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Abstract 

We give an abstraction of verifiable multi-secret sharing schemes that is accessible to a fully mechanized analysis. 
This abstraction is formalized within the applied pi-calculus by using an equational theory which characterizes the 
cryptographic semantics of secret share. We also present an encoding from the equational theory into a convergent 
rewriting system, which is suitable for the automated protocol verifier ProVerif. Based on that, we verify the 
threshold certificate protocol in ProVerif. 
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1. Introduction 

pi-calculus are now widely considered a particularly 
salient approach for formally analyzing security 
protocols.1 One of the central challenges in the analysis 
of complex and industrial-size protocols is the 
expressiveness of the formalism used in the formal 
analysis and its capability to model complex crypto- 
graphic operations. While such protocols traditionally 
relied only on the basic cryptographic operations such 
as encryption and digital signatures, modern crypto- 

graphy has invented more sophisticated primitives with 
unique security features that go far beyond the 
traditional understanding of cryptography to solely offer 
secrecy and authenticity of a communication. Secret 
share constitutes such a prominent primitive. 
In 1994, Dawson et al.12 proposed multi-secret sharing 
(MSS) schemes. In such schemes, several secrets can be 
shared during one secret-sharing process. In 2004, Yang 
et al. (YCH)16 proposed a new MSS, which is based on 
two-variable one-way function and allows the 
construction of several secrets in parallel. In 2005, Shao 
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and Cao (SC)14 proposed an efficient verifiable multi-
secret sharing based on YCH and feldman’s schemes. In 
2006, Zhao et al. (ZZZ)15 proposed a practical verifiable 
multi-secret sharing based on YCH schemes.16 These 
unique security features that secret shares offer 
combined with the possibility to efficiently implement 
some of these proofs have paved these proofs the way to 
constitute very powerful building blocks for the 
construction of sophisticated cryptographic protocol. 
In a verifiable multi-secret sharing scheme with 
threshold (l, t), we have a set of l players, indexed 1, ..., 
l, and a trusted dealer. There is also a share verification 
algorithm and a share combining algorithm. In the 
dealing phase, the dealer takes messages which can be 
called dealer parameters as input and generates secret 
keys SK1, ..., SKl and verification keys VK1, ..., VKl. 
After the dealing phase, the dealer or player i can take 
as input messages which are called player parameters, 
along with the secret key SKi assigned by dealer, and 
generate secret share Di. Besides, the share verification 
algorithm takes secret share Di and verification key VKi 
as input messages to determine if the secret share Di is 
valid. The share combining algorithm takes as input 
messages t valid secret shares and output a secret. A 
secret is a message or a sequence of messages that can 
be built upon dealer parameters and player parameters 
through basic cryptographic operations.  
Compared with the single-secret sharing schemes, the 
verifiable multi-secret sharing schemes have the 
following security features: 
•  It allows the constructing of several secrets in 

parallel and the computation is efficient; 
•  It is multi-use (once the secret has been constructed, 

it is not necessary for the dealer to redistribute a 
fresh secret share over a security channel to every 
player); 

•  It allows the participant to verify the validity of 
secret shares of the other participants. 

Due to the complexity of verifiable multi-secret sharing 
schemes, it is very difficult to devise the abstraction of 
secret-sharing proofs. In 1999, Yew et al. 18 defined an 
abstraction of single-secret sharing schemes in Coq, 
which is based on a clear separation between the 
modeling of reliable participants and that of the 
adversary. But this definition is too simple to hold all 
the security features of verifiable multi-secret sharing 
schemes above. 9-11 

Our main contributions are as follows: We give an 
abstraction of verifiable multi-secret sharing schemes 
within the applied pi-calculus4 by using an equational 
theory which characterizes the cryptographic semantics 
of secret shares. Based on that, we transform our 
abstraction into a convergent rewriting system, which is 
suitable for ProVerif17 , a well-established tool for the 
mechanized analysis of different security properties. 
We express cryptographic protocols in the applied pi-
calculus. We devise an equational theory that 
characterizes the semantic properties of secret shares, 
and that allows for abstract operation about such proofs. 
The design of the theory guarantees the soundness and 
the completeness of verifiable multi-secret sharing 
schemes with threshold (l,  t) as well as the actual secret 
shares’ properties: First, it is impossible or at least 
computationally infeasible, to produce any secret with 
knowledge of any t−1 or fewer valid secret shares. On 
the other hand, knowledge of any t or more valid secret 
shares makes all the secrets easily computable. 
ProVerif17 constitutes a well-established automated 
protocol verifier based on Horn clauses resolution that 
allows for the verification of observational equivalence 
and of different trace-based security properties such as 
authenticity. We present a mechanized encoding of our 
equational theory into a convergent rewriting system 
that ProVerif can efficiently cope with. We prove that 
the encoding preserves observational equivalence. 
In this paper, we review the applied pi-calculus in 
section 2. Section 3 contains the equational theory for 
abstract operation about verifiable multi-secret sharing 
in the applied pi-calculus. This equational theory is 
rewritten into an equivalent finite theory in terms of a 
convergent rewriting system in section 4. Section 5 
elaborates on the analysis of the threshold certificate 
protocol, the description of its security properties.  

2. Review of The Applied Pi-calculus 

The syntax of the applied pi-calculus3 is given as 
follows. Terms are defined by means of a signature Σ, 
which consists of a set of function symbols, each with 
an arity. The set of terms TΣ is the free algebra built 
from names, variables, and function symbols in Σ 
applied to arguments. We let m  range over names and 
variables. Terms are equipped with an equational theory 
E, i.e., an equivalence relation on terms that is closed 
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under substitution of terms and under application of 
term contexts (terms with a hole). We write E M N=6  
for an equality, modulo E. 
The grammar of processes (or plain processes) is 
defined as follows. The null process 0 does nothing; The 
restriction process .n P  generates a fresh name n and 
then behaves as P; The conditional process if M = N 
then P else Q behaves as P if E M N=6 , and as Q 
otherwise; The input process u(x).P receives a message 
N from the channel u and then behaves as P{N/x}; The 
output process ( ).u N P  outputs the message N on the 
channel u and then behaves as P; The replication 
process P | Q executes P and Q in parallel; !P generates 
an unbounded number of copies of P. 
A context is a process or an extended process with a 
hole. An evaluation context is a context without private 
function symbols whose hole is not under a replication, 
a conditional, an input, or an output process. A context 
C[ ] closes P if C[P] is closed. 
As in the pi-calculus, the semantics is defined in terms 
of structural equivalence (º ) and internal reduction 
( ® ). Structural equivalence states which processes 
should be considered equivalent up to syntactic re-
arrangement. Internal reduction defines the semantics 
for extended processes. 
 
