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This paper proposes a Bayesian approach for the analysis of mixed correlated nominal, ordinal and continuous
outcomes with possibility of missing values using a variation of Markov Chain Monte Carlo (MCMC) method
named Parameter Expanded and Reparamerized Metropolis Hastings (PX-RPMH) method. A general latent
variable model is given and a Gibbs sampler is developed to incorporate PX-RPMH and Data Augmentation
(DA) steps, to estimate parameters and to impute missing values. The performance of the algorithm is evaluated
by some simulation studies. An application of the model to the foreign language attitude scale dataset is also
enclosed.
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1. Introduction

In many longitudinal studies and surveys the multivariate measurements with different scales are
of the main interest. For example in Household Budget Surveys (HBS) there are a lot of questions
about possession, level of income and consumption. Most of the time, there are some correlations
between the responses. So, it is important to have statistical tools for analyzing such data. Many
statistical procedures are developed to analyze different types of outcomes. The standard multivari-
ate regression and cluster analysis for continuous outcomes, logistic regression and multinomial
regression for nominal outcomes and cumulative probit and ordered logistic regression for ordi-
nal outcomes are widely used to analyze these data. Olkin and Tate [31] developed a model for
categorical and continuous outcomes named the general location model (GLOM). They modeled
categorical and continuous outcomes by decomposing the joint model as a marginal multinomial
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distribution for categorical variables and a conditional multivariate normal distribution for continu-
ous variables given the categorical variables. Some extensions of the GLOM are given in Liu and
Rubin [24], Peng et al. [32] and Leon et al. [21]. A second method for joint modeling is to decom-
pose the joint distribution as a multivariate marginal distribution for the continuous responses and
a conditional distribution for categorical variables given the continuous variables. Cox and Wer-
muth [15] empirically examined the choice between these two methods. The third method uses
simultaneous modeling of categorical and continuous variables to take into account the associa-
tion between responses by the correlation between errors in the model. For more details of this
approach see, for example, Heckman [18] in which a general model for simultaneously analyzing
two mixed correlated responses is introduced. Catalano and Ryan [11] extended and used the model
for clustered observations of discrete and continuous outcomes. The possibility of missing values
for mixed discrete and continuous outcomes is studied by Fitzmaurice and Laird [17]. All the above
references consider correlated nominal and continuous responses. A model for ordinal and contin-
uous responses without considering any covariate effect is also presented by Poon and Lee [33].
Latent variable models are used by Bahrami Samani et al. [4] and the effect of missing values is
studied by Bahrami Samani and Ganjali [5], Bahrami Samani et al. [6] and Bahrami Samani and
Tahmasebinejad [7]. Bayesian models for analyzing mixed binary and continuous responses are
presented by Liu et al. [26]. Zhang et al. [41] study a joint model for analyzing mixed nominal,
ordinal and continuous data with possibility of missing values. A Bayesian joint analysis of mixed
ordinal and skew continuous variables is presented by Teimourian et al. [38].

In this article, we propose a Bayesian joint model using latent variables for mixed correlated
nominal, ordinal and continuous outcomes. We assume a multivariate normal distribution for latent
variables and use a multivariate probit model for modeling nominal outcomes, an ordered pro-
bit model for ordinal outcomes and a multivariate regression model for continuous outcomes. To
make a simultaneous analysis of these models we use a Parameter Expanded and Reparametrized
Metropolis Hastings (PX-RPMH) algorithm within Gibbs sampler to get MCMC samples of param-
eters. In contrast to Zhang et al. [41], we use two approaches to improve the speed of the algorithm.
First, we use different partitioning for cut points of ordinal latent variables. Second, we choose a
jointly uniform prior for the covariance matrix and a conditionally independent sampler as our pro-
posal in the Metropolis Hastings algorithm. We consider the possibility of missing values in each
outcome and assume that the mechanism of missingness is at random (MAR). We also evaluate the
sensitivity of our results when the missing mechanism is not at random (NMAR), (vide, Little and
Rubin [23]).

This paper is organized as follows. In Section 2 we present the general mixed correlated model
and the method of parameter estimation. In Section 3 we evaluate the model using some simulation
studies. An application of our model is given in Section 4. Finally, the conclusions are presented in
Section 5.

