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One-sequence and two-sequence prediction for future Weibull records
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Based on record data, prediction of the future records from the two-parameter Weibull distribution is stud-
ied. First we consider the sampling based procedure to compute the Bayes estimates and also to construct
symmetric credible intervals. Secondly, we consider one-sequence and two-sequence Bayes prediction of the
future records based on some observed records. The Monte Carlo algorithms are used to compute simulation
consistent predictors and prediction intervals for future unobserved records. A numerical simulation study is
conducted to compare the different methods and a real data set involving the annual rainfall recorded at Los
Angeles Civic Center during 132 years is analyzed to illustrate the procedures developed here.
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1. Introduction

The Weibull distribution is one of the most popular distributions used for analyzing skewed lifetime
data. A detailed discussion on it has been provided by ( [16], Chapter 21). Because of the various
shapes of the PDF and due to monotone (increasing/decreasing) property of the hazard function, it
has been used as an alternative to the gamma or log-normal distribution. The Weibull distribution
with the shape and scale parameters α and λ will be denoted by WE(α,λ ). Let X1,X2, ... be a
sequence of independent and identically distributed (iid) random variables from two-parameter WE
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distribution. The two-parameter WE distribution has CDF

FWE(x;α,λ ) = 1− e−λxα

, for x > 0, (1.1)

and the PDF

fWE(x;α,λ ) = α λ xα−1 e−λxα

, for x > 0. (1.2)

Here α > 0,λ > 0 are the shape and scale parameters, respectively.

Record statistics arise naturally in many practical problems, and there are several situations
pertaining to meteorology, hydrology, sporting and athletic events wherein only record values may
be recorded. For an elaborate treatment on records and their applications, one may refer to the books
by [6], [4] and [17]. For a detailed discussion on the Weibull records and associated inferences, one
may refer to [22].

Prediction problems have received considerable attention in the last decades. Several real applica-
tions can be found in actuarial studies, warranty data analysis, rainfall extremes and highest water
levels. For example, when setting up warranty period for a product, a manufacturer would use some
of the known previous failure times to predict a suitable warranty period of the product. Extensive
work on prediction can be found in the literature. [13] used conditional argument to develop predic-
tion intervals for future Weibull order statistics. [5] also considered the Bayesian prediction problem
for a large class of lifetime distributions. A numerical approach to Bayesian prediction for the two-
parameter WE distribution was considered by [10]. They provided numerical Bayes predictor of the
future observation, under the assumptions that the shape parameter has a uniform prior over a finite
interval and the error is squared error. [14] presented Bayes prediction intervals for future obser-
vations are obtained in the one-and two-sample cases for Weibull model. Classical and Bayesian
prediction of future observations based on hybrid censored samples from Weibull distribution are
considered by [8].

In the context of record data, [3] considered the problem of predicting the future records based
on some observed ones when the observations are from the exponential distribution. [15] developed
prediction bounds for future generalized exponential lower records by using Bayes and empirical
Bayes techniques. [20] discussed the Bayesian analysis in the context of records from the two-
parameter WE distribution through using a discrete prior for the shape parameter. Bayesian esti-
mation and prediction for some life distributions based on record values, including Exponential,
Weibull, Pareto and Burr type XII, are discussed in [2]. [21] obtained the best linear unbiased pre-
dictors of the next lower records based on observing the first n lower records from gamma distribu-
tion. [7] considered prediction of future record values from the exponentiated family of distributions
from a Bayesian view point.

In the Bayesian analysis, the performance of the predictor depends on the prior distribution and
also on the loss function chosen. For example, [19] used a continuous-discrete joint prior distribu-
tion. Another prior is a conjugate prior on λ and independent uniform prior on α . Some authors
used independent uniform priors on both α and λ (see [10]) in the respect. For estimating θ by a
decision δ , the following loss functions can be considered. The first is the squared loss function
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defined as

L1(θ ,δ ) = (θ −δ )2.

The squared error loss is a symmetric function that penalizes overestimation and underestimation
equally, and takes the value zero when the estimate is right on target.
There are many alternatives to the above loss function. Among them, the absolute loss function
which is defined by

L2(θ ,δ ) = |θ −δ |.

This loss function may be considered as a reasonable alternative to the squared loss function, but
mathematically analysis based on absolute error is often substantially less tractable than that based
on squared error. Both loss functions capture the basic idea that one is penalized, in a symmetric
fashion, for the distance between an estimator and its target.
Other alternatives are to consider versions of asymmetric loss functions. One of the more widely
used forms of asymmetric loss is the LINEX (or, ”linear-exponential”) loss function, the most com-
mon version of which is the one proposed by [23] and defined by

L3(θ ,δ ) =

(
δ

θ

)a∗

−a∗ ln
(

δ

θ

)
−1, a∗ 6= 0.

where a∗ is the shape parameter of the loss function. It controls the direction and degree of symme-
try. When a∗ > 0, the LINEX loss function imposes a substantial penalty for overestimation. The
mirror image of this symmetry may be achieved by setting a∗ < 0. Another loss function is called
entropy loss function (L4). It is a special case of the LINEX loss function and can be obtained by
substituting a∗ = 1 [see [18]].