Definition 1. Structural equivalence (º) is the smallest 
relation on extended processes that satisfies the rules in 
Table 1 and that is closed under renaming of bound 
names and variables, and under application of 
evaluation contexts. 

Table 1.  Structure Equivalence. 

PAR-A       A1|(A2|A3) º (A1|A2)|A3 
PAR-C       A1|A2 º A2|A1 
REPL         !P º P|!P 
RES-/0       vn. 0 º 0 
RES-C        vu. v 'u . A º v 'u . vu. A 
RES-PAR   A1|vu:A2 º vu(A1|A2)  

if u Ï  free(A1) 
ALIAS        vx. {M/x} º 0 
SUBST       {M/x}|A º {M/x} | A{M/x} 
REWRITE  {M/x} º {N/x}  if E M N=6  

 
Definition 2. Internal reduction ( ® ) is the smallest 
relation on extended processes that satisfies the rules in 
Table 2 and that is closed under structural equivalence 
and under application of evaluation contexts. 

Table 2.  Internal reduction. 

a (x). P | a(x). Q ®  P | Q 
 

,E M N M Nground
if M N then P else Q P

=
= ®
6  

 
,not E M N M Nground

if M N then P else Q Q
=

= ®
6  

 
We write P ß u to denote that process P can send a 
message on channel u. Observational equivalence (») 
constitutes an equivalence relation that captures the 
equivalence of processes with respect to their dynamic 
behavior. 
 
Definition 3. Observational equivalence ( » ) is the 
largest symmetric relation \  between closed extended 
processes with the same domain such that P\Q implies: 
•  if Pßu, then Qßu; 
•  if P ® * 'P , then Q ® * 'Q  and 'P \ 'Q  for some 

'Q ; 
•  C[P]\C[Q] for all closing evaluation contexts C[ ]. 

3. An Equational Theory of Secret-sharing 

3.1. An underlying cryptographic base theory 

The base equational theory Ebase we consider in this 
paper is given in Table 3. In Ebase, function ntuples is for 
constructing the tuple of n messages; encsym, decsym, 
encasym, and decasym are for encrypting and decrypting 
messages by symmetric and asymmetric cryptography, 
respectively; sign and check are for signing messages 
and verifying signatures; pk is for modeling public key 
and h is for hashing. We encode numbers in binary form 
via the functions string0, string1, and empty (e.g., a 
bitstring 10 would be encoded as string1(string0(empty)). 
Arithmetic operations are modeled as destructors. For 
instance, the greater-equal relation is defined by the 
destructor ge(M1, M2), which returns true if M1 is greater  
equal then M2. With this encoding, numbers and 
cryptographic messages are disjoint sets of values. In 
our example theory, infix notation is used for the 
functions eq, Ù , and Ú , which model equality test, 
conjunction, and disjunction. 
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Table 3.  A base equational theory containing 
basic cryptographic primitives and logical 
operators. 

baseå = {ntuples, ithn, encsym, decsym, encasym, 
decasym, sign, check, pk, h, Ù , Ú , eq, true; 
false}  

baseE  is the smallest equational theory 
satisfying the following equations defined 
over all x, y, z: 
 
ithn(ntuples(x1, …, xn)) = xi. 
decsym(encsym (x, y), y) = x. 
decasym(encasym (x, pk(y)), y) = x. 
check(sign (x, y), pk(y)) = x. 
eq(x, x) = true. 
ge(string1(empty)), string0(empty))) = true. 
Ù  (true, true) = true. 
Ù  (false, x) = false. 
Ù  (x, false) = false. 
Ú  (false, false) = false. 
Ú  (true, x) = true. 
Ú  (x, true) = true. 

 

3.2. Illustrative example 

A (l, t)-threshold signatures scheme is a protocol that 
allows any subset of t players out of l to generate a  
signature, but that disallows the creation of a valid 
signature if fewer than t players participate in the 
protocol11. 

3.3. The equational theory for secret-sharing 

Our equational theory Ebase for abstract operations about 
secret-sharing and its components are explained in the 
following. Secret-sharing process with threshold (l, t) is 
represented as a term of the form , ( )l tSSP t , name t  is 
used to identify specified secret-sharing process, we 
abuse notation by writing ,l tt  which represents 

, ( )l tSSP t ; The secret key for secret share is represented 
as a term of the form , ,i j kSSK j(M, m, ,l tt , i)F , while 
natural number m, called the proof’s identity Id, can be 
used to identify specified secret key in secret-sharing 
process and we have mÎ  [1, l]; Further, the secret share 
is represented as a term of the form , ,i j kSS i(N , 

, ,i j kSSK j(M, m, ,l tt , i)F , i)F . In the definitions above, jM 
and iN, denotes sequence M1...Mi and N1...Nj of terms, 
respectively, and iF  denotes sequence F1...Fk of (i, j)-
functions which constitutes a function over those terms, 

see below; Hence, , ,i j kSS  is a function of arity j+k+1 
and , ,i j kSSK  is a function of arity i+k+2. 
The (i, j)-function F constitutes a constant without 
names and variables, which is built upon distinguished 
nullary functions ia  and ib  with i Î  ` , `  is the set 
of natural numbers. 
 
Definition 4. We call a term an (i, j)-function if the term 
contains neither names nor variables, and if for every 

ma  and nb  occurring therein, we have m Î  [1, i] and n 
Î  [1, j]. 
 