2. Bayesian Modeling

2.1. The General Model for Analyzing Mixed Correlated Responses

The idea of analyzing correlated binary outcomes using probit model was first proposed by Ashford
and Sowden [3]. McFadden [29] generalized this idea to the Multinomial Probit (MNP) model using
utility functions. A lot of work has been done about resolving the identifiability and generalizing of
the MNP to the multivariate cases. See for example, McCulloch and Rossi [28], Chib and Greenberg
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[13], McCulloch et al. [27], Imai and Van Dyk [19], Xu and Craig [40], and Zhang et al. [41]. Here,
we present notations for the Multivariate Probit (MVP) model.

Denote the j−th nominal outcome for subject i by Ni j for j = 1, ...,m1 where Ni j ∈ {0,1, ...,k j−
1} and k j is the number of levels for j−th nominal outcome. For each nominal outcome we consider
k j− 1 latent variables as ZNi j,l for j = 1, ...,m1 and l = 1, ...,k j− 1. We relate the latent variables
and observations by:

Ni j =


r 6= 0 ZNi j,r = max

1≤l≤k j−1
ZNi j,l > 0;

0 max
1≤l≤k j−1

ZNi j,l ≤ 0.

The latent variables correpond to each level of the nominal outcome are usually interpreted as
the utility of that level in contrast to the utility of the first level of the nominal outcome.

Analyzing ordinal outcomes using probit model was first introduced by Aitchison and Silvey
[1] and developed by Snell [35]. The identifiable multivariate ordered probit models studied by
Nandram and Chen [30], Chen and Dey [12], Lawrence et al. [20], and Li and Schafer [22].

Denote the j−th ordinal outcome for subject i by Oi j for j = 1, ...,m2 where Oi j ∈ {1,2, ...,c j}
and c j is the number of levels for ordinal outcome j. Let ZOi j be the latent variable associated with
the j−th ordinal response where ordinal observations and latent variables are related as follow

Oi j = r⇔ θ j,r−1 < ZOi j ≤ θ j,r r = 1, ...,c j,

where −∞ = θ j,0 ≤ θ j,1 ≤ ... ≤ θ j,c j−1 ≤ θ j,c j = ∞ with θ j,1 = 0 for j = 1, ...,m2. Let Ci j be j−th
continuous response of subject i for j = 1, ...,m3.

Let Yi = (Ni
T ,Oi

T ,Ci
T )

T be (m1 + m2 + m3) × 1 vector of observations where Ni
T =

(Ni1, ...,Nim1), Oi
T = (Oi1, ...,Oim2) and Ci

T = (Ci1, ...,Cim3) for subject i, i = 1, ...,n. Now sup-
pose that Zi = (ZNi

T ,ZOi
T ,Ci

T )
T be q× 1 vector of continuous variables where q = Σ

m1
j=1k j −

m1 +m2 +m3, ZNi
T = (ZNi1, ...,ZNim1), ZNi j = (ZNi j,1, ...,ZNi j,k j−1) for j = 1, ...,m1 and ZOi

T =

(ZOi1, ...,ZOim2).
Suppose that there are some covariates available for subject i, denoted by a q× p matrix of Xi.

So we can write a latent variable model as

Zi = Xiβ + εi, (2.1)

where εi ∼ Nq(0,Σ) for i = 1, ...,n. We take Y = (Y1, ...,Yn) , X = (X1, ...,Xn) and Z = (Z1, ...,Zn).
Note that the design matrix Xi and β can be arranged so that the model can be used for analyz-
ing both cross sectional and longitudinal data. For example, for analyzing longitudinal data with
continuous outcomes suppose that m1 = m2 = 0. To have a model with time varying covariates for
Zi = (Zi,t1 ,Zi,t2 , ...,Zi,tq)

T for time points t1, t2, ..., tq, we can consider Xi = (xT
i,t1 ,x

T
i,t2 , ...,x

T
i,tq)

T and

β = (β1, ...,βp)
T . If we need a model with fixed covariates and varying coefficients we can consider

Xi = Iq⊗Xi,t0 and β = (β1,1,β1,2, ...,βq,p0)
T where Xi,t0 is the 1× p0 vector of fixed covariates for

subject i in time point t0 and p = q× p0. Details can be found in Diggle et al. [16].
As noted by Chib and Greenberg [13] there are some restrictions on Σ in context of identifiability

of the latent model. If we partition Σ according to NOi = (ZNi,ZOi) and Ci, we would have

Σ =

[
ΣNO ΣNO,C

ΣC,NO ΣC

]
.
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So, we need to take ΣNO as a correlation matrix. Therefore, Σ is a covariance matrix with constraints
that take diagonal elements corresponding to categorical outcomes to be equal to one. As a result of
these restrictions, each of the off-diagonal elements of ΣNO belongs to [−1,1].

