
 

Intrusion Detection Models Based on Data Mining 

 

Guojun Mao * 

School of Information, Central University of Finance & Economics, Xueyuannan 39, 

Beijing 100086, China
  

E-mail:maximmao@hotmail.com 

Xindong Wu 

Department of Computer Science, University of Vermont, Burlington,  

VT 05405, USA 

E-mail:xwu@cems.uvm.edu 

 

Xuxian Jiang 

Department of Computer Science,  North Carolina State University, 

NC 27695-8206,  USA 

E-mail:jiang@cs.ncsu.edu 

 

 

Abstract 

Computer intrusions are taking place everywhere, and have become a major concern for information security. Most 

intrusions to a computer system may result from illegitimate or irregular calls to the operating system, so analyzing 

the system-call sequences becomes an important and fundamental technique to detect potential intrusions. This 

paper proposes two models based on data mining technology, respectively called frequency patterns (FP) and tree 

patterns (TP) for intrusion detection. FP employs a typical method of sequential mining based on frequency 

analysis, and uses a short sequence model to find out quickly frequent sequential patterns in the training system-call 

sequences. TP makes use of the technique of tree pattern mining, and can get a quality profile from the training 

system-call sequences of a given system. Experimental results show that FP has good performances in training and 

detecting intrusions from short system-call sequences, and TP can achieve a high detection precision in handling 

long sequences. 

Keywords: Intrusion detection, data mining, frequency pattern, tree pattern. 

                                                 
 

1. Introduction 

Computer systems often suffer from a certain level of 

security flaws, which provide chances for intruders to 

attack computers for various purposes. Existing research 

studies have demonstrated that it is not sufficient to 

merely use some prevention measures such as user 

passwords and encryptions to solve this problem.
1-3

 

International Journal of Computational Intelligence Systems, Vol. 5, No. 1 (February, 2012), 30-38

Published by Atlantis Press 
      Copyright: the authors 
                   30

Administrateur
Texte tapé à la machine
Received 12 October 2011

Administrateur
Texte tapé à la machine
Accepted 1 December 2011



Guojun Mao, Xindong Wu, Xuxian Jiang 

 

Intrusion detection based on the observation that a 

system cannot be absolutely secure, therefore, becomes 

an active exploration topic in information security.  

Two general intrusion detection techniques are anomaly 

detection and misuse detection. As far as anomaly 

detection is concerned, sufficient knowledge of the 

expected normal behaviors in a computer system must 

be provided in one way or another and such knowledge 

is used to detect possible attacks. Meanwhile, misuse 

detection, also known as signature detection, requires 

prior knowledge of possible attack patterns (or 

signatures) to match future intrusions. Both the 

technologies have their own advantages and 

disadvantages. Anomaly detection does not require prior 

knowledge of intrusions and can thus detect unknown 

intrusions that never successfully attacked the system 

before testing, but they may generate a large of alarms 

or false positives. The main advantage of misuse 

detection is that it can quickly determine known 

intrusive activities, but its biggest problem is that it can 

not discover any unknown attacks beyond defined 

signatures and so they may generate some false 

negatives which are riskier than false positives to harm 

the system.  

DARPA
11,12

 has conducted several evaluations on the 

state-of-the-art in intrusion detection systems.
 
These 

results showed that the best intrusion detection systems 

had only detection rates below 70%, that is, the best 

intrusion detection systems can at most correctly 

identify 70% attack incidents in their computer systems. 

Most of the missed attacks were new types of intrusions. 

In fact, most of the research systems in the DARPA 

evaluations were leading commercial products that 

mainly employ misuse detection techniques. These 

systems were often not very effective for detecting new 

attacks, and the improvement is often too slow to keep 

up with the changes of sophisticated attackers who 

always develop new attack types. As a key technique to 

the defense against novel attacks, anomaly detection has 

received more attention in the research and development 

of intrusion detection.  

1.1. Related work 

In 1996, Forrest et al
1
 introduced an intrusion detection 

method based on monitoring the system calls used by 

active processes. Through extracting privileged Unix 

processes, the system call sequences can be created, and 

the normal patterns can be mined by analyzing the 

correlations of system calls in a sequence. 