The values ia  and jb  in F constitute placeholders for 
the terms Mi, called dealer parameter, and Nj, called 
player parameter. In our abstraction model, the 
relationship between secret and dealer parameters, 
player parameters can be defined through (i, j)-functions. 
For instance, 

2,1,1SS  ( ( )h M , 2,1,1SSK (SK, pk(SK), 1, ,l tt , iF ), iF ) ; 

iF= sign( 1b , 1a )  

denotes a secret share for the secret sign(h(M), SK) in a 
(l, t)-threshold signatures scheme. In the dealing phase, 
the dealer generates a private key and public key pair 
(SK, pk(SK)), then the dealer uses 2,1,1SSK to generate 
secret keys SK1, ..., SKl. After the dealing phase, player i 
can use , ,i j kSS  to generate secret share Di with SKi. 
Similarly to secret key for secret share , ,i j kSSK j(M, m, 

,l tt , i)F , the corresponding verification key for secret 
share is represented as a term of form , ,i j kSVK j(M, m, 

,l tt , i)F  and we have mÎ  [1, l]. 
Verification of secret shares with respect to verification 
key for secret share is modeled as a function , ,i j kSVer  of 
arity k+2 that is defined by the following equational rule: 

, ,i j kSVer ( , ,i j kSSK j(M, m, ,l tt , i)F , , ,i j kSS i(N , , ,i j kSSK j(M, m, 

,l tt , i)F , i)F ) = true                                                      (1) 

Combination of r secret shares with respect to (i, j)-
functions is modeled as function , , ,i j k rSCombin  of arity 
r+k that is defined by the following equational rule: 

, , ,i j k rSCombin  ( , ,i j kSS i(N , , ,i j kSSK j(M, i1, ,l tt , i)F , i)F , …, 
, ,i j kSS i(N , , ,i j kSSK j(M, ir, ,l tt , i)F , i)F ) = iF {jM/ �a} { iN/ ib} 

iff   
•  im¹ in for 1£  m, n £  r and m¹n; 
•  r ³  t.                                                                     (2) 
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These rules guarantee in the abstract model the 
soundness and the completeness of the verifiable multi-
secret sharing schemes with threshold (l, t) as well as 
the actual secret share properties that knowledge of any 
t−1 or fewer valid secret shares leaves the secret 
completely undetermined and knowledge of any t or 
more valid secret shares makes the secret easily 
computable. 

4. Towards a Mechanized Analysis of Secret-
sharing 

The equational theory ESS defined in the previous 
section is not suitable for existing tools for mechanized 
security protocol analysis. The reason is that the number 
of possible (i, j)-functions, and thus the number of 
equational rules in ESS, is infinite. Hence, it is very 
difficult to devise the abstraction of secret-sharing 
proofs possibly generated by the environment, which 
represents the adversary with various capabilities. In 
this section, we specify an equivalent equational theory 
in terms of a convergent rewriting system. This theory 
turns out to be suitable for Proverif, a well established 
tool for mechanized verification of different security 
properties of cryptographic protocol specified in a 
variant of the applied pi-calculus.17 

4.1.  A finite specification of secret-sharing 

The central idea of our finite equivalent theory is to 
focus on the secret-sharing proofs used within the 
process specification and to abstract away from the 
additional ones that are possibly generated by the 
environment. This makes finite the specification of the 
equational theory. 
First, we track secret shares generated or combined in 
the process specification by a set TR of tetrads of the 
form (i, j, k, iF ), where iF  is sequence of k (i, j)-
functions of secret-sharing schemes. Second, we record 
h, which is the largest threshold of secret-sharing 
schemes used in the process specification. For term M 
and process P, we let terms(M) denote the set of 
subterms of M and terms(P) denote the set of terms in P. 
We can now formally define the notion of (TR, h)-
validity of terms and processes. 
 
Definition 5.  A term Z is (TR, h)-valid if and only if the 
following conditions hold: 

(i) For every , ,i j kSSK ( jM , M, N, iF ), , ,i j kSVK ( jM , M, 
N, iF ), , ,i j kSS ( jM , M, iF ), , ,i j kSVer (M, N, iF ), and 

, , ,i j k rSCombin ( jM , iF )Î terms(Z), we have 
(a) (i, j, k, iF )ÎTR; 
(b) for every Fl in iF , we have FlÎ { ,base m

T aå È | [1, ], [1, ]}m i n jnb Î Î
; 

(c) for every (i, j, k, iF )ÎTR such that ESS6 i 'F  = 
iF , we have i 'F  = iF . 

(ii) For every lÎ ` , la  and lb  occur in Z only inside 
of (i, j)-function of Z. 

(iii) For every ,l tSSP (M) Î  terms(Z), we have l Î  [1, h]. 
A process P is (TR, h)-valid if and only if M is (TR, h)-
valid for every MÎ terms(P). 
 
We check that each secret share generation, verification 
and combination is tracked in TR (i). We also check that 
the secret can be divided into at most h different secret 
shares in the process specification (iii). 

4.2. Compilation into finite form 

It now remains to encode the secret-sharing proofs 
generated by the environment. These proofs are possibly 
different from the ones specified in the process. We 
include in ,TR h

SSå  the function symbols i
, ,
F
i j kSSK , i

, ,
F
i j kSVK , 

i
, ,
F
i j kSS , i

, ,
F

i j kSVer , i
, , ,
F
i j k rSCombin . We then replace every 

term , ,i j kSSK j(M, M, N, i)F , , ,i j kSVK j(M, M, N, i)F , , , (i j kSS  
jM, M, i)F , , , (i j kSVer M, N, i)F , and , , ,i j k rSCombin j(M , iF ) 
with i

, ,
F
i j kSSK  ( jM , M, N), i

, ,
F
i j kSVK j(M , M, N), i

, ,
F
i j kSS  j(M , 

M), i
, ,
F

i j kSVer  (M, N), and i
, , ,
F
i j k rSCombin  j( )M  respectively. 

Since iF  is uniquely determined by i
, ,
F
i j kSSK , i

, ,
F
i j kSVK , 

i
, ,
F
i j kSS , i

, ,
F

i j kSVer , and i
, , ,
F
i j k rSCombin , it can be omitted 

from the protocol specification. 
For combination of different secret shares in (TR, h)-
valid form, which are with the same secret in the same (l, 
t)-threshold secret-sharing process, it suffices to check 
whether the arity of secret shares is more that t. Thus, 
we include in ,TR h

SSå  the functions i
, , ,
F
i j k rPCombin  and 

i
, , ,
F

i j k rSCVer . i
, , ,
F

i j k rSCVer is used to determine if the secret 
can be computable from r different secret shares in a 
secret-sharing scheme with threshold (l, t) and can be 
modeled as follows. 

i
, , ,
F

i j k rSCVer ( i
, ,
F
i j kSS ( iN , i

, ,
F
i j kSSK  ( jM , i1, ,l tt )), …, 

i
, ,
F
i j kSS ( iN , i

, ,
F
i j kSSK  ( jM , ir, ,l tt ))) = eq(t, r) Ú  

i
, , , 1
F

i j k rSCVer - ( i
, ,
F
i j kSS ( iN , i

, ,
F
i j kSSK  ( jM , i1, ,l tt )), …, 

i
, ,
F
i j kSS ( iN , i

, ,
F
i j kSSK  ( jM , ir-1, ,l tt )))                                               

for r; 1                                                                          (3) 
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i
, , ,1
F

i j kSCVer ( i
, ,
F
i j kSS ( iN , i

, ,
F
i j kSSK  ( jM, i, ,l tt )) = eq(t, 1)   (4) 