2.2. Priors

For Bayesian inference, we need to specify priors for parameters in the models described in Section
2.1. We take the priors as

β ∼ Np(β̄ , Σ̄)

where β̄ and Σ̄ are hyperparameters that usually set to zero vector and σ2
β

I, respectively. We take

p(Θ) ∝ Π
m2
j=11(0≤θ j,2≤...≤θ j,c j−1)

where Θ= (θ1,2, ...,θ1,c1−1,θ2,2, ...,θm2cm2−1). The method of data augmentation introduced by Tan-
ner and Wong [37] is useful when models include latent variables. This method is used by Albert
and Chib [2] and Van Dyk and Meng [39] for Bayesian analysis of binary outcomes. Hence, we can
obtain the posterior distribution of parameters through

p(β ,Θ,Σ,Z|Y,X) ∝ p(β )p(Θ)p(Σ)
n

∏
i=1

INOi×φp(Zi;Xiβ ,Σ) (2.2)

where φp(·; µ,Ω) represents the density function of Np(µ,Ω) distribution and INOi is a compatibil-
ity indication which is equal to 1 if all latent variables (ZNi

T ,ZOi
T )

T are compatible with their cor-
responding observations (Ni

T ,Oi
T ), and is equal to 0, otherwise. More precisely, INOi = INi× IOi,

INi =
m1

∏
j=1

INi j, IOi =
m2

∏
j=1

IOi j and

INi j = 1(Ni j=0,max
l

ZNi j,l<0)+
k j−1

∑
r=1

1(Ni j=r,ZNi j,r=max
l

ZNi j,l>0),

IOi j =
c j

∑
r=1

1(Oi j=r,θ j,r−1<ZOi j≤θ j,r).

To do Gibbs sampling we need full conditionals. It is straightforward to show that the posterior of
coefficient parameters are distributed as

β |Θ,Σ,Z,Y,X ∼ Np(β̃ , Σ̃),

where Σ̃ =

(
n
∑

i=1
Xi

T
Σ−1Xi + Σ̄−1

)−1

and β̃ = Σ̃

(
n
∑

i=1
Xi

T
Σ−1Zi + Σ̄−1β̄

)
.

For the latent variables we have

Zi j|β ,Θ,Σ,Y,X ,{Zi j′ ; j′ 6= j} ∼ T N(ai j,s j,Bi j), j = 1, ...,q−m3, (2.3)

where ai j = µi, j− s jΣ
−1
j,− j(Zi,− j−µi,− j), s j = 1/Σ

−1
j j and µi, j is the j−th element of Xiβ and µi,− j

is the vector of Xiβ without j−th element and Σ
−1
j j is the ( j, j)-th element of Σ−1 and Σ

−1
j,− j is the

j-th row of Σ−1 without j-th element. Here, T N(µ,σ2,B) is a truncated normal distribution over the
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interval B. The Bi j interval is determined according to Yi j. More specifically, for ordinal outcome
Oi j = r, Bi j = (θ j,r−1,θ j,r] and for nominal outcome Ni j = 0, Bi j,l = (−∞,0] for l = 1, ...,k j−1 and
for Ni j = r 6= 0, Bi j,r = (max{max

l 6=r
{ZNi j,l},0},∞) and Bi j,l = (−∞,ZNi j,r) for l 6= r.