In 1997, Helman et al
4
 presented the problem of 

prioritizing actions under uncertainty using statistics and 

data mining techniques. In 1998, Hofmeyr et al
2
 argued 

that detecting irregularities in the behaviors of 

privileged programs should regard the processes as a 

black box. If we regard the processes as a black box, we 

do not need any specialized knowledge of the internal 

functioning or the intended role of each process, and so 

we can infer the functioning and role information 

indirectly by observing the normal behavior of the 

process.  

Over the past several years, many intrusion detection 

methods and models based on data mining techniques 

have been developed. In fact, if we consider intrusion 

detection as a data analysis process, anomaly detection 

is about finding the normal usage patterns, whereas 

misuse detection is about modeling the intrusion 

patterns from the audit data. With the rapid 

development in data mining, a wide variety of 

algorithms in data mining will be available to intrusion 

detection research. 

In 1998, Lee et al
5
 pointed out the significance of 

applying data mining techniques to intrusion detection. 

They think that many data mining methods, including of 

frequent pattern mining, classification technology, link 

analysis and sequence analysis, can help to create 

effective and efficient intrusion detection models.  In 

2000, Lee et al
9
 gave a data mining framework for 

building intrusion detection models. To facilitate 

adaptability and extensibility, they propose the use of 

meta-learning as a means to construct a combined 

model that includes multiple data mining methods. 

In 1999, Warrender et al
7
 summarized and compared 

several methods and models to train system profiles, 

including simple enumeration, comparison of 

frequencies, rule induction and Hidden Markov Models 

(HMMs). In 2001, an intrusion detection model based 

on decision tree mining was proposed by Li and Ye
13
. 

As a result, the effectiveness of some data mining 

methods such as the association rule mining and 

decision tree classifying was proven. In 2001, Lee et al
10
 

discussed anomaly detection techniques based on 

information-theoretic measures. In 2001, Ye and Li
14
 

developed an anomaly detection method that builds the 

Published by Atlantis Press 
      Copyright: the authors 
                   31



 Intrusion Detection Models Based on Data Mining 

 

normal profiles by averaging long-term normal 

activities in computer systems.  

In 2002, Mohammed
8
 established two intrusion 

detection models based on tree pattern mining called 

TreeMinerH and TreeMinerV. In 2004, Brugger
6
 

provided an overview of the various data mining 

methods to be employed for intrusion detection.  

In recent years, there has been more focus on data 

mining based anomaly detection. In 2007, Patcha et al
16 

gave an overview of anomaly detection techniques and 

thought that data mining would be one of most 

anticipated techniques for intrusion detection. In 1999, 

Goverdhan et al
15
 proposed an unsupervised clustering 

scheme for isolating atypical behaviors that can reduce 

alarm rates. They tried to deduce intrusions from related 

atypical records beyond simple outlier detection. In 

2010, Chandola et al
17
 presented a called RBA 

(Reference based analysis) method, a novel data mining 

tool. Because RBA can transform any complex data 

type into a multivariate continuous representation, they 

demonstrate that applying the RBA framework in 

analyzing system call traces can help discover possible 

attacks.  

1.2. Our contributions 

In this paper, we suppose that our observation data can 

be collected from privileged programs of an operating 

system, and the behaviors of an application program can 

be modeled into a series of system-call sequences 

related to its dynamic processes.  

In general, a system-call sequence is too long to be 

directly mined, and so partitioning a long sequence into 

shorter ones is a popular technique in handling very 

long sequences. There has been some evidence
5
 that 

most very long or length-varied sequences of system 

calls can be characterized as a set of short sequences, 

and mining these short sequences can get close enough 

results to the knowledge hidden in the original long or 

length-varied sequences, and it is able to get a higher 

mining efficiency.  

Based on the short sequence model, there are two 

methods called FP and TP to be designed for mining 

system call patterns in this paper.  

The main contributions of this paper are as follows. 

• It gives a formal definition of the short sequence 

model, which can be used as an observation data 

format to anomaly detection research as well as the 

in-memory data structure for training and detecting 

data objects;  
• Two pattern structures for normal-behavior profiles 

are provided which respectively make use of the 

techniques of frequency mining and tree mining, and 

their training and detecting algorithms are also 

designed;  
• Experiments on public datasets indicate that these 

methods for anomaly detection are promising and 

complementary to each other. 

The rest of this paper is organized as follows. Section 2 

describes the short sequence model and its related 

concepts. In Section 3, we present the FP model based 

on frequency analysis in sequences of system calls. In 

Section 4, the TP method based on tree pattern mining 

is introduced. Section 5 provides experimental results 

and their analyses, and a brief conclusions is drawn in 

Section 6.   