Thus, combination of r different secret shares is 
modeled by the following equational rules: 

i
, , ,
F
i j k rSCombin (jM) = i

, , ,
F
i j k rPCombin ( jM , i

, , ,
F

i j k rSCVer (jM))   (5) 

i
, , ,
F
i j k rPCombin  ( i

, ,
F
i j kSS ( iN , i

, ,
F
i j kSSK  ( jM , i1, ,l tt )),  …,  

i
, ,
F
i j kSS ( iN , i

, ,
F
i j kSSK  ( jM , ir, ,l tt ))) = iF {jM/ �a} { iN/ ib}  (6) 

The i
, , ,
F
i j k rPCombin  and i

, , ,
F

i j k rSCVer  functions are private, 
hence they cannot be used by the adversary. 
We now define the dynamic compilation of term and 
process. 
 
Definition 6. The (TR, h)-dynamic compilation is the pa- 
rtial function ,: TR h

SS SS
T Ts

å å
®  recursively defined as follows: 

, ,i j kSSK j(M, M, N, i)F s  = i
, ,
F
i j kSSK j(M, M, N); 

, ,i j kSVK j(M, M, N, i)F s  = i
, ,
F
i j kSVK j(M, M, N); 

, ,i j kSS j(M, M, i)F s  = i
, ,
F
i j kSS j(M, M); 

, ,i j kSVer (M, N, i)F s  = i
, ,
F

i j kSVer (M, N); 

, , ,i j k rSCombin j(M, i)F s  = i
, , ,
F
i j k rSCombin j(M); 

f(M1, …, Mi)s  = f(M1s , …, Mis ); 

x = x; n = n, where 
•  (i, j, k, iF )ÎTR; 
•  r Î  [1, h]. 
 

The following theorem finally states that 
observational equivalence is preserved under dynamic 
compilation and hence asserts the soundness of the 
encoding from the infinite specification into the finite 
specification. 
 
Theorem 1. Let P and Q be (TR, h)-valid processes, 
and s  be the (TR, h)-dynamic compilation, we have 
that Ps ,TR h

SSE
»  Qs  Û A 

SSE
» B. 

The proof of this theorem is given in Appendix. 

5. Mechanized Analysis of Threshold Certificate 
Protocol 

We then analyze the security properties of (l, t)-
threshold certificate protocol17 with ,TR h

SSE . 

The goal of threshold certificate protocol is to enable 
secret-sharing scheme to resist player’s cheating. Each 
player gets secret share and a (l, t)-threshold agreement 
certificate in share distributing phase of the proposed 
secret-sharing scheme. The (l, t)-threshold agreement 
certificate can prevent the leakage of the secret share 
and can be verified. Thus, any player who submits a 
false certificate will be detected. And, no information 
about the secret shares can be computed from the 
cheating. 
The threshold certificate protocol is composed of three 
subprotocols: the secret distributing protocol, the secret 
reconstruction protocol and the secret recovering 
protocol. The secret distributing protocol allows players 
and off-line TTP to get secret share and (l, t)-threshold 
agreement certificate from dealer. The secret 
reconstruction protocol enables more than t players to 
reconstruct the secret. The recovering protocol enables 
more than t players and off-line TTP to recover the 
secret. 
Every Player has a unique ID. Off-line TTP also has a 
group of special IDs. We assume further dealer has a 
key-pair called endorsement key (EK) for each secret-
sharing scheme as well as a publicly known identity 
bsnD. 

5.1. Secret distributing protocol 

Suppose that the dealer wants to share the secret 
sign(h(ND), SK) among players whose IDs are ID1, ..., 
IDl according to the (l, t)-threshold secret-sharing policy, 
where IDi¹IDj if i¹ j. (Note that ID1, ..., IDl are the 
public IDs of the players.) For convenience, player IDi 
denotes a player whose ID is IDi. Let the special IDs of 
the off-line TTP be 

iTID  where 
iTID Ï{ID1, ..., IDl}; and  

i = 1; 2; …; l−t +1. 
(i) The dealer uses a (2l −t +1, l +1)-threshold secret-

sharing scheme to partition the secret sign(h(ND), 
SK) into 2l−t+1 shares (ID1, ttpss1), (ID2, ttpss2), …, 
(IDl, ttpssl) and (

1T
ID , 

1T
ttpss ), (

2TID , 
2Tttpss ), ..., (

1l tTID
- +

, 

1l tTttpss
- +

). 
(ii) The dealer generates the signatures sign(ttpss1, SK), 

sign(ttpss2, SK), …, sign(
1l tTttpss

- +
, SK). 

(iii) The dealer uses a (l, t)-threshold secret-sharing 
scheme to partition secret sign(h(ND), SK) into l 
shares (ID1, ss1), (ID2, ss2),..., (IDl, ssl). 
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(iv) The dealer sends 
1

( TID , 
1
)Tttpss , 

2
( TID , 

2
)Tttpss , ..., 

1
(

l tTID
- +

, 

1l tTttpss
- +

) to the off-line TTP over a secure channel. 
(v) The dealer sends (ttpssi, sign(ttpssi, SK), ssi) to 

player IDi over a secure channel, for each i = 1, 
2, ..., l. 

It is noted that the part (ttpssi, sign(ttpssi, SK)) is called 
the (l, t)-threshold agreement certificate of the player 
IDi. 
In our calculus, we can model the dealer in the secret 
distributing protocol according to as follow. 
 
define ssproof = sign(beta1, alpha1). 

dealer1 = iID IDÎÕ . 

let ttpssk = 2,1,1
ssproofSSK (SK, pk(SK), i, SSP2l−t+1, l+1(pi)) in 

let ttpsvk = 2,1,1
ssproofSVK (SK, pk(SK), i, SSP2l−t+1, l+1(pi)) in 

let ttpss = 2,1,1
ssproofSS (h(ND), ttpssk) in 

let sscert = sign(ttpss, SK) in 
let ssk = 2,1,1

ssproofSSK (SK, pk(SK), i, SSPl, t (pi)) in 
let ss = 2,1,1

ssproofSS (h(ND), ssk) in 
oeb (IDi, ttpss, sscert, ss)) | !oeb(= IDi). oeb (IDi, ttpsvk). 

dealer2 = T TjID IDÎÕ  . 

let ttpssk = 2,1,1
ssproofSSK (SK, pk(SK), l+j, SSP2l−t+1, l+1(pi)) in 

let ttpss = 2,1,1
ssproofSS (h(ND), ttpssk) in 

oeb  ( (
jTID , ttpss). 

dealer = vpi. vSK. vND.  