For cut points, as pointed out by Cowles [14] there is an approach to simulate the cut points
by partitioning the parameters such that {Z,Θ} are simulated jointly, that is p(Z,Θ|β ,Σ,Y,X) ∝

p(Θ|β ,Σ,Y,X)p(Z|β ,Θ,Σ,Y,X). As noted by Cowles [14], this strategy increases the speed of
convergence of the algorithm. So we utilize its idea and generalize it for the multivariate case to
make simulations according to the following posterior density:

p(Θ|β ,Σ,Y,X) ∝ ∏
n
i=1 p(ZOi ∈ BOi,Θ)

where BOi,Θ = ∏
m2
j=1 (θ j,Oi j−1,θ j,Oi j ] and ZOi ∼ Nm2(Xi,Oβ ,ΣO) and Xi,O and ΣO are the design

matrix and the covariance matrix corresponding to the ordinal latent variables, respectively. Simu-
lation is implemented using a Metropolis-Hastings step as below:

1. Initialize Θ(0) = (θ
(0)
1,2 ,θ

(0)
1,3 , ...,θ

(0)
m2,cm2−1) according to the results of ordinal probit models

and set σMH = 0.05/c̄ where c̄ = ∑
m2
j=1 c j, as a rule of thumb for candidate hyperparameter to get

appropriate acceptance rates.
2. For j = 1, ...,m2 and r = 2, ...,c j−1 generate

θ
∗
r, j ∼ T N(θ

(t−1)
r, j ,σ2

MH ,(θ
∗
r−1, j,θ

(t−1)
r+1, j ]).

3. Set Θ(t) = Θ(t−1) with probability of 1−R and set Θ(t) = Θ∗ with probability of R as

R = min
{

1,∏n
i=1

p(ZOi∈BOi,Θ∗ )

p(ZOi∈B
Oi,Θ

(t−1) )

×∏
m2
j=1 ∏

c j−1
r=2

Φ((θ
(t−1)
j,r+1−θ

(t−1)
j,r )/σMH)−Φ((θ ∗j,r−1−θ

(t−1)
j,r )/σMH)

Φ((θ ∗j,r+1−θ ∗j,r)/σMH)−Φ((θ
(t−1)
j,r−1−θ ∗j,r)/σMH)

}
.

4. Increase t = t + 1 and repeat the steps (2) and (3) until an adequate number of samples are
obtained.

For an unconstrained covariance Box and Tiao [9] presented the Jeffreys prior as p(Σ) ∝

|Σ|−(q+1)/2 and the inverse Wishart distribution as a conjugate prior. However, for constrained
covariances there is no standard distribution available as a prior. Different priors and simulation
procedures proposed by McCulloch and Rossi [28], Chib and Greenberg [13], Barnard et al. [8],
Imai and Van Dyk [19], and Burgette and Nordheim [10]. Barnard et al. [8] studied marginal uni-
form priors and jointly uniform priors for correlation matrices. In this paper we specify a jointly
uniform prior for Σ constrained to be a positive definite matrix with some diagonal elements equal
to one, i.e.

p(Σ) ∝ 1(Σ is positive definite and diagonals of discrete variables are equal to one). (2.4)

Obviously the posterior of Σ cannot be obtained conveniently. Hence, we use the PX-RPMH
algorithm within Gibbs sampler to simulate covariance matrix Σ. Details are given in the next sub-
section.

2.3. The PX-RPMH Algorithm for Simulating Covariance Matrix

To make simulations from Σ, we use the method of parameter expansion which is implemented by
Liu and Daniels [25] and Liu et al. [26]. The method includes four steps of (a) parameter expansion,
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(b) transformation, (c) defining candidate prior and candidate posterior and (d) simulation according
to Metropolis-Hastings. Details of these steps are given in the following.

(a) In this step we need to expand Σ into a less constrained matrix Σ◦ which is just a positive
definite matrix, and to define a reduction operator as (β ,Σ) = Red(β ,Σ◦) = (β ,D−1

◦ Σ◦D−1
◦ ) where

D◦ is the matrix of square root of diagonal elements of Σ◦ with replacement of diagonal elements
corresponding to continuous outcomes with one.

(b) This step is to transform {Zi,Σ} into {Z∗i ,Σ◦} according to the following one-to-one map-
ping:

{
Zi = Xiβ +D−1

◦ Z∗i
Σ = D−1

◦ Σ◦D−1
◦

i = 1, ...,n, (2.5)

where ∑
n
i=1 Z∗2i j = 1 for any j = 1, ...,q. These restrictions are needed to make the transformation

one-to-one mapping. Note that draws of Zi and β implicitly correspont to draws of Z∗i and D◦,
because

n

∑
i=1

(Zi j− x′i jβ )
2
= (D−1

◦ )2
j j

n

∑
i=1

Z∗2i j = (D−1
◦ )2

j j, j = 1, ...,q.

where x′i j is the j-th row of Xi and (D−1
◦ ) j j is the j-th diagonal element of D−1

◦ .

