t

ji =, or OS t
ji =, or GS t

ji =, then    

      t
ji

t
ji SS ,
1

, =+  
    end-if 

  if k
t

ji RS =, then 

           FS t
ji =+1

,  
            (xt,yt)=coordinates of robot cell Rk 

     //To update states of cells in the neighborhood of 
robot cell select rule base of Fig. 3 as the following:  

  if         gt xx ≤  and gt yy ≤ then use rule R1    

  elseif gt xx > and gt yy < then use rule R2  

  elseif gt xx < and gt yy > then use rule R3  

  elseif gt xx > and gt yy > then use rule R4  
  end-if 

  end-if 
  end-for 
  end-for 
end-while 

Fig. 5. Pseudo code of evolution of path planner cellular 
automata applicable for environments with convex 
obstacles.    
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cells to the goal in its neighborhood. If all of these three 
cells are obstacle cells the current cell is assumed to be 
in the concave region. When the vanguard robot finds 
itself in the concave region, it drops a certain amount of 
pheromone on its own location. Subsequently the 
following robots will behave Pheromone cells as 
obstacles and avoid them. 

In order to add this idea into CA based planning 
method, without loss of generality, we consider the 
environment of Fig. 6. As it is explained before, in this 
lattice the only active rule base will be R1. We change 
the rules in R1 in such a way that if the robot (agent) 

encountered the sub-block ⎥
⎦

⎤
⎢
⎣

⎡
OO
OR  it would drop 

pheromone on its current cell. This yields to the 
following rule:   

 

(1)           

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

OO
OPR

OO
ORF

...

.........

...

.........
  

 

where state P denotes the Pheromone cell.  At the next 
time steps, the agent(s) will behave the pheromone like 
an obstacle cell. Applying this modified rule base gives 
the path shown in Fig 6.b in which the pheromone cells 
are depicted in gray. It is obvious from the figure that 
after five time steps the robot leaves the concave region 
toward its goal. 

It is noteworthy to mention that if the pheromone 
cells increase unlimitedly they may block the paths 
toward the goal. To avoid this event we can let the 
pheromones vapor in a specific rate, i.e. each 

pheromone cell exists only for limited time steps 
denoted by v.   

The CA's rules in Fig. 3 may be modified according 
to the described colony mechanism to build the rules in 
Fig. 7.  

Remark: There are two differences between the 
proposed colony and conventional ant colonies: 
(1) In the proposed method the agents avoid going into 

the pheromone cells whereas in the conventional 
ones ants are interested to move in the paths with 
high density of pheromones. 

(2) The agents in the ant colonies continuously deposit 
pheromone on their paths while in our mechanism 
pheromone only is dropped when the agents are on 
the concave regions. 

3.2. Multi-robot problem 

The modified planning method is much more 
superior while applying to multi-robot systems. If 
several agents (robots) start to move sequentially with a 
specific time delay τ, each agent independently 
performing the rule (1), smoother path is generated. To 
clarify the concept, consider a two-agent system as 
illustrated in Fig. 8.  In Fig. 8.a the robot R1 has already 
left the concave region dropping pheromone inside it.  
Now, R2 behaves the pheromone cells as obstacles and 
does not move inside the concave region. In this figure 
the pheromone in cell C1 is dropped by R2†.  

Even if the time delay between two robots is not 
long enough to let R1 leave the concave region before 
R2 arrives, the path of R2 is still shorter and smoother 
than the path of R1 (See Fig. 8.b). Obviously in a three-
agent environment, agent R3 will have much smoother 
path.  

In summary, applying the modified algorithm to a 
single robot in online planning we will get a path like in 
Fig. 6.b. Applying the algorithm to a sequence of robots 
(agents) in online planning yields a path like in Fig. 8. 
The algorithm can also be applied to a single robot in 
off-line planning where some virtual agents adopted to 
perform the algorithms and get a smooth path for the 
robot. 

Like in section 2, we have summed up the modified 
planning algorithm in a pseudo code shown in Fig. 9.  