In order to perform a Bayesian estimation of the parameters α and λ of Weibull distribution,
the prior distribution of α and λ must be specified either when the shape parameter α known or
unknown. When the shape parameter α is known, the prior on λ is the conjugate gamma prior. The
prior distribution Gamma(a,b) of the scale parameter λ is given by

π1(λ |a,b) =
ba

Γ(a)
λ

a−1e−bλ , λ > 0. (1.3)

Here the hyper-parameters a > 0, b > 0. When both parameters are unknown, following the
approach of [9], it is assumed that λ has the same prior (1.3), the prior on α , π2(·) is indepen-
dent of π1(λ ), and the PDF of π2(α) is log-concave on the support (0,∞).

Our aim in this paper is to predict the future records based on some observed WE records. Here,
we consider the one-sequence and two-sequence prediction problems for future WE records. The
sample-based procedure is adopted in this current work to estimate the parameters and then estimate
the predictive density of future WE records. The main additional difference between our work and
the previous Bayesian works mentioned above is that the proposed priors are general ones. Further,
we have chosen different error loss functions. In this context, we have used a Monte Carlo (MC)
samples to compute the predictive density and then to compute the Bayes predictors (BPs) as well
as the corresponding prediction intervals (PIs).

The rest of the paper is organized as follows. In Section 2, we provide sample-based estimates
for the predictive density functions of the future records based on one-sequence prediction problem.
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The two-sequence prediction problem is discussed in Section 3. Section 4 presents a data analysis
to illustrate our results, and a MC simulation that compares the BPs under informative with those
under non-informative priors. Finally, we conclude our work in Section 5.

2. One-sequence prediction problem

In this section, we consider the BPs of future records based on observed records under different
loss functions. Here, the future record to be predicted comes from the same sequence of observed
records and it is therefore correlated with the observed record data. Suppose that we observe only
the first m upper records x

∼
= (xU(1),xU(2), ...,xU(m)). Here, we obtain the BPs as well as constructing

the PIs for the nth future upper record XU(n) under different loss functions, where 1 ≤ m < n. The
posterior predictive density of XU(n) can be written as

πXU(n)(y|x∼) =
∞∫

0

∞∫
0

fXU(n)(y|x∼,α,λ )π(α,λ |x
∼
)dα dλ , y > xU(m),

where fXU(n)(y|x∼,α,λ ) is the conditional density function of XU(n) given the records data x
∼

. Using
the fact that the record values satisfy Markov property, the conditional PDF of XU(n) given x

∼
is just

the conditional PDF of XU(n) given xU(m), i.e.

fXU(n)(y|x∼,α,λ ) = fXU(n)(y|xU(m),α,λ ) =
[H(xU(n))−H(xU(m))]

n−m−1

(n−m−1)!
f (xU(n))

1−F(xU(m))
,

−∞ < xU(m) < xU(n) < ∞,

where H(x) =− ln(1−F(x)). Based on the PDF and CDF of Weibull distribution and the binomial
expansion, the conditional PDF of XU(n) given XU(m) = xU(m) can be written as follows

fXU(n)(y|xU(m),α,λ ) =
αλ n−meλxα

U(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)n−m−i−1 x(n−m−i−1)α

U(m)

× yα(i+1)−1e−λyα

, y > xU(m). (2.1)

The posterior predictive density of XU(n) at any point y > xU(m) is then

πXU(n)(y|x∼) = Eposterior

[
fXU(n)(y|xU(m),α,λ )

]
=

∞∫
0

∞∫
0

αλ n−meλxα

U(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)n−m−i−1 x(n−m−i−1)α

U(m)

× yα(i+1)−1e−λyα

π(α,λ |x
∼
)dαdλ , y > xU(m). (2.2)
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Under the squared error loss function L1, the BP of Y = XU(n) can be obtained as

XBP1
U(n) = E(Y |x

∼
)

=

∞∫
xU(m)

 ∞∫
0

∞∫
0

αλ n−meλxα

U(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)n−m−i−1 x(n−m−i−1)α

U(m)

× yα(i+1)e−λyα

π(α,λ |x
∼
)dαdλ

dy.