(c) Here, we find the candidate prior given by π(Σ) ∝ |Σ|−
q+1

2 . It can be verified by using (2.5)
that

π(Σ◦|Z∗,β ) ∝ |Σ◦|−
n+q+1

2 etr
{
−1

2
SΣ
−1
◦

}
, (2.6)

where etr{·}= exp{trace(·)}, S = ∑
n
i=1 Z∗i Z∗Ti and Z∗i = D◦(Zi−Xiβ ), that is Σ◦|Z∗,β is distributed

as inverse Wishart with n degrees of freedom and the scale matrix of S.
(d) This step is to draw Σ∗◦ according to the distribution of Σ◦|Z∗,β and translating it back to

Σ∗ = D∗−1
◦ Σ∗◦D

∗−1
◦ and accepting the candidate Σ∗ using a Metopolis-Hastings step with acceptance

rate

α = min
{

1,exp
(

q+1
2

(log |Σ∗|− log |Σ(t)|)
)}

at iteration t +1.
More details and proofs can be found in Liu and Daniels [25] and Liu et al. [26].

2.4. Handling Missing Values

When there are some missing values in Y , we partition it as Y = (Yobs,Ymis) where Yobs is the
observed part of Y and Ymis is the missing part of Y . In this article we assume the mechanism of
missingness to be at random. That is p(Mi j|Y ) = p(Mi j|Yobs) where Mi j is equal to one if Yi j is
missed and is equal to zero if Yi j is observed. Therefore, we can use the Data Augmentation Mod-
eling described by distribution given in (2.3) to make draws of missing latent variables according
to the model described in (2.1) for Yobs. So, all of the parametric models remain valid except that
Zi j|β ,Θ,Σ,Y,X ,{Zi j′ ; j′ 6= j} is no longer truncated. It should be noted that when there is no missing
values for continuous variables we just make draws of the latent variables of categorical variables.
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However, when there are some missing values in continuous variables one should treat them as
latent variables, namely ZCi js, which correspond to Ci js that have missing values.

2.5. Initializations and Tunings

At the first step of MCMC we need some initial values for parameters. In this study we set them
randomly. However, we recommend the use of the output of an ordered logistic regression model for
initial values of cut points, pairwise sample association coefficients for initial values of correlation
matrix and the output of a linear regression model for initial values of coefficients.

3. Simulation Study

3.1. Data Generation

We use the following simulated example to illustrate the Bayesian model and the MCMC algorithm
proposed in section 2 for analyzing mixed nominal, ordinal and continuous correlated outcomes.
For n = 300 individuals we take a nominal outcome N with three levels, an ordinal outcome O with
four levels and a continuous outcome Z. We also generated three covariates from U(−0.5,0.5) and
set the first column of Xi to one, which means p = 4. So the latent variables model can be expressed
as

Zi = Xiβ + εi i = 1, ...,n,

where Zi =(ZNi1,ZNi2,ZOi,Ci) and εi∼N4(0,Σ). We take β =(1,−2,0,1)T and (θ2,θ3)= (0.5,1).
According to restrictions on the covariance matrix, we have

Σ =


1 σ12 σ13 σ14

σ12 1 σ23 σ24

σ13 σ23 1 σ34

σ14 σ24 σ34 σ44

 .
Here, we take σ44 = 2 and σi j = 0.5 for i 6= j.

3.1.1. Evaluation of Parameter Estimates

Suppose that the parameter space is Ξ= {β ,Θ,Σ} and ξ ∈Ξ is any parameter of the model. To make
an estimation of ξ we iterated the MCMC algorithm for niter = 75 times with ngibbs = 2000 Gibbs
samples and nburn = 500 burning samples and the thinning number nthin = 3 to get nmcmc = 500
samples of posterior densities denoted by {ξi, j} for i = 1, ...,nmcmc; j = 1, ...,niter. We estimated
the parameter ξ and its standard error by µ̂ξ and σ̂ξ , respectively as µ̂ξ = ∑

niter
j=1 ξ̄ j/niter; and σ̂ξ =√

∑
niter
j=1 (ξ̄ j− ¯̄

ξ j)/(niter−1); where ξ̄ j = ∑
nmcmc
i=1 ξi, j/nmcmc for j = 1, ...,niter.