(! c (bsnD, pk(SK)) | dealer1 | dealer2). 

Here the define statement defines an abbreviation 
ssproof for the (i, j)-function we use in all secret-sharing 
proofs. 

5.2. Secret reconstruction protocol 

After successfully executing the secret distributing 
protocol, each player gets secret share and a (l, t)-
threshold agreement certificate from dealer. Players 

1i
ID ,  

2i
ID , ..., 

ki
ID Î IDG will reconstruct the secret where IDG 

Í ID, they may perform the following procedure: 
(i) Each player 

jiID  submits her/his (2l −t +1, l +1)- 
threshold share, (

ji
ttpss , sign(

ji
ttpss ,  SK)), which we 

call the player '
jiID s (l, t)-threshold agreement certi- 

ficate 
jisscert . 

(ii) Each player verifies the (l, t)-threshold agreement 
certificate (

jittpss , )
ji

sscert   by  the  equation  check( 

ji
sscert , pk(SK)) = true or not, for each j = 1,  2, ..., k. 

 If the number of the certificates which pass the 
verification is less than t, then they stop the 
procedure according to the (l, t)-threshold access 
structure. Otherwise, they perform the following 
steps. 

(iii) Each player submits her/his secret share (
jiID , 

jiss ) 
to reconstruct the secret sign(h(ND), SK). 

The process for the secret reconstruction protocol is 
reported as follow. 
 

1
irecon  = c (ttpss, ttpcert). cpi,2(= IDi). c (IDi, ss). 
2
irecon  = c(ttpss, ttpcert). 

if check(ttpcert, PK) = true then 
iauthenticate (ttpss). ,2icp  (ttpss, ttpcert). 

,3icp (IDj, ttpss, ttpcert), c(= IDj, ss), ,1icp (ss). 
3
irecon  = !initi(IDj). ( 1

irecon  | 2
irecon ). 

4
irecon  = cpi, 1(ss1). cpi, 1(ss2). … . cpi, 1(sst). 

let s = 1th1( 2,1,1,
ssproof

tSCombin (ss1, ss2, …, sst )) in  
iobtain  (s). 

5
irecon  = !cpi, 3(IDx, ttpss, ttpcert), oeb (IDi, IDx, ttpss) | 

oeb (IDi, IDi, ttpss) | oeb(= IDi, s). iobtain (s). 
player  = c(= bsnD, PK). 

i GID IDÎÕ . oeb(= IDi, ttpss, ttpcert, ss). cpi, 1(ss). 
cpi, 2(ttpss, ttpcert). ( 3

irecon  | 4
irecon  | 5

irecon ). 
 
To simplify our model, here the restricted channel cpi, 2 
is used to decide if at least t different (l, t)-threshold 
agreement certificates pass the verification of IDi. 

5.3.  Secret recovering protocol 

Suppose that some of the players don’ t submit their (l, 
t)-threshold secret shares. The remaining players may 
send {(

jiID ,  
jittpss )} 1

k
j=  to the off-line TTP and request 

her/him to reconstruct the secret. In the following, we 
present the procedure the offline TTP performs in 
response to the request: 

(i) The off-line TTP verifies the received (2l−t+1, 
l+1)-threshold secret shares. If k ≺  t, he rejects the 
request and stops the procedure. Otherwise, she/he 
performs the following steps. 

(ii) The off-line TTP uses the (2l−t+1, l+1)-threshold 
secret shares {(

ji
ID , 1)}

j

k
i jttpss =  È {(

jTID ,
jTttpss 1

1)}l t
j
- +
=  

to reconstruct the secret sign(h(ND), SK). 
(iii) The off-line TTP sends the secret sign(h(ND), SK) 

to the player 
ji

ID , for each j = 1, 2, ..., k. 
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It is obvious that the off-line TTP will solve the secret 
sign(h(ND), SK) for all players 

ji
ID  who submitted the (l, 

t)-threshold agreement certificates which are used to 
solve sign(h(ND), SK). 
The process for the secret recovering protocol is 
reported as follow. 
 
recov1 = T TjID IDÎÕ . oeb(=

jTID , ttpss). ! ,ttp jcp (ttpss). 

recov2 = i GID IDÎÕ . !oeb(= IDi, IDx, ttpss). oeb (IDx).  

oeb(= IDx, ttpsvk). 
if 2,1,1

ssproofSVer (ttpsvk, ttpss) = true then 
ttpcp (IDi, ttpss). ccpttp(= IDi, s).  

ttpdistribute  (IDx, s). oeb (IDx, s) | 
cpttp(= IDi, ttpss1). cpttp(= IDi, ttpss2). ... .  
cpttp(= IDi, ttpsst). 
cpttp, 1(ttpsst+1). cpttp, 2(ttpsst+2). ... .  
cpttp, l−t+1 (ttpssl +1). 
let s = 1th1( 2,1,1, 1

ssproof
lSCombin +  (ttpss1, ttpss2, ...,  

ttpssl+1)) in 
! ttpccp  (IDi, s). 

ttp = recov1 | recov2 

5.4. Authenticity of the protocol 

We will now discuss the authenticity property of the 
threshold certificate protocol and how to model it in our 
calculus. Firstly, we can define this protocol as follow: 

System = dealer | player | ttp. 

The security goal of threshold certificate protocol is to 
enable secret-sharing scheme to resist player’s cheating. 
Thus, any player who submits a false certificate will be 
detected. And, no information about the secret shares 
can be computed from the cheating. 
GS(IDG, IDj, t) is defined to include all the sets which 
contain t elements different from IDj in IDG. Thus, the 
authenticity property of threshold certificate protocol is 
defined as the fulfillment of the following trace 
properties: 

"IDi Î  IDG. iobtain (sign(h(ND), SK)® (
( , , 1)G G iiID GS ID ID tÎ -
Ú . 

Gij IDÎ
Ù .

( , , 1)G G jjID GS ID ID tÎ -
Ú .