By using MC samples {(α j,λ j); j = 1,2, ...,M} obtained using the algorithm in Appendix C and
the PDF of the gamma distribution, a simulation consistent based predictor X̂BP1

U(n) of Y = XU(n) can
be given as

X̂BP1
U(n) =

1
M

M

∑
j=1

λ
n−m−1− 1

α j
j eλ jx

α j
U(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)n−m−i−1 x(n−m−i−1)α j

U(m)

×
γ

(
1

α j
+ i+1, λ jx

α j

U(m)

)
λ i

j
. (2.3)

The simulation consistent based predictor of the first unobserved record value can be obtained by
setting n = m+1 in Eq.(2.3) as follows:

X̂BP1
U(m+1) =

1
M

M

∑
j=1

λ
− 1

α j
j eλ jx

α j
U(m) γ

(
1

α j
+1, λ jx

α j

U(m)

)
.

Under the absolute error loss function L2, the corresponding BP of XU(n), 1 ≤ m < n, denoted by
XBP2

U(n) is the median of the posterior predictive density of XU(n), Eq.(2.2), which is obtained by

solving the following equation with respect to XBP2
U(n)

XBP2
U(n)∫

xU(m)

πXU(n)(y|x∼)dy =
1
2
⇔

∞∫
XBP2

U(n)

πXU(n)(y|x∼)dy =
1
2
. (2.4)

Based on the posterior predictive density of XU(n), Eq.(2.2), Eq.(2.4) is equivalent to

∞∫
XBP2

U(n)

∞∫
0

∞∫
0

[
αλ n−m

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)n−m−i−1x(n−m−i−1)α

U(m) eλxα

U(m) yα(i+1)−1e−λyα

]

×π(α,λ |x
∼
)dαdλ dy =

1
2
.
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Based on MC samples {(α j,λ j); j = 1,2, ...,M}, a simulation consistent based predictor X̂BP2
U(n) of

Y = XU(n) can be found by solving the following nonlinear equation with respect to X̂BP2
U(n)

1
M

M

∑
j=1

eλ jx
α j
U(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−λ j)

n−m−i−1 x(n−m−i−1)α j

U(m)

×γ

(
i+1,

(
λ j(X̂BP2

U(n))
α j
))

=
1
2
. (2.5)

Under the LINEX loss function L3, the corresponding simulation BP XBP3
U(n) of Y = XU(n) can be

obtained as

XBP3
U(n) =

[
E(Y−a∗ |x

∼
)
]− 1

a∗

=

 ∞∫
xU(m)

∞∫
0

∞∫
0

αλ n−m

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)n−m−i−1 x(n−m−i−1)α

U(m)

× yα(i+1)−a∗−1 e−λ (yα−xα

U(m)) π(α,λ |x
∼
)dαdλ dy

− 1
a∗

.

Based on MC samples {(α j,λ j); j = 1,2, ...,M} and the PDF of the gamma distribution, a simula-
tion consistent based predictor X̂BP3

U(n) of XU(n) will be

X̂BP3
U(n) =

 1
M

M

∑
j=1

λ
n−m−1+ a∗

α j
j eλ jx

α j
U(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)n−m−i−1 x(n−m−i−1)α j

U(m)

×
γ

(
i− a∗

α j
+1, λ jx

α j

U(m)

)
λ i

−
1

a∗

. (2.6)

In particular, the simulation BP X̂BP3
U(m+1) of XU(m+1) can be obtained by setting n = m+1 in Eq.(2.6)

as follows :

X̂BP3
U(m+1) =

[
1
M

M

∑
j=1

λ

a∗
α j
j eλ jx

α j
U(m) γ(1− a∗

α j
, λ jx

α j

U(m))

]− 1
a∗

.

To obtain prediction bounds on Y = XU(n), 1 ≤ m < n, under different loss functions, we need to
find the predictive survival function of Y = XU(n) at any point y > xU(m). The predictive survival
function is defined by

SXU(n)(y|x∼) = Eposterior

(
SXU(n)(y|x∼,α,λ )

)
=

∞∫
0

∞∫
0

SXU(n)(y|x∼,α,λ )π(α,λ |x
∼
)dα dλ , (2.7)
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where SXU(n)(y|x∼,α,λ ) is the survival function of Y = XU(n) given x
∼

. Using the Markovian property
of the records, we have

SXU(n)(y|x∼,α,λ ) = P(Y > y|xU(m),α,λ )

=

∞∫
y

[
H(z)−H(xU(m))

]n−m−1

(n−m−1)!
f (z|α,λ )

1−F(xU(m)|α,λ )
dz.