2. The Short Sequence Model 

Because any system damage is finally caused by 

running programs that execute system calls, any unusual 

behavior in computer systems can be detected by 

monitoring the system calls being executed by programs. 

Meanwhile, any attack can leave some traces that differ 

from normal system call sequences, and so analyzing 

the temporal ordering of these system calls can find out 

some potential anomalies.  

In fact, with time increase, a nontrivial program may 

activate a large size of system call sequences, and it is 

impossible to directly analyze them in a high efficiency, 

but the locally short range ordering of system calls can 

reflect the program executing normality or abnormity as 

most attacks often take place in limited time interval. 
Therefore, if we transform a long system call trace into 

a series of local short sequences, we can efficiently 

build up a pattern database including of locally normal 

system calls according to normal running process traces 

of tested programs, and quickly discover abnormal call 

orders that an intrusion program is bringing into effect 

in the observed time interval.  

Before we introduce our algorithm details, let us 

provide some concepts and terms used at first.  

Definition 1 (A Process Trace). Given a process p, a p’s 

trace t is a sequence of system calls conducted by p 

Published by Atlantis Press 
      Copyright: the authors 
                   32



Guojun Mao, Xindong Wu, Xuxian Jiang 

 

from the beginning to the end of the process, denoted by 

t = <c1, c2, ..., cL>. 

The process traces of a system have three categories:  

(1) Normal process traces, which have been proven that 

they do not cause any attacks to the system; 

(2) Anomaly process traces, which can result in 

intrusions to the system; 

(3) Unproven process traces, which are not sure yet to 

be normal or anomaly ones.  

From this point of view, an anomaly detection method 

aims at training a normal pattern base from known 

normal process traces and detecting whether unproven 

process traces are normal or anomaly. If we have known 

some anomaly process traces, they can be used to 

evaluate the false negative rate of the anomaly detection 

method. Of course, the false positive rate of the 

anomaly detection method can be tested by some known 

normal process traces in the system. 

However, most process traces in a system are very long 

and length-varied, and therefore we cannot directly use 

them to build the pattern base. A possible method is 

transforming an original long process trace into some 

short sequences of system calls with a fixed length. This 

transformation can be done by using sliding window 

techniques. 

Definition 2 (A Short Sequence). Given the size of a 

sliding window K and a process trace t = <c1, c2, ..., cL>, 

if L > K, the set of short sequences of t is created 

through sliding windows, which means t is transformed 

into a set of short sequences (sj)L-K+1, where sj =<cj, 

cj+1, ... , cj+K-1> is a short sequence with length K ( j=1, 

2, ..., L-K+1).  

Definition 3 (Short Sequence Model). Given a system 

and the size of a sliding window K, all short sequences 

related to all key processes in this system are denoted by 

(sij)M*N : each short sequence sij with size K is related to 

the ith process pi(i =1, 2, …, M) and is the jth short 

sequence of pi (j ≤ N).  

Assuming there are M distinct processes and at most N 

distinct short sequences for every process in a system, 

(sij)M*N can be used as a model to express system calls 

for training data. Also, (sij)M*N can be a new in-memory 

data structure with a regular format instead of the 

original length-varied sequences of process traces 

collected from a system. 

Thus, based on the above short sequence model, the 

problem of anomaly detection can be solved as follows:  

(1) After collecting some original process traces that 

could be very long and length-varied, we can transform 

them into relevant short sequences (as shown in 

Definition 3). If these original process traces have been  

proven normal, their short sequences can used as 

training data to learn the normal pattern base.  

(2) Designed and using some mining methods for 

anomaly detection, the normal pattern base can be 

learned from available training short sequences by these 

methods. 

(3) For a new unproven process trace, it can be detected 

through the built pattern base. 

 

3. Frequency Patterns for Anomaly Detection 

In this section, we introduce a method for intrusion 

detection based on frequency mining technology. There 

might be many appropriate data mining methods to help 

build up normal pattern bases, but frequency patterns 

can get higher mining efficiency. Also, by defining a 

criterion based on expected frequencies, this method 

accords with the views that people distinguish normal or 

abnormal behaviors in life, that is, people always think 

what happens infrequently just means high possibility of 

anomaly events in life. 