G jk IDÎ
Ù . jauthenticate ( 2,1,1

ssproofSS ( h(ND), 

2,1,1 (ssproofSSK SK, pk(SK), k, SSP2l−t+1, l+1(pi)))) Ú (ttpdistribute   

(IDi, sign(h(ND), SK)).                                                  (7) 

Which means that if a player obtains the secret 
sign(h(ND), SK), then either there exists at least t −1 
other players who verify at least t −1 player’s 
certificates in the same run or the secret sign(h(ND), SK) 
is from TTP to resist player’s cheating. 
Trace properties such as above can be verified with the 
mechanized prover ProVerif. 
In ProVerif script, the parallel compositions are 
replaced with replicated inputs, for example, 

iID IDÎÕ  are 
replaced with !exp_ID(IDi, i) on the restricted channel 
exp_ID. We also add the events (authenticate  
authenticatei, ttpss), obtain (obtaini, s), and (distribute  
IDx, s) just before iauthenticate (ttpss), iobtain (s), and 
after ttpdistribute (IDx, s) respectively. 
ProVerif shows that the threshold certificate protocol 
satisfies the authenticity property. 

6. Conclusion 

We devise an abstraction of verifiable multi-secret 
sharing schemes in the applied pi-calculus. An 
equational theory for terms characterizes the semantic 
properties of secret share. Moreover, we propose an 
encoding into a finite specification in terms of a 
convergent rewriting system that is accessible to a fully 
mechanized analysis. 
We regard the threshold certificate protocol as the case 
study, because this protocol packages many ideas that 
appear in the field of secret-sharing. Furthermore, this 
case study contributes to the results for the specification 
and verification of verifiable multi-secret sharing 
protocol that should be useful beyond the analysis of the 
threshold certificate protocol. 
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Appendix A.  The Proof of Theorem 1 

We first define the notion of an execution trace. This 
requires reviewing the labeled operational semantics 
that allow us to reason about processes that interact with 
their environment.3  
 
Definition 7 The set of execution traces of an extended 
process P, written traces(P), is defined as follows: 
traces(P) = { 1m 1( )Pf , …, nm ( )nPf }|P *® 1m¾¾¾¾¾®P1  … 

*® nm¾¾¾¾¾®Pn}. 
 
In the following, we let s range over execution traces. 
We then review the notions which come from [3]. 
 
Definition 8 Two term M and N are equal in a frame f , 
written (M = N)f , if and only if f  º  v �n .s , Ms  º 
Ns , and { �n }Ç  (fn(M)∪fn(N)) = Æ  for some name en 
and substitution s . 
 
Definition 9 Two closed frame f  and y  are statically 
equivalent, written f  s»  y  if and only if dom( f ) = 
dom(y ) and for all terms M and N, it holds that (M = N) 
f  if and only if (M = N)y . 
We say that two closed extended processes are statically 
equivalent, written P s»  Q if and only if their frames 
are statically equivalent. 
 
We now define the notion of labeled bisimilarity3, 
which constitutes an equivalent notion of observational 
equivalence. Labeled bisimilarity does not rely on the 
universal quantification over evaluation contexts used in 
the definition of observational equivalence. 
 
Definition 10 Labelled bisimilarity ( l» ) is the largest 
symmetric relation \  on closed extended processes 
such that P \  Q implies: 
•  P s»  Q; 
•  if P® 'P , then Q® 'Q  and 'P  \  'Q  for some 'Q ; 
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•  if P m¾¾¾¾® 'P  and fv( m )Í  dom(P) and bn( m )Ç fn(Q) 
= Æ , then Q *® m¾¾¾¾® *® 'Q  and 'P \ 'Q  for 
some 'Q . 

 
We finally state the well-known equivalence between 
observational equivalence and labeled bisimilarity3. 
 
Theorem 2 Observational equivalence coincides with 
labelled bisimilarity: » = l» . 
 
Lemma 1 let f  be an (TR, h)-valid frame and s  be an 
(TR, h)-compilation. Then for any ground terms M1, M2 
Î

SS
TΣ in (TR, h)-normal form with respect to f , we have 

SSE 6  M1 = M2  Û ,TR h
ssE 6  M1s  = M2s . 

 
Proof. We prove the Ü  implication by induction on the 
length of the derivation of M1. We first discuss the 
interesting base case: 
M1σ= i

, ,
F

i j kSVer i
, ,( F

i j kSVK j(M s , m, , )l tt , i
, , (F

i j kSS iN s , i
, , (F

i j kSSK  
jM s , m, , )l tt , M2s  = True, it must be the case that (i, j, 
k, iF ) Î TR, otherwise M1 is not in (TR, h)-normal form 
with respect to f . Therefore, we get M1 = true. We 
have M1 = M2 as desired. 
M1s = i

, , ,
F
i j k rSCombin ( i

, , (F
i j kSS iN s , i

, , (F
i j kSSK jM s , i1, , )l tt ), ..., 

i
, , (F

i j kSS iN s , i
, , (F

i j kSSK  jM s , ir, , )l tt )), M2s = iF { jM s / �a} 
{ iN s / ib}, it must be the case that 
•  (i, j, k, iF ) Î  TR; 
•  im¹ in for 1£  m, n £  r and m¹n. 
Otherwise M1 is not in (TR, h)-normal form with respect 
to f . 
Further, we get that i

, , ,
F

i j k rSCVer ( i
, , (F

i j kSS iN s , i
, , (F

i j kSSK jM s , 
i1, , )l tt ), ..., i

, , (F
i j kSS iN s , i

, , (F
i j kSSK  jM s , ir, , )l tt )) = true. 

Thus, we get r³ t and M1 = iF { jM / �a}{ iN / ib}. We have 
M1 = M2 as desired. 
The proof of the implication is similar. 
 
Lemma 2 let A be an extended process such that A 

SSEº  
v �n .v �y .({ jM / �x }| P), for some (TR, h)-valid extended 
process v �n .v �y .({ jM / �x }| P), let s  be the (TR, h)-
compilation. Then the following statements hold: 

(i) For every B, A 
SSE®  B  if and only if there exists an 

 (TR, h)-valid extended process v �n .v �y.({ j 'M / � 'x }| 'P ) 
 

SSEº B such that v �n.v �y .({ jM / �x}| P)s ,TR h
SSE

®  v �n .v �y. 
 ({ j 'M / � 'x }| 'P )s . 