The results are given in Table 1. In this table we see that MCMC sampler is successful to
estimate β0,β1,β2,β3 and the cut points. However, there is an underestimation regarding the covari-
ances by a factor of 10% for sample size n = 300. The standard error of parameters are relatively
low, with respect to the magnitude of true values, that show a measure of goodness of convergence.
The standard errors reduce as the sample size increases.
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Table 1. Summary of 75 iterations of MCMC

Parameters
True
Values

n = 300 n = 1000

Est. S.E. Est. S.E.
β0 1.0 1.007 0.072 0.997 0.030
β1 -2.0 -1.998 0.145 -2.002 0.074
β2 0.0 -0.023 0.110 -0.005 0.053
β3 1.0 1.009 0.125 1.006 0.078
θ2 0.5 0.503 0.070 0.498 0.034
θ3 1.0 1.010 0.091 0.991 0.040
σ12 0.5 0.458 0.112 0.483 0.059
σ13 0.5 0.461 0.106 0.492 0.071
σ14 0.5 0.464 0.166 0.496 0.092
σ23 0.5 0.473 0.117 0.480 0.069
σ24 0.5 0.472 0.163 0.499 0.082
σ34 0.5 0.505 0.103 0.501 0.051
σ44 2.0 2.074 0.175 2.020 0.085

3.2. Prediction and Validation

We used a 5-fold cross validation for a sample of size n = 300 that is we partitioned the sample into
5 subsamples and used four subsamples to estimate the parameters and one subsample to predict
the observations jointly and to find the accuracy of predictions. We measured the accuracy of nom-
inal and ordinal variables by the percentage of correct predictions and the accuracy of continuous

variable by mean square prediction error (MSPE) defined as MSPE = 1
m

m
∑

i=1
(Ŵi−Wi)

2, where Ŵi is

the predicted value for observation Wi and m = n/5, the number of predictions. According to Table
2, on average 67% of nominal outcomes predicted exactly. This index for ordinal outcome is about
50% while this outcome has 4 levels and the correct predictions of a random guess would be only
25%. The positive correlations between predictions and the true values show that the predictions are
in the same direction of the true values. The MSPE of continuous variable is near the true variance
showing that the model does not inflate the variations. It should be noted that the accuracy of the
model highly depends on the variations of predictors and the variations of errors, that is the accu-
racy of cross validation will increase when variation of predictors increase and it will decrease as
the variations of errors increase.

Table 2. Cross validation summary

Variable Accuracy (%) Correlation MSPE
Nominal 67.41 – –
Ordinal 49.72 0.48 –

Continuous – 0.41 2.03

3.3. The Effect of Missing at Random Assumption

To make an evaluation of the effect of missingness we generated a sample of size n = 300, and then
removed some of the outcomes as missing values according to three different scenarios:
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Table 3. Summary of 75 iterations of MCMC with MAR values

Parameters
True
Values

M1 M2 M3

Est. S.E. Est. S.E. Est. S.E
β0 1.0 1.002 0.062 0.997 0.073 0.990 0.060
β1 -2.0 -2.032 0.151 -2.008 0.175 -2.044 0.150
β2 0.0 -0.018 0.121 0.017 0.142 -0.024 0.152
β3 1.0 1.011 0.149 1.041 0.131 1.055 0.156
θ2 0.5 0.506 0.066 0.490 0.068 0.488 0.070
θ3 1.0 1.009 0.089 0.999 0.082 0.979 0.091
σ12 0.5 0.429 0.118 0.451 0.121 0.423 0.144
σ13 0.5 0.462 0.106 0.452 0.173 0.486 0.170
σ14 0.5 0.465 0.165 0.464 0.145 0.470 0.160
σ23 0.5 0.463 0.107 0.444 0.181 0.480 0.160
σ24 0.5 0.451 0.154 0.469 0.138 0.460 0.142
σ34 0.5 0.470 0.106 0.506 0.103 0.482 0.086
σ44 2.0 2.065 0.199 2.059 0.159 2.072 0.143

