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Diagnostics of a Multiresponse Regression Model with Autocorrelated Errors
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In this paper we study the diagnostics of a multiresponse regression model with a first-order autoregressive error
sequence. The deletion technique is used to identify the outliers taking account of the dependence structure of
the errors. Besides the usual measures, some scalar measures to gauge the impact of the ouliers on the regression
are suggested.
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1. Introduction

Ever since the early work of Cook (1977), extensive studies have been made on the diagnostics of
multiple regression models with a single response using both the perturbation and the deletion tech-
niques. Most of these studies were, however, applied to models with identically and independently
distributed errors (refer Belsley, Kuh and Welsch (1980), Cook and Weisberg (1982) and Chatterjee
and Hadi (1988) for a comprehensive discussion).

The studies were later extended to models with correlated error structures. In the generalized
least-squares context, Putterman (1988) studied the influence of the first transformed observation
on the parameter estimates. Schall and Dunne (1988) distinguished three types of outliers for the
general linear model with arbitrary known variance-covariance structure and developed a unified
approach to test for the presence of these outliers and a method of adjusting the parameter estimates
when such outliers are present. Martin (1992) considered a linear regression model with completely
specified error covariance structure and generalized the usual measures based on leverages and
residuals. Cerioli and Riani (2002) proposed a new robust technique for the analysis of spatial data
through simultaneous autoregressive models. Sen Roy and Guria (2004) applied the deletion tech-
nique to a regression model with first-order autoregressive errors and obtained explicit expressions
of the diagnostic measures. Zewotir and Galpin (2007) extended the standard diagnostic tools to a
linear mixed model.
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However, only a few sporadic studies have been made for multivariate models involving several
responses. Such models can be of special importance especially in econometric and biostatistical
studies where it is often necessary to model several related responses. Univariate modelling of each
response in such cases would fail to capture the co-relationship between these variables and would
hence lose vital information on the system as a whole. For such models, Barrett and Ling (1992)
and Barrett (2003) suggested two general classes of influence measures based on the trace and
determinant of a matrix which are functions of the hat and residual matrices. They, however, did not
take account of the influence of the particular observation(s). A detailed study of the distribution
of the Cook’s Distance for elliptically distributed responses was made by Garcia and Farias (2004)
and Garcia, Farias and Castro (2007). Rousseeuw, Aelst, Driessen and Agullo (2004) introduced
the minimum covariance determinant estimator as a robust method for estimating the multivariate
regression parameters and investigated the finite-sample performances of the estimator. All these
studies, however, have assumed that the response vectors are independent.

Usually the deletion technique involves the deletion of a single observation and studying the
impact it has on the regression. However, in many situations, as in a depression or a boom, con-
secutive time points may be outliers. In such cases, instead of deleting one observation at a time,
it is desirable to see the impact that the deletion of this sequence of outliers has on the regression.
Although studies on multiple outliers have been carried out by several authors like Rosner (1975)
and Davies and Gather (1993), the deletion technique in the presence of autocorrelated errors has
never been looked into.

In this paper we extend the results of the univariate autocorrelated models to a multi-response
model with first-order autoregressive errors. The single observation deletion technique as applied by
Sen Roy and Guria (2004) to the univariate model is further extended to the case where a sequence
of consecutive observations are deleted. Expressions for DFBETA, DFFIT and Cook’s Distance
are then derived. Since these do not come out as simple numbers and hence are difficult to judge
from, some scalar measures for identifying outliers are suggested.

The model is discussed in Section 2 while the main results are derived in Section 3. Section 4
contains some remarks and discussions and a numerical example is given in Section 5.

2. The model

Consider a model with g responses, each response being explained by the same set of p predictor
variables. Given n observations, the j* response can then be modeled as

yj:Xﬁj—l—uj, j=1,...,q 2.1)

where X is the n x p design matrix of rank p (< n) and the elements of the error vector u; follow a
first-order autoregressive scheme with E(u;) = 0 and dispersion matrix

2 .. pnfl

1 p p>-
1 P ...pn*Z

v=_%i | P 2.2)
pnfl pn72 pn73 |
with |p| < 1.
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Observing that the g responses for a given observation are correlated, (2.1) can be pooled as
Y=XB+U, 2.3)
where Y = (y1,...,¥4), U= (uy,...,u,) and B= (B,..., B,). Thus
D(U)=X®YV, 2.4)

where ¥ = ((0;;)) is a positive definite scale matrix of dimension ¢ x g.
Observing that

Vec(Y) = (I, @ X)Vec(B) + Vec(U)

the best linear unbiased estimator of B is given by the generalized least-squares estimator

Vec(B) = [(I, ®X) (2@ V) NI, 2X)] ' [(I, 2X) (Z® V) 'Vec(Y)]
or B=(XVIX)"'xX'v-ly (2.5)
with D(B) =X X'V IX)™ (2.6)

It is interesting to note that B depends on V but not on X which can thus be estimated as
S =n"Y(Y-XB)V(Y-XB). (2.7)

The regression diagnostics for this model, like the univariate models, will be based on the resid-
ual matrix E = Y — XB and the hat matrix H = X(X'V~!X)~'X'.