Based on frequency mining, we need to solve the 

following problems:  

(1) What does the frequency of a sequence mean and 

how is a short sequence determined to be frequent or 

infrequent;  

(2) How is a normal pattern base established based on 

frequency statistics;  

(3) How is a new process trace detected to decide 

whether it includes anomaly behaviors or not.  

Firstly, whether or not a system call is frequent in a 

short sequence must be associated with both the position 

of c in this short sequence and the process that this short 

sequence is collected from. 

Definition 4 (A Frequent System Call). Let the number 

of the key processes be M, the size of sliding windows 

be K, and the user-specified threshold called min-

support (percentage) be δ. A system call c is called a 

frequent system call in the lth position (l=1, 2, ..., K) 

Published by Atlantis Press 
      Copyright: the authors 
                   33



 Intrusion Detection Models Based on Data Mining 

 

related to the ith process (i=1, 2, ..., M) if the ratio of 

the times that c occurs in the lth position of short 

sequences in the ith process to the number of all short 

sequences in the ith process is not less than δ.  

Secondly, whether or not a short system call sequence is 

frequent is related to all system calls in this sequence 

with position sensitivity.  

 

Definition 5 (A Frequent Short Sequence). Given the 

number of the key processes M, the size of sliding 

windows K, and the min-support δ, a short sequence s is 

frequent related to the ith (i=1, 2, ..., M) process if any 

call cl in s (l=1, 2, ..., K) is frequent in the lth position 

related to the ith process. 

Finally, a pattern base can be built through frequent 

short sequences from testing records. Theoretically, 

using frequency pattern mining, normal patterns of a 

process should be a set of all frequent short sequences 

related to this process. Therefore, the frequent pattern 

base of a system is just a collection of the frequent short 

sequences related to all key processes in this system. 

 

Definition 6 (A Frequent Pattern). Given the size of 

sliding windows K and a set of short sequences (sij)M*N, 

using frequency analysis, we can get frequent patterns, 

denoted by (fil)M*K , such that each frequent pattern fil is 

the collection of frequent system calls in the lth position 

related to the ith process. 

 

If (sij)M*N  is a training dataset of normal short sequences, 

we can build a normal frequent pattern base (fil)M*K that 

includes the frequent patterns trained from (sij)M*N. In 

addition, let i be fixed, (sij)M*N is degenerated into a one-

dimensional structure, denoted as (sij)K, which can be 

used to express the set of short sequences related to the 

fixed process pi. Similarly, we can use (fil)K to express 

the frequent pattern of the fixed process pi. Fox example, 

(s1j)K is the set of short sequences related to process p1, 

and (f1l)K is the frequent pattern of process p1.  

 

After introducing the above concepts, we are now ready 

to present our algorithms FP_Trainer and FP_Detector, 

which respectively establish a frequent pattern base and 

detect anomaly behaviors using this pattern base.  

 

If the normal process traces in a computer system has 

been obtained and their related short call sequences has 

been extracted, then the pseudocode of FP_Trainer can 

be described as follows. 

 

Algorithm FP_Trainer((sij)M*N,(fil)M*K). 

/* Mining pattern base (fil)M*K from training set (sij)M*N 

*/ 

begin 

for i = 1 to M 

     Make_pattern((sij)N, (fil)K); 

     Merge((fil)K, (fil)M*N); 

endfor; 

end. 

In FP_Trainer, there are two procedures to be called:  

(1) Procedure Make_pattern(), which generates frequent 

patterns (fil)K from the short sequence set (sij)N related to 

the fixed process pi. According to Definition 6, this 

procedure can be implemented through computing the 

frequency of every call at each point.  

(2) Procedure Merge(), which puts the newly generated 

patterns (fil)K into the frequent pattern base (fil)M*K. They 

are relatively straightforward and therefore are omitted 

due to length constraints.  

Once the normal database is defined, the next decision 

is how to measure a program behaviors are normal or 

abnormal. The easiest and most natural measure is to 

match a tested trace with defined normal patterns in the 

database.  

Using the frequent pattern base, an unproven trace can 

be detected. Of course, when the detected trace is a long 

sequence of system calls, it has to be first transformed 

into a set of short sequences, which can use the above 

Procedure Make_pattern() to generate short sequences 

of the same size with ones in the defined pattern base. 

The following provides the description of algorithm 

FP_Detector. 

Algorithm FP_Detector((fil)M*K, t). 