M1. Missing values only correspond to the continuous variable with

p(MCi j = 1|Oi j = oi j) =

{
0.4 oi j = 4
0.1 oi j 6= 4

where MCi j indicates missing status of Ci j.
M2. Missing values only correspond to the ordinal variable with

p(MOi j = 1|Ni j = ni j) =

{
0.5 ni j = 0
0.1 ni j 6= 0

where MOi j indicates missing status of Oi j.
M3. Missing values only correspond to the nominal variable with

p(MNi j = 1|Ci j = ci j) =

{
0.1 ci j ≤ 0
0.3 ci j > 0

where MNi j indicates missing status of Ni j.
In all three scenarios we have one variable with missing values and other variables are observed

for all individuals. In each scenario, the probabilities of missingness are chosen such that the rate of
missingness is about 25%. The estimated parameters and standard errors reported in Table 3 show
that the algorithm is successful even if there are MAR values in the dataset.

3.4. Sensitivity to Non-Ignorable Missing Values

To make an evaluation of the effect of missing not at random mechanism we generated a sample of
size n = 300, and then replaced some of the responses of continuous variable with missing values
according to the following two different scenarios:

M4. Missing values correspond to the continuous variable with

p(MCi j = 1|Ci j = ci j) =

{
0.4 ci j ≤ 0
0.1 ci j > 0
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Table 4. Summary of 75 iterations of MCMC for different patterns of missing values

Param-
eters

True
Values

No Missing M1 (MAR) M4 (NMAR) M5 (NMAR)

Est. S.E. Est. S.E. Est. S.E Est. S.E.
β0 1.0 1.007 0.072 1.007 0.068 0.928 0.065 1.247 0.076
β1 -2.0 -1.998 0.145 -2.036 0.168 -2.061 0.178 -1.839 0.285
β2 0.0 -0.023 0.110 -0.020 0.128 -0.009 0.118 0.001 0.121
β3 1.0 1.009 0.125 1.008 0.147 1.026 0.143 0.906 0.194
θ2 0.5 0.503 0.070 0.502 0.065 0.457 0.066 0.612 0.082
θ3 1.0 1.010 0.091 1.008 0.085 0.936 0.079 1.151 0.101
σ12 0.5 0.458 0.112 0.433 0.117 0.352 0.142 0.478 0.292
σ13 0.5 0.461 0.106 0.455 0.107 0.431 0.117 0.433 0.301
σ14 0.5 0.464 0.166 0.459 0.167 0.457 0.193 0.217 0.202
σ23 0.5 0.473 0.117 0.462 0.109 0.429 0.131 0.423 0.314
σ24 0.5 0.472 0.163 0.444 0.154 0.481 0.169 0.212 0.197
σ34 0.5 0.505 0.103 0.470 0.107 0.508 0.114 0.254 0.110
σ44 2.0 2.074 0.175 2.053 0.199 2.195 0.197 1.504 2.664

M5. Missing values correspond to the continuous variable with

p(MCi j = 1|Ci j = ci j) =

{
1 ci j ≤ 0
0 ci j > 0

The estimated parameters in Table 4 show that the true values of parameters are within two standard
deviation intervals. However, the biases of parameters raise in non-ignorable missing patterns espe-
cially for those of the covariance parameters which are directly connected to variables containing
missing values. The analysis of standard errors shows that there is an increase in error of estima-
tions, especially for the covariance parameters, when the probability of non-ignorable missingness
increases.

4. Application

As an application of our model we used the Foreign Language Attitude Scale (FLAS) data which
was analyzed by Schafer [34] using GLOM. It contains n = 279 samples of students who enrolled
in foreign language courses at the Pennsylvania State university. We investigated the association
between the kind of foreign language studied (LAN), Modern Language Aptitude Test (MLAT), and
the age of students (AGE) with the FLAS variable as a predictor. Table 5 presents some descriptive
statistics of the dataset.