                                                 
† There is no difference between pheromone cells created by R1 or 
R2. In the figures they are differently shown just for 
decipherability. 

 

(b) If the robot leaves some 
pheromone on the cells 

inside the concaveness, it 
can escape toward its goal. 

Fig. 6. Modification of CAs based planning algorithm for 
concave obstacles using an ant colony inspired 
mechanism. 

C2    C1 GG 

RR

(a) Applying CAs planner in Fig. 
3.  The robot is entrapped in the 
concaveness moving back and 

fro between C1 and C2 
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           - -----------------------------------------------------------------------------------------  
Fig. 7. The rules for the path-planner cellular automata modified by ant colony inspired method.  At each time step t only one 
of the rules is active. In these rules, (xt,yt) is position vector of robot at time t and (xg, yg) is the position vector of goal cell. 
Symbol ×  denotes the cells those states do not important at time step t and OP means: Obstacle cell ∨ Pheromone cell 
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(a) R1 has left the concaveness 
before R2 arrives. 

(b) R2 starts its motion 3 time 
steps later than R1 

Fig. 8. Applying the modified algorithm for multi-robot 
systems 

A2 R1 

C1 

R2 

G

R2  R1 

 

4. A Layered Architecture to Implement the 
Path Planning Algorithm  

4.1. Platform selection 

To implement the planning algorithm, the robot needs 
an instrument to obtain its own coordinates at each time 
step. This instrument can be, for example, a dead 

reckoning tool. The robot also requires some sensors to 
recognize the state of adjacent cells. Sonar and IR 
proximity sensors are usual options for obstacle 
avoidance and low-resolution surface extraction. 
Moreover, they are potentially the best sensing modality 
for mobile robots. Therefore by mounting a rotary sonar 
sensor (or equivalently 8 fixed sensors) on the robot, a 
good sensing of the neighborhood would be available. 
On the other hand the robot must be able to read 
encoders in order to facilitate control of motors and 
update dead reckoning information in a feedback loop. 
Velocity control and position control are both desired in 
mobile robots. Power control of motors is also 
significant. In order to execute the path planning 
algorithm, a mobile robot must be capable of getting 
aforementioned sensory information and do appropriate 
control tasks. Here, it is preferred that the robot is 
autonomous i.e. capable of gathering information and 
carrying out tasks without programmatic involvement26. 
Autonomy involves complex sensing and planning 
operations on the part of the robot, including 
coordination of motor controls and planning. 

There are variety of platforms developed for 
autonomously design and control of mobile robot. RAP, 
RWI, TeamBots, Xavier, BERRA and Saphira are the 
most well-known ones27.  One can find a comparative 
study of these platforms in Ref. 27.   

To implement our path planning algorithm, we 
employed Saphira (firstly introduced in Ref. 28) 
because of the following advantages: 

• Saphira employs a layered abstraction 
approach which makes the complexity 
manageable29. 

• Saphira provides a geometric representation of 
the robot's environment which is very useful in 
path planning task.  

• In control system, Saphira is based on some 
beliefs about the world those are represented in 
artifact. This feature is suitable to implement 
rules of the proposed path planning method. 

• A high level scripting language (Colbert) is 
available in Saphira that highly improves 
productivity27. 

• Saphira lets the operator check some of the 
internal states and variables which is a very 
convenient characteristic27. 

• Saphira is a platform that brings up bindings 
for different languages and supports for multi-
agent systems27. 

Fig. 9. Pseudo code of evolution of path planner cellular 
automata modified to be applied for environments with 
convex and concave obstacles.    