/* Detecting sequence t using pattern base (fil)M*K*/  

begin 

flag = false; 

Transform t into a set of short sequences (sij)L-K-1;   

Make_pattern((sij)L-K-1, (f*il)K); 

for l=1 to K 

      if (f*il is not contained by fil) then flag = true; 

Return flag; 

endfor; 

Published by Atlantis Press 
      Copyright: the authors 
                   34



Guojun Mao, Xindong Wu, Xuxian Jiang 

 

end. 

Frequent pattern mining for intrusion detection is 

relatively simple. The advantage of such a simple 

approach is computational efficiency, but it is not a very 

sophisticated method and its detection precision is not 

very high. 

4. Tree Patterns for Anomaly Detection 

In this section, we present another type of patterns for 

intrusion detection that is based on a tree structure. For 

every key process, its normal system call sequences can 

be organized into a tree pattern, such tree patterns for all 

key processes in a computer system just become a tree 

pattern base. Tree patterns can be generated by using 

tree-like mining techniques
5
 such as Decision Tree, FP-

Tree. Thus, how to define and build up such tree 

patterns is topic of this section.  

Definition 7 (A Tree Pattern). Given the size of sliding 

windows K and a training dataset of short sequences 

(sij)M*N, the tree patterns for anomaly detection are 

trained from (sij)M*N, denoted as (til)M*V, are a set of trees, 

each of which til presents the lth tree in a forest (or a set 

of trees) related to process pi. Furthermore, every path 

of til from the root to a leaf constitutes a short sequence 

in (sij)M*N. When i is fixed, we also use (til)V to express 

the forest comprised of all pattern trees related to the 

fixed process pi. 

According to Definition 7, a tree pattern for anomaly 

detection is a set of forests each of  which represents the 

mined patterns from sequences of a process.  Figure 1 

gives an example of a tree pattern base for anomaly 

detection, which has two processes and the size of short 

sequences is 4. Algorithm TP_Trainer to build a tree 

pattern base is designed as follows.  

Algorithm TP_Trainer((sij)M*N, (til)M*V). 

/* Mining pattern base (til)M*V from training set 

(sij)M*N */ 

begin 

for i = 1 TO M 

for j = 1 TO N 

   c = the first call in sij; 
if (c is the root of a tree in (til)V)  

       then Update this tree using sij; 
       else Create a tree in (til)V using sij; 
 endfor; 

end. 

After a tree pattern base is built, we can make use of it 

to test an unproven sequence of system calls. A key 

problem is how to evaluate the matching degree 

between the tested short sequences and the tree pattern 

base. 

Definition 8 (A Matching Value). Given a tree pattern 

base (til)M*V, and an user-specified matching parameter 

w (w<1), for a testing short sequence s = < c1, c2, ... , 

cK> related to process pi (where K is the size of sliding 

windows), we only need to evaluate the matching 

degree between s and (til)V that is the forest related to pi 

in (til)M*V. The computing formula is as follows: MV(s, 

(til)V) = w+ w
2 
+ ... + w

L
, where L is the length of the 

longest sub-sequence of s that matches tree patterns (til)V. 

According to Definition 8, computing MV of a short 

sequence in the known pattern base requires first 

searching for the longest path in the pattern tree, the 

root of which just matches the first call of the testing 

sequence. In order to show more details about it, before 

formally describing the algorithm TP_Detector, we give 

an example to illustrate how to get the MV between a 

short sequence and the pattern base. 

Example 1. Considering the tree patterns in Figure 1. 

Assume K = 4, w = 1/2, and related to Process p1. If a 

tested short sequence of system calls s1 = <3, 26, 65, 4>, 

then MV(s1, (t1l)V) = 1/2+1/4+1/8+1/16=15/16; If the 

tested short sequence of system calls s2 = <3, 26, 65, 

75>, then  MV(s2, (t1l)V) = 1/2+1/4+1/8=7/8; When the 

tested system call sequence  s3 = <75, 3, 65, 4>, then 

MV(s3, (t1l)V) = 0.  

3

26

65

4 166

t
11

t
12

t
13

t
14

65

4

3

26

4

3

26

65

26

65

3

4 166

75

t
21

t
22

t
23

t
24

8

3

26

14

3

26

14

8

14

3

14 8

26

8 3

26

14

8

14 8

65

 
Fig. 1 An example of tree patterns 

Using the above Function MV, the pseudocode of 

TP_Detector, the procedure to detect if an unproven call 

sequence is abnormal based on tree patterns, can be 

described as follows. 