By making the transformation v = H(z)−H(xU(m)) and using the relation between the incomplete
gamma function and sum of poisson probabilities, we have

SXU(n)(y|xU(m),α,λ ) =
n−m−1

∑
j=0

e−λ (yα−xα

U(m)) [λ (yα − xα

U(m))]
j

j!
. (2.8)

The predictive survival function for Y = XU(n), Eq.(2.7), becomes

SXU(n)(y|x∼) =
∞∫

0

∞∫
0

n−m−1

∑
j=0

e−λ (yα−xα

U(m)) [λ (yα − xα

U(m))]
j

j!

π(α,λ |x
∼
)dα dλ .

(2.9)

Notice that Eq.(2.9) can’t be expressed in a closed form and hence can’t be evaluated analytically.
By using the MC samples {(αi,λi); i = 1,2, ...,M} and under the square error loss function L1, the
simulation consistent based predictor of the predictive survival function for XU(n) will be

ŜXU(n)(y|x∼) =
1
M

M

∑
i=1

n−m−1

∑
j=0

e−λi(yαi−xαi
U(m)

)
[λi(yαi− xαi

U(m))]
j

j!

 .
Under the absolute error loss function L2, the simulation consistent based predictor of the predictive
survival function for XU(n), can be obtained by using the following algorithm:

Algorithm 1

• Step 1: Evaluate S = SXU(n)(y|xU(m),α,λ ), Eq.(2.8), at each sample (αi,λi), for i =
1,2, ...,M, to get S1 , S2 , ... , SM

• Step 2: Order S1 , S2 , ... , SM as S(1) < S(2) < ... < S(M).

• Step 3: The simulation consistent based predictor of the predictive survival function for
XU(n) is given by

ŜXU(n)(y|x∼) = Median
[
S(1) , S(2) , ... , S(M)

]
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Under the LINEX loss function L3, the simulation consistent based predictor of the predictive sur-
vival function for XU(n) can be obtained as

ŜXU(n)(y|x∼) =

 1
M

M

∑
i=1

n−m−1

∑
j=0

e−λi(yαi−xαi
U(m)

)
[λi(yαi− xαi

U(m))]
j

j!

−a∗

− 1

a∗

.

A (1−β )100% PI for XU(n), 1≤m < n, can be obtained by solving the non-linear equations (2.10)
and (2.11) for the lower bound L and upper bound U :

P(XU(n) > L|x
∼
) = 1− β

2
⇔ ŜP

XU(n)
(L|x
∼
) = 1− β

2
, (2.10)

P(XU(n) >U |x
∼
) =

β

2
⇔ ŜP

XU(n)
(U |x
∼
) =

β

2
. (2.11)

Since Eqs. (2.10) and (2.11) can’t be solved explicitly, a suitable numerical method should be used.

3. Two-sequence prediction problem

Let x
∼
= (xU(1) , xU(2) , ... , xU(m)) be the first m observed records from a sequence from WE(α ,λ ).

Let yU(1) , yU(2) , ... , yU(n) be the first n record values from another independent sequence from the
same distribution. Based on the observed record sequence, we are interested in predicting the kth
upper record value YU(k), 1≤ k ≤ n, of the future sequence, and obtaining PI of YU(k). The PDF of
the kth upper record value YU(k) [ [6] and [4]] is given by

g
(k)(y|α,λ ) =

αλ k

Γ(k)
yαk−1 e−λyα

. (3.1)

To obtain the Bayes predictive estimator of Y = YU(k), 1≤ k ≤ n, under different loss functions, we
need the posterior predictive density of YU(k). The posterior predictive density of YU(k) is denoted by
πYU(k)(y|x∼) and given by

πYU(k)(y|x∼) = Eposterior

[
g
(k)(y|α,λ )

]
=

∞∫
0

∞∫
0

αλ k

Γ(k)
yαk−1 e−λyα

π(α,λ |data)dα dλ . (3.2)

Under the square error loss function L1, the Bayes predictive estimator of Y =YU(k) can be obtained
as

Y BP1
U(k) = E(Y |x

∼
)

=

∞∫
0

 ∞∫
0

∞∫
0

αλ k

Γ(k)
yαk e−λyα

π(α,λ |data)dα dλ

 dy.
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Based on MC samples {(αi,λi); i = 1,2, ...,M} and by using the PDF of the gamma distribution,
the simulation consistent based predictor Ŷ BP1

U(k)of Y = YU(k) will be

Ŷ BP1
U(k) =

1
M

M

∑
i=1

Γ(k+ 1
αi
)

λ

1
αi

i Γ(k)
. (3.3)

Under the absolute error loss function L2, the corresponding BP of YU(k) denoted by Y BP2
U(k), is the

median of the posterior predictive density of YU(k), Eq.(3.2), which is obtained by solving the fol-
lowing equation with respect to Y BP2

U(k)

∞∫
Y BP2

U(k)

 ∞∫
0

∞∫
0

αλ k

Γ(k)
yαk−1 e−λyα

π(α,λ |data)dα dλ

 dy =
1
2
.