while Robot cells Rk have not reached Goal cells Gk do  
t=t+1  
  for i=1:I 
  for j=1:J    // for cell C(i,j)  

    if FS t
ji =, or OS t

ji =, or GS t
ji =, then    

      t
ji

t
ji SS ,
1

, =+  
    end-if 

  if PS t
ji =, and PS vt

ji =−
,  then FS t

ji =+1
,     

    else PS t
ji =+1

,     // v is vapor time   
  end-if 

  if k
t

ji RS =, and kt τ>  then   

            //τk is starting delay of robot Rk  

           FS t
ji =+1

,  
            (xt,yt)=coordinates of robot cell Rk 

     //To update states of cells in the neighborhood of 
C(i,j), select rule base of Fig. 7 as the following:      

  if         gt xx ≤  and gt yy ≤ then use rule R1      

  elseif gt xx > and gt yy < then use rule R2  

  elseif gt xx < and gt yy > then use rule R3  

  elseif gt xx > and gt yy > then use rule R4  
  end-if 

  end-if 
  end-for 
  end-for 
end-while 
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In the rest of this section we will describe the 
components of the Saphira and the architecture required 
for realization of the proposed algorithm. 

4.2. Robot server 

Central part of the architecture is robot server. The robot 
server includes two levels as shown in Fig. 10. In the 
lower level, the server performs some regular tasks like 
management of motor and sensor operations and 
updating of the robot's internal dead-reckoning position 
and power control. 

In the higher level, the server implements a set of 
basic services including set point generation for velocity 
and direction, power control on a fast interrupt cycle 
supplied to the motors, inspection of encoder 
information and supervision of the sensors. 

In Saphira, the program core is coded in the C 
language. A particular high-level language Colbert is 
also used in Saphira. It was firstly developed by 
Konolidge30. 

4.3. Saphira architecture  

Saphira architecture is an autonomous multilayer 
sensing and control system appropriate for robotics 
applications. The architecture is an integrated 
mechanism for robot perception and action and runs a 
reactive behavior system with behavior sequencer. 

Some routines for sonar sensor interpretation, map 
building and navigation were integrated. At the central 
part it has a Local Perceptual Space (LPS) which 
provides a geometric representation of the robot's 
environment (see Fig. 11). Because of different 
representations for different tasks, LPS contains 
different levels of interpretation of sensor information 
as well as a priori information from sources such as 
dead reckoning tool. LPS gives the robot knowledge of 
its immediate environment and it is very significant in 
the activities like path-planning algorithms those require 
combination of sensor information and planning of local 
movement. LPS gives the Saphira architecture its 
representative rationality.  

Another important feature in Saphira architecture is 
internal artifacts. Saphira has some beliefs about the 
world and these beliefs are represented in artifacts and 
most actions are planned and performed with respect to 
these artifacts. Our planning algorithm includes two 
groups of actions, high level actions and low level ones. 
The high level actions are goal-directed actions and 
include selecting the appropriate rule from CA rule-
base. The low level actions are obstacle avoidance 
actions including the task of updating the states of the 
cells. Obstacle avoidance, as a low level action, 
sometimes necessitates that the robot perform a 
diagonal motion by a combination of two non-diagonal 
ones. For example in the following block the robot 
moves up then left in order to avoid obstacle O. 

 
 
 

Fig. 10. Server operating system. Low-level tasks are motor 
control, sensor control and position integration. High-level 
tasks are encoder reading, PWM control and I/O control. 
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Fig. 11. Saphira system architecture. Perceptual bocks are on 
the left and action blocks are on the right. Control is 
coordinated by PRS-lite. 
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Selecting the appropriate rule is a reactive behavior 

and utilizes surface information and artifacts. At the 
task level complex behaviors are performed. Time 
critical behaviors such as updating of cell states are 
carried out by a very simple processing of the sensory 
information those are available quickly. At the control 
level, the Saphira architecture is behavior-based: the 
control problem is decomposed into small units of 
control task called basic behaviors. 

 In our system if the robot's current cell is the cell 
C(i,j), obstacle-avoidance behavior might have the 
following variables indicating blocked directions in 
robot's path.  