Published by Atlantis Press 
      Copyright: the authors 
                   35



 Intrusion Detection Models Based on Data Mining 

 

Algorithm TP_Detector((til)M*V, t). 

/* Testing trace t using tree pattern base(til)M*V */ 

begin 

Let the process related to t be i; 

flag = false; 

Transform t into short sequences (sij)L-K-1   

for j =1 TO L-K-1 

           Compute MV(sij, (til)V);  

           if (MV < ε ) then flag = true; 
endfor; 

Return flag; 

end. 

5. Experimental Evaluations 

To evaluate the performances of the two models 

proposed in this paper, we conducted a series of 

experiments. All experiments were implemented using 

VC on a computer with 1.3G-CPU and 384M-RAM.  

In addition, this paper is based on the idea of collecting 

traces of normal behavior in a system, and has an allied 

goal with some typical researches in this field
1, 2

. Such, 

the datasets used in our experiments can be selected 

from some public datasets.  Therefore, all experiments 

in this paper are all related to the process sendmail in 

UNIX, which can be obtained from the public website 

(http://www.cs.unm.edu/~immsec/systemcalls.htm).  

There is a good technical introduction to the process 

sendmail
1, 2

. Based on the standard sendmail, we design 

some datasets for training and testing our methods.  

Table 1 gives the names and features of the datasets 

used in this paper. 

 

 

 

 

Experiment 1. To assess the running time of 

FP_Trainer and TP_Trainer, where the size of the 

sliding window K = 11, the minimum support δ=20% 

on FP_Trainaer, and w = 1/e on TP_Trainer, Table 2 

shows the results. 

 

Analysis of Results about Experiment 1:  FP_Tainer 

has a much shorter training time than TP_Tainer on all 

datasets. The shorter training time on FP_Tainer comes 

from the simplicity of its model which makes 

computing and generating frequent patterns more 

efficient. However, both algorithms’ scale-ups in 

training times are acceptable because they are both less 

than linear increases with the number of training 

sequences. As Table 2 shows, T_big has about 80 times 

more sequences than T-small, but the training time of 

FP_Tainer on T_big is 68 times less than on T-small, 

and the training time of TP_Tainer on T_big is 75 times 

less than on T-small.  

Experiment 2. To assess memory usage of FP_Trainer 

and TP_Trainer, where K = 11, δ=20% on FP_Trainer, 

and w = 1/e on TP_Trainer, Table 3 shows the results. 

 

Analysis of Results about Experiment 2: FP_Tainer has 

much less main memory usage than TP_Tainer on all 

datasets. Also, both scale-ups in memory usage for 

training with increasing sizes of sequences are stable. In 

fact, due to the limited number of system calls in a 

certain system, both the frequency patterns and the tree 

patterns will show an obvious astringency in size with 

increasing the training data. This astringency results in 

Table 1. Datasets and their features. 

Name  Sequence # Object Feature 

T_small 19526 Training Normal 

T_mid 96329 Training Normal 

T_big 1556560 Training Normal 

D_ano 128 Testing for 

detection 

precision to 

intrusions 

Anomaly 

D_nor 1556 Testing for false 

positives 

Randomly 

extracted from 

T_big 

 

Table 2. Training Time of FP_Tainer and 

TP_Tainer (Sec). 

Data  FP_Trainer  TP_Trainer  

T_small 23 234 

T_mid 102 598 

T_big 1555 17331 

 

Table 3. Memory Usage on FP_Tainer and 

TP_Tainer (KB). 

Data  FP_Trainer  TP_Trainer  

T_small 716 2520 

T_mid 3744 10872 

T_big 6140 25021 

 

Published by Atlantis Press 
      Copyright: the authors 
                   36



Guojun Mao, Xindong Wu, Xuxian Jiang 

 

their good properties in memory utilization to a large-

scale training dataset. 

Experiment 3. This experiment assesses the detection 

precision of FP_Detector and TP_Detector to detect 

anomaly sequences, where K = 11, δ=20% on 

FP_Detector, and w = 1/e on TP_Detector. We use 

dataset D_Ano which includes 128 anomaly sequences 

to test whether FP_Detector and TP_Detector can 

successfully detect them. FP_Detector and TP_Detector 

make use of the patterns learn from FP_Trainor and 

TP_Trainor on dataset T_big. For comparative studies, 

we programmed the HMMs algorithm
7
, which is 

randomly initialized with 60 states and then learns its 

parameters by dataset T_big. Figure 2 shows the 

detection accuracies (that reflects their false negative 

rates) of the three methods when the size of D_Ano is 

increased one by one. 