Based on MC samples {(αi,λi); i = 1,2, ...,M}, the simulation consistent based predictor Ŷ BP2
U(k) of

YU(k) can be obtained by solving the following equation with respect to Ŷ BP2
U(k)

1
M

M

∑
i=1

γ

(
k, λi(Ŷ

BP2
U(k))

αi

)
Γ(k)

=
1
2
. (3.4)

Under the LINEX loss function L3, the corresponding BP Y BP3
U(k) of Y = YU(k) for 1 ≤ k ≤ n can be

obtained as

Y BP3
U(k) =

[
E(Y−a∗ |data)

]− 1
a∗

=

 ∞∫
0

 ∞∫
0

∞∫
0

αλ k

Γ(k)
yαk−a∗−1 e−λyα

π(α,λ |data)dα dλ

 dy

− 1
a∗

.

Based on MC samples {(αi,λi); i = 1,2, ...,M}, the simulation consistent based predictor Ŷ BP3
U(k) of

Y BP3
U(k) will be

Ŷ BP3
U(k) =

 1
M

M

∑
i=1

λ

a∗
αi

i Γ

(
k− a∗

αi

)
Γ(k)


− 1

a∗

. (3.5)

To obtain prediction bounds on Y =YU(k), for 1≤ k≤ n, we need the predictive distribution function
of Y = YU(k), which depends on the distribution function of Y = YU(k). Based on Eq.(3.1), the PDF
of YU(k), the distribution function of YU(k) can be written using the incomplete gamma function as
follows:

G(k)(y|α,λ ) = 1− γ(k, λyα)

Γ(k)
. (3.6)

Arguments similar to those in subsection 3.1, the simulation consistent based predictor of the pre-
dictive distribution function of YU(k), G(k)(y|α,λ ) based on the squared error loss function L1 is
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found to be

Ĝ(k)(y) =
1
M

M

∑
i=1

[
1− γ(k, λiyαi)

Γ(k)

]
.

Under the absolute error loss function L2, the following algorithm can be implemented to find the
simulation consistent based predictor of G(k)(y|α,λ ).

Algorithm 2:

• Step 1 Evaluate G = G(k)(y|α,λ ), Eq.(3.6), at each sample (αi,λi) for i = 1,2, ...,M, to get
G1 , G2 , ... , GM.

• Step 2 Order G1 , G2 , ... , GM as G(1) < G(2) < ... < G(M).

• Step 3 The simulation consistent based predictor for G(k)(y|α,λ ) is given by

Ĝ(k)(y) = Median
[
G(1) , G(2) , ... , G(M)

]
Under the LINEX loss function L3 and Based on MC samples {(αi,λi); i = 1,2, ...,M}, the simu-
lation consistent based predictor of G(k)(y|α,λ ) is readily obtained as

Ĝ(k)(y) =

[
1
M

M

∑
i=1

(
1− γ(k, λiyαi)

Γ(k)

)−a∗
]− 1

a∗

.

Under all different loss functions L1, L2 and L3, the (1−β )% PI for Y = YU(k), 1 ≤ k ≤ n, can be
obtained by solving the non-linear equations in Eq.(3.7) for the lower bound L and upper bound U :

Ĝ(k)(L) =
β

2
, and Ĝ(k)(U) = 1− β

2
. (3.7)

As before, we need a suitable numerical method to solve these non-linear equations.

4. Numerical experiments and data analysis

In this section we conduct a simulation study to compute the different BPs of future records using
one-sequence and two-sequence prediction problems. In both cases, we have assumed α = 2, λ = 1
to generate record data from WE(α,λ ). The first m observed records were generated by using the
transformation:

XU(k) =

(
∑

k
i=1 e(i)

λ

) 1
α

,k = 1,2, ...,m,

where {e(i), i≥ 0} is a sequence of i.i.d Exp(1) [see [6], p.20]. We compute the BPs for the Weibull
records, with respect to different loss functions: squared error (Sq. err.) (L1), absolute error (Abs.
err.) (L2) and LINEX (L3) with different choices of a∗ : 0.1,0.5,1. The prior π2(α) on α can take
any log-concave density on the support (0,∞). Here, we consider that the prior of α , has a gamma
density function with the shape and scale parameters c and d, respectively. For the computations
of BPs, we consider two types of prior for both α and λ : first prior is the non-informative prior,
i.e a = b = c = d = 0, we call this prior as Prior 0, second prior is the informative prior, namely
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a= b= 1, c= 2,d = 1, we call this prior as Prior 1. We have computed the PIs for the future Weibull
records.