 

C (i-1, j-1) is blocked 
C (i, j-1) is blocked 
C (i-1, j) is blocked 
C (i-1, j+1) is blocked 
C (i+1, j-1) is blocked 
C (i, j+1) is blocked 
C (i+1, j) is blocked 
C (i+1, j+1) is blocked 
 

Obstacle avoidance routines must be written 
according to goal-directed requirements. For example, if 
the goal cell is on the right side in the bottom of the 
robot cell, the rule R1 of the automata must be selected 
and we may have the following rules: 

 

If ~ (C(i+1, j+1)  is blocked)     
  Exchange (robot cell, C(i+1, j+1)) 

 

If (C(i+1, j+1) is blocked) & ~(C(i+1, j) is blocked)      
  Exchange (robot cell, C (i+1, j)) 

 

If (C (i+1, j+1) is blocked) & (C (i+1, j) is blocked) 
& ~ (C  (i, j+1) is blocked)    

  Exchange (robot cell, C (i, j+1)) 
 

If (C (i+1, j+1) is blocked) & (C (i+1, j) is blocked) 
& (C (i, j+1) is blocked) & ~ (C (i+1, j-1) is 
blocked) 
   Exchange (robot cell, C (i+1, j-1)) 
 

If (C (i+1, j+1) is blocked) & (C (i+1, j) is blocked) 
& (C (i, j+1) is blocked) & (C (i+1, j-1) is blocked) 
& ~(C (i-1, j+1) is blocked) 

 Exchange (robot cell, C (i-1, j+1)) 
 

 

Recall that exchanging the robot cell and a free cell 
means that the real robot moves to the free cell. 
Therefore the rules provide true angle and velocity set 
points for the robot as it is shown in Fig. 12. Obstacle 
avoidance tasks, those are reactive behaviors, often can 
take their input directly from sensors, probably after 
some transformation or filtering. Goal-directed 
behaviors can often benefit from using artifacts. 
Normally, artifacts in the LPS are reorganized based on 
the robot's dead-reckoning mechanism, which is reliable 
only over short distances.  

4.4. Control and Decision-making: PRS-Lite  

The control architecture of Saphira is composed of some 
routines that infer sensory information relative to the 
model of geometric world and some action routines that 
map the states to the actions.  Localization routines link 
information of the local sensors of the robot into world's 
map and the Colbert sequences.  

For the physical actions of the system, a low-level 
control is applied using artifacts. In the higher level, 
there is a requirement to associate behaviors with 
specific goals those the robot should complete. This 
management requires determination of the exact time to 
enable or disable behaviors as parts of a task as well as 
coordinating them with other activities in the system. 
PRS-Lite31, a reactive controller based on the 
Procedural Reasoning System (PRS-CL), performs this 
role in Saphira26.  

 

Fig. 12. Behavioral Rules provide true angle and velocity set 
points for the robot 
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(a) Path of the first robot (b) Path of the forth 
bFig. 15 Modified planning algorithm is applied to a sequence 

of robots in an environment with convex and concave 
obstacles. (∆ shows goal points) 

 

4.5. Communication  

In order to facilitate communication between the server 
and the robot, Saphira supports a packet-based 
communications protocol. Since the servo control of 
motors and sensors is done locally, the server can 
communicate with a robot via a low-bandwidth channel.  

In the implemented system, the server sends an 
information package, containing information about the 
position, velocity and sonar sensor readings, to the robot 
every 100ms to update its set point variables and sensor 
schedules. A radio modem is used as data channel and 
to have a reliable communication, a checksum is done 
on packets to determine if the packet is damaged.  

5. Simulation and Experimental Results 

5.1. Simulations of planning algorithm 

In the first step, we considered an environment with 
some convex obstacles. The CAs planning algorithm is 
applied for two sets of initial-goal points in a single 
robot environment. The planned paths (generated by 
simulations in MATLAB) are shown in Fig. 13.  

Secondly in a two-robot environment the robots 
were initialized in two points of the work space. It is 
assumed that the robots have different goals. The 
generated paths by the proposed algorithm are 
illustrated in Fig. 14.a and Fig. 14.b. To confirm that the 
robots are not in the same cell at the same time, distance 
between robot cells in different time steps are shown in 
Fig 14.c. This distance never becomes zero which 
implies that the robots are not in the same cell at the 
same time. 

