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Characterizing Non-nesting for the Neyman-Pearson Family of Tests
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For testing a simple null hypothesis against a simple alternative using Neyman-Pearson theory, examples of
most powerful non-randomized critical regions are constructed, which are overlapping for varying sizes. A
likelihood ratio based criterion, characterizing such critical regions, is also provided. A simple method, in
addition, is suggested to construct the class of distributions providing overlapping critical regions for unequal
sizes. These examples, in fact, counterexamples are important in explaining the fact that power of an optimum
test may not increase with an increase in size.
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1. Introduction

Most powerful critical regions for testing a simple null hypothesis against a simple alternative are,
in general, nested, that is, the smaller the size, the smaller is the rejection region. Moreover, nested
critical regions form the basis of the definition of p-value (see, for example, [1] ,page 63). However,
the possibility of a reverse scenario, that is, non-nested critical regions for varying sizes, can not be
ruled out. One such exception, based on discrete distributions, appeared in [2], which gives disjoint
(i.e. non-nested) critical regions for most powerful non-randomized tests of unequal sizes. But they
did not provide any criteria to characterize non-nesting. The primary objective of the current work
is to develop a template to characterize non-nesting. We start with some exceptions for both discrete
and continuous distributions and develop the criteria in an inductive way. All these can be found
in Sections 2 and 3. In addition, starting from the likelihood ratio, a general method for deriving a
number of overlapping(i.e. non-nested) critical regions is also provided in Section 3. Finally, Section
4 concludes with some related discussion.
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2. Few exceptions of nesting

Consider testing

H : X ∼ p0(x) against K : X ∼ p1(x), (2.1)

where p1 and p0 are completely specified. Then, the Neyman-Pearson theory gives the most pow-
erful size α test φα = φα(x), defined as below:

φα = 1 if r(x)> k

= γ if r(x) = k

= 0 if r(x)< k,

where k and γ ∈ (0,1) satisfy EHφα =α and r(x) = p1(x)
p0(x)

is the likelihood ratio(LR). If φα takes only
the values 0 and 1, the test is non-randomized and randomized otherwise. If the most powerful size
α critical region is denoted by Sα , then naturally Sα = {x : φα(x) = 1}. Now most powerful critical
regions Sα and Sα ′ are said to be nested if Sα ⊂ Sα ′ for α < α ′(see, for example, [1], page 63).How-
ever, the counterexample of Romano and Siegel([2],page 251), in this context, demonstrates that
violation to the phenomena of nesting is also possible. In particular, considering specific probability
mass functions p0 and p1, they illustrated non-nesting through disjoint critical regions Sα and Sα ′ ,
where α < α ′. We start with the counterexample of Romano and Siegel[2] and extend suitably to
get most powerful critical regions Sα and Sα ′ , sharing some common points even for continuous
distributions, whenever α < α ′ is satisfied.

Example 1 (Romano and Siegel[2]). In the context of (2.1), Romano and Siegel[2] considered
specific choices of p1 and p0 to contradict the usual nesting property. The choices together with the
related likelihood ratio(LR), are given in Table 1 below:

Table 1. Counterexample of Romano and Siegel[2].

x 1 2 3
p0(x) 0 . 85 0 . 10 0 . 05
p1(x) 0 . 70 0 . 20 0 . 10
r(x) 0 . 823 2 . 00 2 . 00

Thus corresponding to α = .05 and α ′= .10, we have unique non-randomized most powerful critical
regions Sα = {3} and Sα ′ = {2} , respectively. Naturally, the critical regions are neither nested nor
overlapping.
Then the following questions are immediate and of pedagogic importance:

(a) Do there exist critical regions with ordered sizes having some points in common?
and
(b) Can we get non-nested critical regions for continuous distributions?

In the following examples(i.e. examples 2,3 and 4), we try to answer the questions posed above.
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Example 2. Now consider the following choices of p1 and p0:

Table 2. Counterexample for discrete X : Overlapping Support.

x 1 2 3 4 5
p0(x) 0 . 85 0 . 10 0 . 025 0 .00 0 . 025
p1(x) 0 . 70 0 . 20 0 . 05 0 .05 0 . 00
r(x) 0 . 823 2 . 00 2 . 00 ∞ 0 . 00

A simple manipulation of {x : r(x)>=< k} with k = 2 gives most powerful non-randomized crit-
ical regions Sα = {3,4} and Sα ′ = {2,4} with respective sizes α = .025 and α ′ = .10. Then the
critical regions are non-nested but overlapping. However, p1 and p0 do not have a common support.

Example 3. If we consider the following choices of p1 and p0,

Table 3. Counterexample for discrete X : Common Support.

x 0 1 2 3 4 5
p0(x) 0 . 05 0 . 02 0 . 03 0 .05 0 . 35 0 . 50
p1(x) 0 . 10 0 . 03 0 . 045 0 .15 0 . 14 0 . 535
r(x) 2 . 00 1 . 50 1 . 50 3 .00 0 . 40 1 . 07

then corresponding to α = .12 and α ′= .13 we have non-randomized most powerful critical regions
Sα = {0,1,3} and Sα ′ = {0,2,3} , respectively. Clearly, Sα is not contained in Sα for α < α ′ and
unlike the counterexample of Romano and Siegel[2], Sα ∩Sα ′ is non empty.