(ii) For every m  containing only terms in (TR, h)-
normal form with respect to v �n .v �y.{ jM / �x } and 

every B, A SSE
m¾¾¾¾®  B if and only if there exist an 

(TR, h)-valid extended process  v � 'n .v � 'y .({ j 'M / � 'x } |  
')P

SSEº B such that v �n .v �y .({ jM / �x }| P)s  SSE
m¾¾¾¾®  

v � 'n . v � 'y .({ j 'M / � 'x }| ')P s  where 
(a) If m  = a(M), then �n  = � 'n , �y  = � 'y , x, for some 

xÏ{ �x }, and { j 'M / � 'x } = { jM / �x }|{M / x}. 
(b) If m  = a (b), then �n  = � 'n , �y  = � 'y , and { j 'M / � 'x } 

= { jM / �x }. 
(c) If m  = vb. a (b), then �n  = � 'n , �y  = � 'y , and {j 'M / 

� 'x } = { jM / �x }|{M / x}. 
(d) If m  = vx. a  (x), then �n  = � 'n , �y  = � 'y , and { j 'M / 

� 'x }  = { jM / �x }|{M / x}, for some (TR, h)-valid 
M. 

 
Proof. We prove statement 1 by case on the internal 
reduction rule. Let us first deal with the ”only if” 
implication. 
COMM: There exist M, x, Q, P1, P2 such that v �n .v �y. 
({jM/ �x }| P) 

SSEº v �n .v �y.({ jM / �x }|Q| a (M).P1|a(x).P2 and  
Q | a(M).P1 |a(x).P2 is (TR, h)-valid. By α-renaming, we 
can assume that x Ï  fv(P1). We also have that B 

SSEº v �n .v �y.({ jM / �x }|Q|P1|P2{M / x}.  
By ALIAS, RES-PAR, and SUBST, we get v �n .v �y . 
({ jM / �x }| P) 

SSEº v �n .v �y.vx.({ jM / �x }|{M / x}|Q| a  (x).P1|  
a(x).P2. Since s  behaves as the identity function on 
variables and names and it is defined on (TR, h)-valid 
terms and processes, we get v �n .v �y.({ jM / �x }| P) s ,TR hESS

º  

v �n.v �y.v �x.({jM/ �x}|{M / x}|Q| a (x).P1|a(x).P2) s . We also 
have that v �n.v �y.vx.({jM/ �x }|{M / x}|Q| a  (x).P1|a(x).P2)s  

,TR h
SSE

® v �n .v �y.({ jM / �x }|Q|P1|P2{M / x})s , as desired. 

Notice that internal reduction is closed by structural 
equivalence. It is easy to see that P2{M / x} is (TR，h)-
valid since M occurs in the (TR，h)-valid process a (M). 
P1 and it is thus (TR，h)-valid as well. 
THEN: There exist M, N, Q, P1, P2 such that v �n .v �y. 
({jM/ �x}| P) 

SSEº v �n .v �y.({ jM / �x }|Q| if (M=N) then P1 else 
 P2), for some M, N, Q, P1, P2 such that the process (Q| 
if (M=N) then P1 else P2) is (TR, h)-valid and SSE 6M 
{jM/ �x}=N{jM/ �x}. We also have that B 

SSEº v �n .v �y.({jM / 
�x}|Q|P1. Similarly, we get v �n .v �y.({jM/ �x}|P)s ,TR hESS

º v �n . 

v �y .({jM/ �x }|Q| if (M = N) then P1 else P2) s . Since jM 
is in (TR, h)-normal form with respect to and M is (TR, 
h)-valid, it is easy to see (M{jM/ �x }) is in (TR, h)-normal 
form with respect to v �n .v �y.{jM/ �x }. The reason is the 
same for (N{ jM / �x }) . By Lemma1, we get ,TR h

ssE 6  
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(M{ jM / �x }) s =(N{M / x}) s . The result follows from 
THEN and structural equivalence. 
ELSE: The reasoning is similar to the one in the 
previous item. 
We now prove that the process reduction, as defined by 
the labeled transition systems, is preserved as well. We 
proceed by cases on the label: 
If m  = a(M), there exist x, 'P , Q such that v �n .v �y . 
({jM/ �x }|P) 

SSEº  v �n .v �y ({ jM / �x }|a(x). 'P |Q) and B 
SSEº  

v �n .v �y.({ jM / �x }| 'P {M / x}|Q). Similarly, we have that 
v �n .v �y.({jM/ �x }|P)s  ,TR h

ssE
º v �n .v �y.({jM/ �x }|a(x). 'P |Q)s .  

By alpha-renaming, we can assume that x Ï �x  and, by 
SCOPE, we derive free(M)∩{ �n , �y } = Æ . By IN, 
ALIAS, SUBST and RESPAR, we get v �n .v �y. ({ jM / �x }| 
a(x). 'P |Q)s  ms¾¾¾¾¾® v �n .v �y.vx.({jM / �x }|{M / x}| 'P |Q)s . 
If m  = a (b), the output term is a free channel. We have 
that v �n .v �y.({jM / �x }|P) 

SSEº v �n .v �y.({jM / �x }|a(x). 'P |Q) 
and B 

SSEº v �n .v �y.({ jM / �x }| 'P |Q). By SCOPE, aÏ �n  and 
bÏ �n . Similarly, we have that v �n .v �y.({ jM/ �x }|P)s ,TR h

ssE
º  

v �n .v �y.({jM / �x }| a (b). 'P |Q)s . The result follows from 
OUT- ATOM and SCOPE. 
If m  = vb. a (b), the output term is a private channel. We 
have that v �n .vb.v �y.({jM/ �x }|P) 

SSEº  v �n .vb.v �y.({jM/ �x }| 
a(x). 'P |Q) and B 

SSEº  v �n .v �y.({jM/ �x }| 'P |Q). Similarly,  
we have that v �n.vb.v �y.({jM/ �x}|P)s ,TR h

ssE
º v �n.vb.v �y. ({jM/ 

�x }| a (b). 'P |Q) s . The result follows from OUT-
ATOM and OPEN-ATOM. 
if m  = vx. a (x), we have that v �n .v �y.({ jM/ �x }|P) 

SSEº  v �n .  
v �y.({jM/ �x }|a(M). 'P |Q) and B

SSEº v �n .v �y.({jM/ �x }|{M / x}  
| 'P |Q), for some xÏ �x and with fv(M) Í �x. Similarly, 
we have that v �n .v �y.({jM/ �x }|P)s  ,TR h

ssE
º  v �n .v �y.({jM/ �x }|  

a(M). 'P |Q)s . The result follows from ALIAS, RES-
PAR, OUT-ATOM and OPEN-ATOM. 
In all cases, it is easy to see that the resulting extended 
process is (TR, h)-valid. The proof for the “if” 
implication is similar and relies on the fact that s  is 
injective when applied to terms in (TR, h)-normal form. 
 