In Table 2, we present the simulated point predictors and PIs for the future nth record XU(n),1≤
m < n for the following cases of sample sizes m = 6,m = 9, and m = 12 and for all different
loss functions L1, L2 and L3 with different choices of a∗ : 0.1,0.5,1.0. Based on MC samples
{(αi,λi), i = 1,2, ...,M} with M = 1000 computed using the algorithm in Appendix C, the sim-
ulated predictors for the future nth record XU(n), 1≤ m < n, were computed by using the equations
(2.3), (2.5) and (2.6), respectively. The 95% lower bound L and upper bound U of the PI for the
future nth record were computed by solving the equations (2.10) and (2.11) with respect to L and
U , respectively. In this table, the first three future nth records after the last observed record are only
predicted. The mean square errors (MSEs) of the resulting predictors using Prior 0 and Prior 1 are
reported in Table 3 based on ` = 1000 runs are computed. The MSE of any BP (say δ (x

∼
)) of the

nth record, XU(n) is defined by

MSE(δ (x
∼
)) =

∑
`
i=1

(
δi(x
∼
)−XU(n)

)2

`
,

where δi(x
∼
) is the predicted value of XU(n) based on the ith replicate.

In Table 4, we present the simulated predictors and PIs for the unobserved kth record YU(k),k =
1, ...,n, based on observed record sample of size m, and for all different loss functions. Based on MC
samples {(αi,λi), i = 1,2, ...,M} and M = 1000, the simulated predicted values for the unobserved
kth record YU(k), were computed under different loss functions, by using the equations (3.3), (3.4)
and (3.5), respectively. The 95% lower bound L and upper bound U of the PI for the unobserved
kth record YU(k) were computed by solving the equations (3.7) with respect to L and U , respectively.
In this table the smallest, middle or around, and the largest unobserved kth record YU(k) are only
predicted. The MSEs of these simulated predictors are also computed and presented in Table 5.

From Tables 2 and 4, it can be checked that the 95% PI for future record gets wide whenever
the record to be predicted moves away. This is an expected observation since the variation of future
record becomes high as it moves away. It is also observed from Table 2, the BP based on LINEX
loss function provides shortest PIs comparing with the ones based on squared and absolute loss
functions. Table 4 shows that the 95% Bayes PIs based on L3 are almost similar. That is, the Bayes
PIs based on two-sequence prediction case are robust with respect to the parameter a∗ involved in
LINEX loss function. For both prediction problems, it is also evident from Tables 3 and 5 the BPs
obtained by using Prior 1 (informative prior) perform well comparing with the corresponding ones
obtained by using Prior 0 (non-informative prior).

Example (real data): In this example we analyze the total seasonal annual rainfall (in
inches) recorded at Loss Angeles Civic Center during 132 years, from 1878 to 2009 (sea-
son July 1 - June 30). The data set can be obtained from the loss Angeles Civic Website:
http://www.laalmanac.com/weather/we13.htm. For the complete data set, we have com-
puted the MLEs of α and λ and they are 2.2438 and 0.0018, respectively. The corre-
sponding Kolmogorov-Smirnov (KS) distance becomes 0.0939 and the associated p-value
is 0.1949. Therefore the KS indicates that Weibull distribution can be used to analyze this
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rainfall data. We used the upper records from 1930 to 2009 which were as follows:

12.54,16.93,21.66,22.41,23.43,32.76,33.44,37.96.

From the observed data, it is also possible to estimate the shape of the hazard function. A
tool called scaled TTT transform and its empirical version are considered in this context. If
a family has a survival function S(y) = 1−F(y), then the scaled TTT transform is g(u) =

H−1(u)/H−1(1) for 0 < u < 1, where H−1(u) =
∫ F−1(u)

0 S(y) dy. The empirical version of
the scaled TTT transform is given by

g(r/n) = H−1
n (r/n)/H−1

n (1) =
∑

r
i=1 Xi:n +(n− r)Xr:n

∑
n
i=1 Xi:n

,

where Xi:n is the ith order statistic from a sample of size n. It has been shown by [1] the
scaled TTT transform is convex (concave) if the hazard rate is decreasing (increasing)
and for bathtub (unimodal) shaped hazard rate, the scaled TTT transform is first convex
(concave) and then concave (convex). In this example, the scaled TTT transform of the
rainfall data presented in Fig. 1, shows the scaled TTT transform is almost concave; we
therefore conclude that the hazard function is increasing function. This indicates that the
WE model may provide a reasonable fit to the above data.