 

Analysis of Results about Experiment 3:   As Fig. 2 

shows, TP_ Detector has a much higher detection 

precision than FP_Detector and HMMs. Through 

deeply analyzing the lengths of anomaly sequences in 

D_Ano, FP_Detector and HMMs did not successfully 

find out such sequences that are longer than the average 

length of all sequence of D_Ano. Such, it may be 

guessed that FP_Detector and HMMs could not be the 

good methods for detecting the long testing sequences, 

but FP_Detector can solve this problem well.  

 

Experiment 4. This experiment assesses the false 

positive rates of FP_Detector and TP_Detector. For this 

goal, we randomly extract a testing dataset called D_nor 

from T_big, where its size is about 0.1% of the size of 

T_big.  We set sliding window K = 11. For model FP, 

FP_Trainor learn the patterns on T_big with several 

different min-support values: δ = 10~25%, then 

FP_Detector is used to D_nor to test whether or not its 

sequences can be successfully flagged as normal 

sequences.   In model TP, TP_Trainor uses w = 1/e to 

run on T_big to get the pattern base, then we use 

TP_Detector to test D_nor with min-match values: ε = 
45~60%. Such, this experiment can also help evaluate 

the effects of detection accuracy on different min-

support or min-match values. Table 4 gives the related 

false positive rates of FP_Detector and TP_Detector in 

dataset D_nor.  

 

 

Analysis of Results about Experiment 4:   As Table 4 

shows, FP_Detector can result in higher false positive 

rates when min-supports are bigger. This is because that 

a smaller min-support means more normal patterns are 

mined and saved and so less normal data to test can be 

mistaken as being anomaly, but it also increases the risk 

that an anomaly data is mistaken as a normal one. On 

the other hand, when min-matchs get bigger, TP_ 

Detector can result in higher false positive rates. In fact, 

mini-match parameter is set in order to detect intrusions, 

and a smaller mini-match means a more 

cautious strategy to affirm an intruder, so it can decrease 

false positive rates. Of course, TP_ Detector has lower 

false positive rates than ones of FP_ Detector on all 

investigated datasets, but both can get rather good detect 

results. 

Accuracies on TP_Detector, TP_Detector, HMMs

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128

Number of sequences of D_ano

A
c
c
ur
a
c
y
(%
)

TP_Detector

FP_Detector

HMMs

 
Fig. 2 Accuracy changes of TP-Detector, FP-

Detector and HMMs with increasing sequences on 

D_Ano. The same test data were used for three 

algorithms, but their accuracy changes were obvious 

different. Along 128 tested sequences, TP-Detector  

failed only once located on the 35th; FP-Detector 

failed ten times located on the 13th, 25th, 30th, 38th, 

39th, 46th, 58th, 81th, 85th and 116th; HMMs failed 

twelve  times located on the 5th, 14th, 29th, 35th, 55h, 

63th, 68th, 69th, 80th, 84th, 89th and 109th. 

Table 4. False positive rates (FPS) of TP-Detector 

and FP-Detector on D_Ano . The size of their 

sliding windows is 11. In FP-Detector, min-

supports are respectively set into 10%, 15%, 20%, 

25%. In FP-Detector, matching parameter w = 1/e.  

min-matchs are 45%, 50%, 55%, 55%.  

 FP 

 δ=10% δ=15% δ=20% δ=25% 

FSR 

(%) 0.193 0.321 0.514 0.707 

 TP 

 ε = 45% ε = 50% ε = 55% ε = 60% 

FSR 

(%) 0 0 0.063 0.193 

Published by Atlantis Press 
      Copyright: the authors 
                   37



 Intrusion Detection Models Based on Data Mining 

 

6. Conclusion 

This paper presents two novel approaches to anomaly 

detection. These approaches make use of data mining 

techniques to learn normal pattern bases. Model FP uses 

frequency pattern mining technology to quickly find out 

frequent system call sequences, so it has efficient 

advantages in computing and memory usage. On the 

other hand, Model TP makes use of tree-like pattern 

mining methods, that could get a good detection 

accuracy.  We also thoroughly evaluated our models in 

false positive rates and false negative rates by different 

control parameters. The experiments showed and 

validated their advantages disadvantages.  