Since V is a positive definite matrix, there exists a nonsingular matrix P > V~! = P'P. Therefore,
defining X* = PX, Y* = PY and U* = PU,

B=X"X)"'X"Y" and £=n"Y(Y'—XB)(Y'—X'B).

Thus when the diagnostic relates to the deletion of one or several observation(s) at a time and
observing the effect on the estimators, the corresponding row(s) and column(s) of V must also be
deleted. This would require that the corresponding column(s) of P is also deleted. Here we study
the effect of this on the model (2.3)-(2.4).

3. Main results

Let I = I(i) be the set of k consecutive observations indexed as {i,i+1,...,i+k—1},i=2,...,n—k.
To see the effect of deleting these k observations on the estimated parameters, let X;,Y; and U;
denote the design, response and disturbance matrices obtained from X, Y and U after deleting these
observations. The deletion of these observations will also induce a deletion of the corresponding
rows and columns of V to yield the (n — k) x (n — k) matrix V;. We first observe the effect of this
deletion on V~! and P.

Let ¢ = 14+ p? +p*+---+ p%. Then

Result 3.1. Fori =2,3,--- . n—k— I,VI’l is obtained from V~! by deleting the rows and columns
corresponding to 7 and replacing the (i-1, i-1) and (i+k, i+k) elements by 1+ p+2 /¢, and the (i-1,
i+k) and (i+k, i-1) elements by —p**!/¢;. The corresponding P; is obtained from P by deleting the
rows and columns corresponding to / and replacing the (i+k, i-1) element by —p(k+1) /+/® and the

(i+k, i+k) element by 1/1/¢.
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Note. For i = 1 and (n —k+ 1), V; will be of the same form as V except for a reduction in the
dimension by k. Hence the corresponding VI_1 and P; will be the same as V~! and P with k dimen-
sion less.

Proof. The proof follows by partitioning V; as

1 pi—2 pi+k—1 pn—l
i—2 k+1 n—i—1
] p 1 p e p
Vi=(1-p7) T L pET [ L g G.D
I pn—l pn—H—l pn—i—k 1 |

where the two block diagonal square matrices are of order (i — 1) and (n—k—i+1)
respectively, and then inverting the partitioned matrix using results from Rao (1973). U

Defining X; = P;/X; and Y; = P;Y/, the estimator of B after the deletion of the observations
corresponding to / can be obtained as

B = (%, X)XV, Yr = (X X)) XY (3.2)
and £7 = (n—p—k)~ (Y] = X[B) (Y] - X[ B]). (3.3)

Result 3.2. Under the above set-up,
(i) By is the best linear unbiased estimator of B.
(i) Also if n~ ! (X’V~!X) — M, where M is a p.d. matrix of constants,
B, and 3; are consistent for B and £ respectively.

Note. 7~ (X'V~'X) — M implies that B is consistent for B.

Proof. For the model, Y; = X;B + Uy, since E(P;U;) = 0 and D(P;U;) = 621,, (i) follows from the
Gauss-Markov Theorem.
Under n~' (X' X%)~! — M and since the second moments of U} are finite, n~! (X3 U;) — 0. Hence

B =B+X;/X)'(X;'Up) & B
Again using Khinchine’s Theorem, n~! (U} U)~! — £, so that

£ =(UU)-Ur X (X X)X Uy S O

For each of the (n — k) intermediate observations it is however not necessary to calculate B;
afresh. This can more easily be obtained from the relationship between B and B;.

Let wiy; = (pX;, —x?‘ﬂ-fl) and z;j = (py;,; —y;‘ﬂ-fl) for j =1,2,...,k, and define W} =
(Wii1y. s Wing) and Zy = (zj11, ... ,Zit) . Also let A; = ((a,5)) be a k X k matrix 3 a,s = a, and
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Qf—s+1k—r+1 = Ars SO that only the the terms a,5,7 < s and r+s < k+ 1 are distinct. For these terms

ars = ¢)k_1 Zl;;llr—s\ arsj'ij_‘r_s| where
min(j—|r—s|+1,r)if j< Llr?‘“
rsj = . . PR k—|r—s|+1 G.4)
min(k— j,r) if j>|———
Result 3.3. For I = {i,...,i+k—1},i=1,...,(n—k—1) and E; = Z; — W/B,
B =B XV IX)"'Wy(A T - W, (X'VIX)T'W) TTE, (3.5)
and £ =(n—p—k) (n-pE-EjA -W;XVIX)"'W)'E/.
(3.6)