In the third step, a maze with concave regions is 
selected. The proposed method is applied to a sequence 

of robots considering τ=10 time step delays between 
agents (all starting from the same point). The vapor rate 
is set in such a way that pheromone disappears v=12 
time steps after dropping. Fig. 15 shows the generated 
path for the first and forth robot. It is noteworthy to 
mention that in Fig. 15.b. the concaveness has already 
filled with pheromones. The proposed technique could 
successfully solve the path-planning problem. 

5.2. Implementation and experiments    

A differential wheel mobile robot was selected to 
perform the path-planner cellular automata. A rotary 
sonar sensor is implemented on the robot to detect states 
of adjacent cells. The Saphira architecture was 
implemented to make the robot autonomous. 
Servomotors (in wheels) are independently controlled 

Fig. 14. Two robot problem 

  (a) Path of robot R1                       (b) Path of Robot R2 

(c) Distance between robots R1 and R2 in terms of time steps. 
The robots are not in the same cell at the same time. 
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Fig. 13. Single robot moves in environment with convex 
obstacles. The path is planned for two different initial-goal 
sets using proposed CAs based algorithm. (∆ shows goal 
points) 
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by a PI controller.  
The planning algorithm is embedded by the 

proposed architecture and the robot was tested in three 
different environments.  

The first test corresponds to a single robot problem 

in an environment with convex obstacles. Fig. 16 shows 
four snapshots of the experiment. Generated path by the 
algorithm is also depicted in the snapshots. 

As second experiment, a two-robot problem with 
convex obstacles is investigated. The robots have 
different initial-goal sets. The experiment is designed in 
such a way that the paths of the robots are intersecting. 
It can be observed that the robot R2 adjusts its path in 
order to avoid collision with the robot R1. Eight 
snapshots of this experiment are shown in Fig. 17.  

In the third test an environment with concave 
obstacles is considered. A single robot is assumed and 
its initial-goal cells is selected in such a way that the 
robot has to go inside the concave region. Fig. 18 shows 
eight snapshots of the corresponding experiment. It is 
clear from the figure that the robot has escaped from the 
concaveness and moved toward its goal.           

6. Summary and Conclusions  

Due to the advantages of CA in fast and reliable parallel 
computation and its local computation properties it was 

Fig.17. Eight snapshots of a two-robot test in an 
environment with convex obstacles. The generated path for 
R1 and R2 by the proposed algorithm is shown by dashed 
and solid white  lines respectively. R2 adjusts its path in 
order to avoid collision with the robot R1    
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Fig.16. Four snapshots of a single robot test in an 
environment with convex obstacles. The generated path by 
the proposed algorithm is shown by white lines.    
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Fig.18. Eight snapshots of a single robot test in an 
environment with concave obstacles. The robot has escaped 
from concave region.  The generated path by the proposed 
algorithm is shown by white lines.    
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selected as a tool to develop a path planning method for 
mobile robots. In the proposed method, the robot 
environment is considered as two dimensional automata 
with four states: Robot cell, Free cell, Obstacle cell and 
Goal cell. The robot (the agent) was assumed to have 
only a short sensing of its environment in order to detect 
adjacent obstacle cells. Evolutionary rules of the 
automata were developed in such a way that the robot 
progressively moves toward the goal. This yielded to an 
on-line planning method that could be easily extended 
for multi-robot environments. To this end, evolutionary 
rules should be sequentially applied to robots.  

The algorithm was also modified using an ant 
colony inspired mechanism to be pertinent for concave 
obstacles. In this extension the agent drops some 
amount of pheromone on the cells inside the 
concaveness and marks them as Pheromone cells. 
Pheromone cells are behaved as obstacles in the 
succeeding time steps. 

Finally a layered architecture called Saphira was 
used to implement the planning algorithm in an 
autonomous manner. Saphira is a multilayer behavioral 
sensing and control system to manage tasks of an agent. 
Eventually we came to an autonomously implemented 
mechanism for path planning of mobile robots in single 
and multi robot problems which is applicable for 
environments with both concave and convex obstacles. 
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