Lemma 3 let f be an (TR, h)-valid frame and s  be an 
(TR, h)-compilation. Then for every M, N in (TR, h)-
normal form with respect to f  such that (free(M) È  
free(N)) Ç bound( f ) = Æ , we have that (M = N)fÛ 
(Ms  = Ns )f s . 

Proof. The proof follows from Lemma 1 and Definition 
5. 

Lemma 4 let f  be an (TR, h)-valid frame. For every M, 
N such that (M = N)f  holds or (Ms  = Ns )f s  holds, 
we have that M, N are in (TR, h)-normal form with 
respect to f . 
 
Proof. By an inspection of the equational rules in ,TR h

ssE  
and definition 5. 
 
Lemma 5 let f  and y  be (TR, h)-valid frames. Let s  
be (TR, h)-compilation. If f s ,TR h

SS

s
E

» y s , then f  
SS

s
E

» y . 

Proof. By definition 11, we have to prove that SSE 6  
(M =N)f  Û  SSE 6 (M =N)y ,  for every M, N  Î 

SSET , 
only if ,TR h

SSE 6 ( 'M  = 'N )f s Û ,TR h
SSE 6  ( 'M  = 'N ) 

y s , for every 'M , 'N ∈ ,TR h
SSE

T . Suppose that there exist  

M, N such that (M = N)f  holds and (M = N)y  does not 
hold. By Lemma 4, we can assume that M, N are in (TR, 
h)-normal form with respect to f . By Lemma 3, (Ms = 
Ns )f s  holds and (Ms  = Ns  )y s  does not hold. 
Therefore, we get (M = N)y  hold. 

Similarly, we can prove that ,TR h
SSE 6( 'M  = 'N )f s Û 

,TR h
SSE 6 ( 'M  = 'N )y s , for every 'M , 'N Î ,TR h

SSE
T , only 

if SSE 6 (M = N)f Û SSE 6(M = N)y , for every M, N 
Î

SSE
T . 

Lemma 6 let A and B be extended processes such that A 
( )a M¾¾¾¾¾¾¾® 'A , B ( )a M¾¾¾¾¾¾¾® 'B , and f (A)  

SS

s
E

»  f (B). Then for  
every N such that SSE 6M f (A) = N f (A) and A 

( )a N¾¾¾¾¾¾¾® 'A , we have that B ( )a N¾¾¾¾¾¾¾® 'B . 
 
Proof. Since the frames of the two extended processes 
are statically equivalent, we have that SSE 6Mf (A) = 
N f (A) and dom( f (A)) = dom( f (B)). Possibly after 
applying a -renaming on bound names, we get the result 
by applying IN, SCOPE, and STRUCT. 
We can finally show that verifying labeled bisimilarity 
on extended processes obtained by the compilation 
suffice to prove labeled bisimilarity on the original 
extended processes. With Lemma 7, we can prove 
Theorem 1 as desired. 
 
Lemma 7 Let A and B be extended process such that A 
= v �n .v �y.({ jM/ �x }|P), B = v � 'n .v � 'y .({ j 'M / � 'x }| 'P ), for 
some (TR, h)-valid processes P and 'P . Let s  be the 
(TR, h)-compilation. If As ,TR h

SS

l
E

» Bs , then A
SS

l
E

» B. 
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Proof. Since As  ,TR h
SS

l
E

»  Bs , we can consider the smallest  

symmetric relation \ satisfying the condition 1, 2, and 
3 of Definition 12 and such that As \Bs . Given s , 
let us define the relation \  as the smallest symmetric 
relation satisfying the following conditions: 
•  For every (TR, h)-valid A, B such that As '\ Bs . 

We have that A\B. 
•  For every A, B, 'A , 'B  such that  A\B, A 

SSEº  'A  
and B 

SSEº 'B , we have that 'A \ 'B . 
We want to prove that \  satisfies the conditions 1, 2, 
and 3 of Definition 12. 
Condition 1: We want to prove that for every A, B such 
that A\B, we have that f (A)  

SS

s
E

»  f (B).  If A\B, then  

there exist (TR, h)-valid 'A , 'B  such that A 
SSEº 'A  and 

 B  
SSEº 'B , and 'A f \ 'B f . By definition of '\ , f ( ' )As   

,TR h
SS

s
E

»  f ( 'B s ). By Lemma 5,  f ( 'A ) 
SS

s
E

» f ( 'B ). Since 

 structural equivalence preserves static equivalence, f  
(A) 

SS

s
E

» f (B), as desired. 
Condition 2:We want to prove that for every A, B such 
that A\B, we have that if A®A1, then B *® B1 and A1 
\B1 for some B1. If A\B, then there exist (TR, h)-valid 

'A , 'B  such that A  
SSEº 'A  and B  

SSEº  'B , and 'A s '\   
'B s . By Lemma 2, for every A1 such that A®A1, there 

exists a (TR, h)-valid 1 'A  such that 'A  ® 1 'A , 1 'A  
SSEº   

A1 and 'A s ® 1 'A s , we can find similar B1 and 1 'B  
for B and 'B , respectively. By Definition of '\ , it is 
easy to see that 1 'A s '\ 1 'B s . By Definition of \ , 

1 'A \ 1 'B and, since s is closed by structural 
equivalence, A1\B1, as desired. 
Condition 3: We want to prove that for every A, B such 
that A\B, we have that if A m¾¾¾¾®A1 and fv( m ) Í dom(A) 
and bn( m )Ç  fn(B) = Æ , then B *® m¾¾¾¾® *® B1 and A1 
\ B1 for some B1. If A\B, then there exist (TR, h)-valid 

'A , 'B  such that A
SSEº 'A  and A 

SSEº 'B , and 'A f '\ 'B  
f . By Lemma2 and Lemma 6, for every A1 such that 
A m¾¾¾¾®A1, there exist a (TR, h)-valid 'A  such that 'A  

m¾¾¾¾® 1 'A , 1 'A  
SSEº   A1 and 'A s  ® 1 'A s , we can find  

similar B1 and 1 'B  for B and 'B , respectively. By 
Definition of '\ , it is easy to see that 1 'A s '\ 1 'B s . 
By Definition of \, 1 'A \ 1 'B  and, since f  is closed by 
structural equivalence, A1\B1, as desired. 
Therefore, A 

SS

l
E» B, as desired. 

Theorem 1 then follows directly from Lemma 7 since 
l»  and » coincide in the applied pi-calculus. 
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