Now, we compute the BEs with respect to different loss functions: squared error
(Sq. err.), absolute error (Abs. err.) and LINEX function with different choices of a∗ :
0.1,0.5,1.0 when Prior 1 is used. The BEs of λ and α are computed and presented as
follows:

Table 1. The BEs of λ and α when Prior 1 is used.
Sq. err. Abs. err. a∗ = 0.1 a∗ = 0.5 a∗ = 1.0

BE1 BE2 BE3 BE4 BE5

α 1.8160 1.8249 1.8155 1.8151 1.8134
λ 0.0110 0.0103 0.0101 0.0094 0.0060

All the estimates are quite close to each other. We obtain the 95% credible intervals
for α and λ and they are (1.7187,1.8592) and (0.0045,0.0206), respectively. Also, we
consider the prediction of the 9th, 10th and 11th future records. The simulated predictors
and the 95% PIs of the 9th, 10th and 11th future records are presented in Table 6. It is
observed that all predicted values, with respect to different loss functions, are all ordered
and fall in their corresponding predictive intervals.

To study the sensitivity of our results to variations in the specification of prior param-
eters, further MC simulations were performed using two additional proper priors and two
improper priors. For the first proper prior (π1), we assume that the prior mean of α is equal
to 2 and its standard deviation is equal to 1, and that for λ , the prior mean is 1 with a stan-
dard deviation of 0.33. This corresponds to a = 4,b = 2,c = 9, and d = 9. For the second
proper prior (π2),we assume that only small amount of prior information is available and
assign small integer values to a,b,c, and d. For example, let us assume that a= 3,b= 1 and
c= 3,d = 1. Priors π3 and π4 are limiting improper priors obtained by letting a= 0.5,b= 0
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and c = 0.5,d = 0 for the first, a = 1,b = 0 and c = 0,d = 0 for the second. Table 7 shows
the MC based BEs for α and λ , and the PIs for the next record statistic XU(9). It is evi-
dent from Table 7 that our results are not very sensitive to the assumed values of the prior
parameters. Note that PIs corresponding to all four priors include the predicted value of the
next record statistic, XU(9).

5. Conclusions
Motivated by the importance of the prediction problem of future observations, various
inferential methods have been discussed in the literature. We have proposed a Bayesian
approach to predict the future records based on some observed ones in one-sequence
and two-sequence prediction problems. In Bayesian analysis, the so obtained predictors
depends on the prior distribution and also on the error loss function chosen. For this, our
proposed priors are quite flexible in nature and Jeffrey’s prior can be obtained as a spe-
cial case of the proposed priors. Additionally, we have used different error loss functions.
We opt for sampling simulation procedures, namely, the Monte Carlo samplers to generate
samples from the predictive distributions and then obtain different BPs as well as PIs of
the future records. In this context, these prediction problems are not considered previously
in the literature. Our methods of prediction were simple and quite useful since they allow
us to assume priors with general set-up and different error loss functions. The simulation
algorithm by [11] and [12] can be used effectively for generating random variates with a
log-concave density. In the sense of prediction interval length, it is observed that the BPs
under the LINEX loss function perform well when compared to the BPs under other loss
functions. Moreover, it is evident that, the BPs are not very sensitive to the assumed values
of the prior parameters (Prior 0 and Prior 1).

20 40 60 80 100 120
r value

0.4

0.6

0.8

1.0

TTT

Fig. 1. The empirical scaled TTT transform of the rainfall data.
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Table 2. Simulated predictors and PIs for future records XU(n) based on m observed records (n≥ m+1).

Prior 0 Prior 1
Number of observed XU(n) Loss function Predicted 95% PIs Predicted 95% PIs

records values values
m = 6 L1 2.4335 (2.1822, 3.2599) 2.3578 (2.1814, 2.8334)

L2 2.3341 (2.1838, 3.0877) 2.3040 (2.1815, 2.8361)
XU(7) L3(a∗ = 0.1) 2.4149 (2.1822, 2.8702) 2.3510 (2.1814, 2.7635)

L3(a∗ = 0.5) 2.4091 (2.1822, 2.7883) 2.3487 (2.1814, 2.7418)
L3(a∗ = 1.0) 2.4025 (2.1822, 2.7121) 2.3459 (2.1814, 2.7001)

L1 2.6777 (2.2255, 3.9064) 2.5253 (2.2202, 3.1313)
L2 2.5447 (2.2444, 3.4827) 2.4720 (2.2212, 3.1296)

XU(8) L3(a∗ = 0.1) 2.6393 (2.2252, 3.1562) 2.5134 (2.2201, 3.0087)
L3(a∗ = 0.5) 2.6278 (2.2251, 3.0163) 2.5094 (2.2201, 2.9716)
L3(a∗ = 1.0) 2.6146 (2.2250, 2.8975) 2.5044 (2.2201, 2.8300)

L1 2.9121 (2.2940, 4.5039) 2.6816 (2.2842, 3.3758)
L2 2.7454 (2.3465, 3.8041) 2.6294 (2.2866, 3.3679)