We start by a saturated model with separate coefficients for each latent variable. Due to different
sample sizes for levels of the nominal outcome we used a mildly informative prior regarding to
coefficients of nominal latent variables as (β0,ZN1 ,β1,ZN1 , ...,β1,ZN3) ∼ N(0, I) and non-informative
priors for other coefficients. The results of the MCMC algorithm are presented in Table 6. The
outputs of the saturated model show that the FLAS score has no effect on the latent variables of
Spanish and German languages. However, there is a negative effect on the latent variable of Russian
language. It means that those who get more FLAS scores are less likely to choose Russian language.
Obviously, the posterior distributions of the latent variables of Spanish and German languages are
very similar. Also the negative coefficient corresponding to ordinal latent variable means that those
who get more FLAS score are less likely to be older. The estimated coefficients for continuous
outcomes are similar to the standard regression model MLATi = 18+0.08FLASi. Because there are
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Table 5. Summary of variables in foreign language attitude scale analysis

Variable Description Categories Percent Missing Latents
LAN Foreign

language
studied

French 24.0 % 0.0 % –
Spanish 28.0 % ZN1
German 40.9 % ZN2
Russian 7.1 % ZN3

AGE Age group < 20 46.3 % 3.9 % ZO
20-21 43.3 %
≥ 22 10.4 %

MLAT Modern
Language
Aptitude Test

17.6 % ZC

FLAS Foreign
Language
Attitude Scale

0.0 % –

many non-significant coefficients in the saturated model, we consider a reduced model by assuming
β1,ZN1 = β1,ZN2 = 0. The results of the reduced model show a substantial reduction in standard error
of parameters. For comparison of the full model and the reduced model we use the DIC index
(Spiegelhalter et al. [36]). The difference between DICs is quite large showing that the fit of the
reduced model is better than that of the full model. The positive correlation between latent variables
of Spanish and German languages (σZN1,ZN2 = 0.811) shows that the utilities of these choices are in
the same direction. The negative correlations between the latent variables of German and Russian
languages with AGE group show that younger students are expected to choose German and Russian
courses. The positive covariance of σZN3,ZC and the negative covariance of σZO,ZC suggest that the
students who choose Russian language and younger students are expected to get more MLAT scores.

5. Conclusions

We have developed a joint model for correlated mixed outcomes using MCMC approach. The results
of simulations show that our method is successful in estimation of parameters of the model. A cross
validation analysis of simulated data with MAR values shows that the method is reliable regarding
parameter estimation and imputations. Further investigations about NMAR mechanism show that
our method is not successful about parameter estimation and this type of missingness will raise
standard errors slightly. As an application of our method we studied the foreign language aptitude
scale dataset. Also, the thetracoric correlations for this dataset were investigated.

It should be noted that the MVP model is sensitive to zero counts in the cross tabulation of
nominal outcomes and non-informative priors for coefficients may result in divegence of MCMC
algorithm. So, we recommend to put informative priors for those parameters.

Our extensive studies suggest that our Bayesian methodology can be used effectively in the
studies where joint analysis of a combination of correlated nominal, ordinal and continuous out-
comes is of the main interests. It is obvious that our method can be used for longitudinal studies
with arbitrary correlation matrices.
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Table 6. Estimated parameters of the latent variables for FLAS
dataset

Parameters
Saturated Model Reduced Model

Estimates S.E. Estimates S.E.
β0,ZN1 0.181 0.355 0.137* 0.058
β1,ZN1 0.001 0.006 – –
β0,ZN2 0.019 0.378 0.213* 0.059
β1,ZN2 0.003 0.004 – –
β0,ZN3 -1.278* 0.510 -0.390* 0.073
β1,ZN3 -0.004 0.005 -0.013* 0.001
β0,ZO 1.339* 0.410 0.999* 0.407
β1,ZO -0.015* 0.006 -0.010* 0.005
β0,ZC 16.643* 2.409 17.220* 2.293
β1,ZC 0.092* 0.028 0.086* 0.027
θ2 1.507* 0.144 1.431* 0.093
σZN1,ZN2 0.811* 0.302 0.822* 0.160
σZN1,ZN3 -0.698* 0.224 -0.496 0.246
σZN1,ZO -0.077 0.218 0.050 0.112
σZN1,ZC 0.459 0.781 -0.195 0.511
σZN2,ZN3 -0.754* 0.154 0.007 0.071
σZN2,ZO -0.167 0.150 -0.113* 0.076
σZN2,ZC 1.131* 0.400 0.427 0.408
σZN3,ZO -0.221 0.116 -0.295* 0.069
σZN3,ZC -0.781 0.642 1.117* 0.439
σZO,ZC -1.155* 0.478 -1.189* 0.512
σ2

ZC 41.771* 9.991 40.137* 3.543
DIC 2979.33 2904.89

*: Significant at the 5% level
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