Example 4. Next consider the following choices, where p1 and p0 are both density functions.

Table 4. Counterexample for continuous X .

x (0,1) (1,2) (2,3) (3,4)

p0(x)
√

x
2

1
3

1
6

x
21

p1(x) x
4

1
2

1
4

x
28

r(x)
√

x
2

3
2

3
2

3
4

For k = 3
2 , a routine consideration of {x : r(x)>=< k} yields most powerful non-randomized criti-

cal regions Sα = (2,3) and Sα ′ = (3
2 ,

5
2) with sizes α = 1

6 and α ′ = 1
4 , respectively. Clearly Sα is not

a subset of Sα ′ and in fact Sα ∩Sα ′ = (2, 5
2) is non empty. This particular example gives an extension

of the counterexample of Romano and Siegel[2] for continuous distributions.

3. Characterizing non-nesting

The examples discussed so far though artificially constructed but are similar with respect to the
behaviour of the likelihood ratio r(x). In fact, in all these examples, LR is a constant for at least
two support points. Consequently one can presume non-nesting under such a structure of LR. The
following result gives a formal justification to the phenomena observed so far.
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Result. For testing H : X ∼ p0(x) against K : X ∼ p1(x), if the likelihood ratio r(x) = p1(x)
p0(x)

is a con-
stant for at least two support points then there exist non-randomized most powerful critical regions
which are overlapped for ordered sizes.

Proof. We assume that there exists some finite s such that the domain of r(x) can be split into sets
A+ = {x : r(x)> s}, A= = {x : r(x) = s} and A− = {x : r(x)< s}, where either of A+ or A− may be
empty but A= contains at least two distinct values of x or an interval of the real line. Then a routine
manipulation of {x : r(x)>=< k} for k = s provides the most powerful test φ 0, defined by,

φ
0 = 1 if x ∈ A+

= 0 if x ∈ A−,

where φ 0 can take any value in [0,1] for x ∈ A=. Assigning φ 0 = 0 or 1 to different subsets of A=,
one can get a number of non-randomized most powerful tests. Specifically, if we take φ 0 = 1 or 0
as x ∈ B⊂ A= or x ∈ A=−B, we get the most powerful non-randomized test

φ = 1 if x ∈ A+∪B

= 0 otherwise

with size α = EHφ = PH(X ∈ A+)+PH(X ∈ B). Again the choice φ 0 = 1 or 0 according as x∈ B′ ⊂
A= or x ∈ A=−B′ for some B′, leads to the most powerful non-randomized test

φ
′ = 1 if x ∈ A+∪B′

= 0 otherwise

with size α ′ = EHφ ′ = PH(X ∈ A+)+PH(X ∈ B′). If B and B′ are chosen such that B⊂ B′, then not
only α < α ′ is satisfied but the corresponding critical regions also share some common points(i.e.
B in this case). This proves the claim of the existence of non nested critical regions under ordered
sizes.

Remarks: The above result not only provides the condition of existence of a non nested critical
region under ordered sizes but also gives a possible way of getting a number of choices of p0 and p1

leading to non nesting through an examination of r(x). For example, suppose X is distributed over
{0,1,2,3} keeping r(x) = s

2 I{0}(x)+ sI{0,1}(x)+2sI{3}(x) for some s, where IA(.) is the usual indi-
cator function. Then a routine manipulation of the set {x : r(x)>=< s} gives most powerful non-
randomized overlapping critical regions Sα = {1,3} and Sα ′ = {2,3}. Now, if we choose p0(x) satis-
fying PH(X = 1)<PH(X = 2), then we have α <α ′, in addition to non-nesting. Although an infinite
number of choices are possible, we consider the following choice p0(x) = 1

6 I{0,1}(x)+ 1
3 I{2,3}(x) for

illustration. Since r(x) = p1(x)
p0(x)

, we can get p1(x) and the use of the identity ∑
3
x=0 p1(x) = 1 speci-

fies p1(x) explicitly. Therefore, starting from a particular nature of r(x), a number of choices of p1

and p0 providing non nested most powerful non-randomized critical regions for ordered sizes can
be derived. It is worth mentioning at this point that we adopted the same mechanism to construct
examples 2, 3 and 4.
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4. Concluding Remarks

Starting from the review of an well known counterexample, a general criteria to characterize non-
nesting under ordered sizes even for continuous distributions is developed. Most importantly, a sim-
ple method is suggested to derive reasonable choices of p0 and p1 from non-nested critical regions.
The entire work is based on the critical regions corresponding to most powerful non-randomized
tests of certain sizes. But tests can be randomized, and in such a case nesting is defined in terms
of the test functions (see, for example, [1], page 64). It is interesting to note that such a definition
may lead to ambiguity in case of non-randomized tests(e.g. Example 3). However, the basic aim of
the current work is to develop an insight on nesting of critical regions under the Neyman-Pearson
paradigm of hypothesis testing, not to explain the role of randomization and hence we omit the
details associated with randomization.
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