Future work is going to apply more data mining 

methods to anomaly detection, and to compare their 

performances each other including of the models in this 

paper.  

Acknowledgments 

This work is supported by grants from the National 

Science Foundation in China (60873145) and the 

Discipline  Construction Foundation  of CUFE. 

 

References 

1.  S. Forrest, S. A. Hofmeyr, A. Somayaji and T. A. Longstaff,  

A sense of self for UNIX processes, in Proc. 1996 IEEE 

Symposium on Security and Privacy, IEEE Computer 

Society Press (Los Alamitos, CA, 1996), pp. 120–128  

2. S. A. Hofmeyr, S. Forrest and A. Somayaji, Intrusion 

detection using sequences of system calls, J. Computer 

Security, 6(3) (1998) 151-180. 

3.  W. Lee, S. J. Stolfo and M. Chan, Learning patterns from 

Unix process execution traces for intrusion detection, in 

Proc. AAAI Workshop: AI Approaches to Fraud Detection 

and Risk Management, AAAI Press (Menlo Park, 1997), 

pp.50–56. 

4.  P. Helman and J.Bhangoo, A statistically based system for 

prioritizing information exploration under uncertainty, 

IEEE Transactions on Systems, Man and Cybernetics, 

Part A: Systems and Humans, 27(4)(1997) 449–466. 

5. W. Lee and S. J. Stolfo, Data mining approaches for 

intrusion detection, in Proc. 7th USENIX Security 

Symposium, Usenix Association (San Antonio, TX, 1998), 

pp. 79-94. 

6.  S. T. Brugger, Data mining methods for network intrusion 

detection, Ph. Dissertation, University of California 

(Davis, CA, USA, 2004). 

7. C. Warrender, S. Forrest and B.Pearlmutter, Detecting 

intrusions using system calls: alternative data models, in 

Proc. 1999 IEEE Symposium on Security and Privacy, 

IEEE Computer Society Press (Oakland, CA, USA, 1999), 

pp.133-145. 

8. J. Z.Mohammed, Efficiently mining frequent trees in a 

forest, in Proc. 8th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 

ACM Press  (Alberta, Canada, 2002), pp. 71-80. 

9. W. Lee and S. Stolfo, A data mining framework for 

Building intrusion detection models, ACM Transactions on 

Information and System Security, 3(4) (2000) 227-261. 

10. W. Lee and X. Dong, Information-theoretic measures for 

anomaly detection, in Proc. 2001 IEEE Symp. on Security 

and Privacy, IEEE Computer Society Press (2001), 

pp.130−143. 

11. R. Lippmann, D. Fried and I. Graf, Evaluating intrusion 

detection systems: the 1998 DARPA off-line intrusion 

detection evaluation, in Proc. 2000 DARPA Information 

Survivability Conference and Exposition (2000), pp. 12-26. 

12. J. W. Haines, D. J. Fried and J. Korba, Analysis and 

results of the 1999 DARPA off-line intrusion detection 

evaluation, in Proc. Intl. Symposium on Recent Advances in 

Intrusion Detection, Springer-Verlag (2000), pp. 162-182. 

13. X. Li, and N. Ye, Decision tree classifiers for computer 

intrusion detection. Journal of Parallel and Distributed 

Computing Practices, 4(2) (2001) 179−190.  

14. N. Ye, X. Li, Q. Chen, Probabilistic techniques for 

intrusion detection based on computer audit data. IEEE 

Trans. Syst. Man Cybern., 31(4) (2001) 266–274. 

15. G. Singh, F. Masseglia1, C. Fiot and A. Marascu1, Data 

mining for intrusion detection: from outliers to true 

intrusions, in Proc. the 13th Pacific-Asia Conference on 

Knowledge Discovery and Data Mining, Springer 

(Bangkok, Thailand, 2009), pp.  891-898. 

16. A .Patcha and J. M. Park, An overview of anomaly 

detection techniques: existing solutions and latest 

technological trends. Computer Networks, 51(7) (2007) 

3448-3470. 

17. V. Chandola, S. Boriah and V. Kumar,  A reference based 

analysis framework for analyzing system call traces, in 

Proc. the ACM Sixth Annual Workshop on Cyber Security 

and Information Intelligence Research (2010). Retrieved 

from http://dx.doi.org/10.1145/1852666.1852703. 

 

Published by Atlantis Press 
      Copyright: the authors 
                   38