Proof. Let x;’ and x}, denote respectively the ' rows of X* and X}. Note that the t =1, ..., (i+k—1)
rows of X are missing and that x;’ = x}, for the remaining rows except the (i + k)™, which is

X}kEiJrk) = ¢k71/2(xl(i+k) -P (k+1)x/(i71))

i+k ) ,
— ¢k71/22pk+17tX: . (37)
t=i

Using (3.7) and simplifying

!

n
¥k o Ry *  x * * * *
X; X; = Z XX, = X'X —sz Xt = X)X (k) T X100 X1 (k)

t=1,¢1 rel
= X*X* — W,A/W),. (3.8)
Similarly, X Y = XY —W/AZ,. (3.9)

Using (3.8) and (3.9) in (3.2) and simplifying, (3.5) follows.
Again since Y} Y} = Y*'Y* — Z,A;Z;, similar methods lead to (3.6). O

4. Some remarks

Remark 1: A single observation is deleted. In most diagnostic studies observations are deleted one
at a time to see their impact on the regression. This comes out as a special case of the above results
with k = 1. So if X;,Y; and U; are X, Y and U with the i’ observation deleted,

!

B, = (X;V;'X)"'X;V; ly; (4.1)
i=(n—-p—1)""EVE, 4.2)

[Nold

and
where E; =Y, — Xl-ﬁi. Result 3.3 will then simplify as

B, =B— (X'VIX)"'wEl/[(1+p2) 21 +wi(X'VIX)"'w,)]. (4.3)
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Remark 2: Unknown p. Observe that the expressions in (3.5) and (3.6) depend on the parameter p,
so that p needs to be known to calculate these. If Bozs = (X’X)~!X"Y is the ordinary least squares
estimator of B, then defining the residuals as e;; = (y;; — X;lﬁOLs), an estimator of p is

q
Z, enei—;)/

Of course, when the k observations are deleted p should be strictly estimated from the deleted
set. However, as Result 3.1 suggests, this would introduce nonlinearity in the structure of u;; and
would require weighted least squares for estimation. Moreover, no simple relation of the type (3.5)
or (3.6) of r; as obtained after the deletion can be found with r so that the regressions need to be run
separately after each deletion thus defeating the whole purpose of computational reduction.

HM:
HM:

q
Z e ). (4.4)

Remark 3: The DFFIT and the Cook’s Distance. The expression for DFBETA is given by the
second term on the right-hand-side of (3.5), which avoids re-doing the estimation afresh for each
deletion. Denoting by X|;) the k x p deleted set of explanatory variables, the corresponding expres-
sions for DF FIT and Cook’s Distance, for known p and X, can be easily derived as

DFFIT; = X (B—B;)
= XXV X)W A - W XVTIX) W) TE 4.5)
and CD;=p 'B-B) o XV X)]B-B)
= p 'EjA - W (X'VIX) TIW) T IWHXVTIX) W
(A7 = W(X'V'X) "Wy E;. (4.6)

Remark 4: Standardized measures. It is often appropriate to standardize the DFBETA and DFFIT
values by the corresponding standard deviations (Neter, Wasserman & Kutner, 1985).

For DFBETA/, an estimator of the dispersion of the full-set estimator of the regression parame-
ter is often used as the norming factor in univariate modelling. Replacing p in (2.6) by r as obtained
in (4.4), this gives for the multivariate case

Var(B) =L@ (X'VIX)7!, 4.7)

Alternative estimators could be £; @ (X’ VX)) lors® (X}VI’IXI)*I. The latter two would
help in accentuating the impact of the outliers as the studentized residuals in a univariate regression
model does. However, inspite of the minimality of computation that (3.6) would ensure, the recom-
putation of 3; for the sole purpose of standardization is unnecessary.

Corresponding to (4.7) an estimator of the dispersion for DF FIT; would be
Var(X ) B) = £ X (X'V'X)"'X],. (4.8)

However, exact expressions for the dispersions of DFBETA; and DF FIT; can also be derived.
Let Q = X'V IX) " 'W/(A~ = W;(X'VIX) W)~ Iw, (X'VIX) !
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Result 4.1.
Var(DFBETA;) = 2®Q (4.9)
Var(DFFIT;) = 2@ X QX)) (4.10)
Proof. Define the k x (n — k) matrix Q = (q41,...,qi+«)" where the n-dimensional vector g, ; has

—1 and p as their (i +j — 1)"* and (i + j)"" elements respectively, all the remaining elements being
zero, j = 1,... k. It is then easy to see that A~! = QQ’, Z; = QY* and Wy = QX*.

Therefore D(Z;) = (I, Q)(Z®L,)1,0Q) =LA

and Cov(Z;,Y") = (I,0Q)(E®1,) =Z®Q.

Hence Cov(Z, Y'X*(X'VIX)"'W) = £ W, (X'V X)W/,

Combining the above gives
D(E;) =X (A '+ W, X'V X)W, — 2w, (X'VIX)~IW))
=re A WXV IX) "W).

Writing Vec(B —B;) = 1@ (X'VIX) "W/ (A~! —= W/ (X'V~IX)~'W})~Vec(E;), the results fol-
low. O

Remark 5: Scalar measures to judge outliers. It is easy to get DFBETA;, DFFIT; and CD; from
(3.5), (4.5) and (4.6). However, these being matrices, it is difficult to infer the impact of the k
observations from them. It is therefore necessary to find a scalar measure to judge this impact.

For k = 1, where the DFFIT; = xf(ﬁ — ﬁ,) is a g-dimensional vector, a natural measure would
be the length

A

LDFFIT, = [x,(B—B,)(B - B,)'x;]'/2,

a large value of which would indicate that the observation is an outlier. Alternatively, noting that for
k=1(4.8)is [XQQX,-]ZAZ, the standardized length

SLDFFIT; = [x,Qx;)] " [x,(B—B,)£' (B —B;)'x;]'/?

may be used as a measure. Thus, generalizing for any k, the impact of k observations can be judged
by the magnitude of

TDFFIT; = [tr{X;(B—B,)(B—B,)'X], }]'/*.
The standardized version of this, provided k < p, is

STDFFIT; = [Ved' {X()(B—B)) H{Z & (X QX{;))} ' Vec{X;(B—B/)}]'/2.

Remark 6: More general form of the error dispersion matrix. In this paper we have assumed in (2.4)
a very simple structure of the error dispersion matrix. For one, p in (2.2) can vary for j =1,...,q.
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Secondly, the error sequences may follow more complex structures than the first-order autoregres-
sive model that we have assumed. Such cases can be handled using the same techniques although
the results are likely to be more involved with correspondingly greater complexity in the deriva-
tions.

Remark 7: Masking and Swamping effects. A major concern in multiple outlier models is the
problem of masking, where several outliers, owing to their combined effects, may go undetected.
Sometimes swamping or identification of non-outliers as outliers can also take place. Such issues
have been addressed by several authors particularly while discussing either robust (see Cerioli and
Riani, 2002) or distribution-based methods (see Davies and Gather, 1993). Although no rigourous
study has been made on this in the present work, it can be conjectured that for consecutive outliers
in a first-order autogressive setting, the possibility of masking will be minimal for high positive
autocorrelation and maximum when the autocorrelation in negatively large. This, along with the
choice of k, can be the subject of further studies in this area.

5. A numerical example

To illustrate our technique we consider the data on monthly gas and electricity usage in a gas-
heated single-family residence in Boston, USA for the months September 1990 to May 1997. We
take as our response variables the mean natural gas usage (in therms) per day for the month (y;)
and mean kilowatt hours per day for the month (y,). The total heating degree days for the month
(x) is taken as the independent variable. Since the gas readings for July-August and September-
October were sometimes taken together, y; for 4 July and 6 September months are not given. We
thus impute them with the corresponding August or October values. The data-set can be viewed at
http://www.amstat.org/publications/jse/datasets/utility.dat.

Regressing y; and y, separately on x show the Durbin-Watson statistics to be 1.063015 and
1.468427 respectively, so that a sufficient degree of positive autocorrelation can be assumed. Also
y1 and y, show a positive correlation (0.519139) implying that a bivariate model is to be preferred
over two independent univariate models. We thus use model (2.3) with ¢ =2 and p = 2 (including
an intecept term) and calculate the DFBETA and DFFIT values for k = 1,2(< p).
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Figures 1 and 3 plot the standardized DF FIT's for k = 1 and 2. However, since for k = 1, the
standardized DF FIT is a two-dimensional vector while for k = 2 it is a 2 X 2 matrix, plotting all
elements (using o for y; and A for y, and light for j and dark for (j+ 1)), clutter the plots. Hence in
Figures 2 and 4 we give the corresponding standardized lengths SLDF FIT, which gives a clearer
visual of the deletion effects.

From the figures it is clear that the 67/ and 25" observations are outliers. Some of the others
like the 41%, 42" and 77" observations are also suspect. However, these are generally isolated
outliers and hence come out more strongly for k = 1. In fact, for kK = 2 some of them (41,42) get
masked, while others show up as two consecutive outliers, pulling up their previous and subsequent
normal observations in their train.
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