XU(9) L3(a∗ = 0.1) 2.8525 (2.2931, 3.3831) 2.6659 (2.2840, 3.2047)
L3(a∗ = 0.5) 2.8351 (2.2928, 3.1909) 2.6604 (2.2839, 3.1534)
L3(a∗ = 1.0) 2.8154 (2.2925, 3.1598) 2.6538 (2.2838, 3.0967)

m = 9 L1 3.2205 (2.8408, 4.5014) 3.0904 (2.8388, 3.7810)
L2 3.0775 (2.8401, 3.9837) 3.0118 (2.8389, 3.7386)

XU(10) L3(a∗ = 0.1) 3.1913 (2.8408, 4.0579) 3.0797 (2.8388, 3.7006)
L3(a∗ = 0.5) 3.1818 (2.8408, 3.9425) 3.0760 (2.8388, 3.6734)
L3(a∗ = 1.0) 3.1705 (2.8408, 3.8166) 3.0717 (2.8388, 3.6407)

L1 3.6140 (2.9102, 5.4121) 3.3363 (2.8937, 4.2349)
L2 3.4272 (2.9072, 4.5780) 3.2557 (2.8958, 4.1549)

XU(11) L3(a∗ = 0.1) 3.5534 (2.9100, 4.6580) 3.3171 (2.8936, 4.0894)
L3(a∗ = 0.5) 3.5333 (2.9099, 4.4367) 3.3105 (2.8936, 4.0403)
L3(a∗ = 1.0) 3.5083 (2.9097, 4.2067) 3.3025 (2.8936, 3.9817)

L1 4.0124 (3.0248, 6.4919) 3.5718 (2.9855, 4.6180)
L2 3.7837 (3.0238, 5.1028) 3.4909 (2.9923, 4.5011)

XU(12) L3(a∗ = 0.1) 3.9183 (3.0238, 5.1759) 3.5456 (2.9852, 4.4097)
L3(a∗ = 0.5) 3.8862 (3.0234, 4.8417) 3.5366 (2.9851, 4.3393)
L3(a∗ = 1.0) 3.8435 (3.0230, 4.5162) 3.5256 (2.9850, 4.2555)

m = 12 L1 3.6338 (3.4261, 4.2522) 3.5929 (3.4254, 4.0568)
L2 3.5619 (3.4260, 4.1535) 3.5399 (3.4251, 3.9942)

XU(13) L3(a∗ = 0.1) 3.6266 (3.4261, 4.1116) 3.5886 (3.4254, 4.0059)
L3(a∗ = 0.5) 3.6241 (3.4261, 4.0684) 3.5871 (3.4254, 3.9886)
L3(a∗ = 1.0) 3.6212 (3.4261, 4.0200) 3.5853 (3.4254, 3.9676)

L1 3.8415 (3.4674, 4.6978) 3.7583 (3.4617, 4.3663)
L2 3.7577 (3.4679, 4.5185) 3.7032 (3.3885, 4.2699)

XU(14) L3(a∗ = 0.1) 3.8272 (3.4673, 4.4336) 3.7503 (3.4617, 4.2734)
L3(a∗ = 0.5) 3.8224 (3.4673, 4.3541) 3.7475 (3.4617, 4.2418)
L3(a∗ = 1.0) 3.8165 (3.4672, 4.2685) 3.7441 (3.4616, 4.2035)

L1 4.0445 (3.5360, 5.0916) 3.9178 (3.5228, 4.6289)
L2 3.9513 (3.5391, 4.8325) 3.8621 (3.5159, 4.5028)

XU(15) L3(a∗ = 0.1) 4.0234 (3.5356, 4.7037) 3.9066 (3.5227, 4.4953)
L3(a∗ = 0.5) 4.0163 (3.5355, 4.5882) 3.9026 (3.5226, 4.4497)
L3(a∗ = 1.0) 4.0076 (3.5353, 4.4688) 3.8978 (3.5225, 4.3945)
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Table 3. MSEs of the predictors of future records based on one-
sequence prediction problem.

m n Loss Function Prior 0 Prior 1
6 7 L1 0.3551 0.2569

L2 0.3440 0.2305
L3(a∗ = 0.1) 0.3644 0.2507
L3(a∗ = 0.5) 0.3622 0.2488
L3(a∗ = 1) 0.3601 0.2467

8 L1 0.4661 0.3452
L2 0.4531 0.3032

L3(a∗ = 0.1) 0.4634 0.3284
L3(a∗ = 0.5) 0.4703 0.3242
L3(a∗ = 1) 0.4627 0.3196

9 L1 0.4625 0.4011
L2 0.4223 0.3730

L3(a∗ = 0.1) 0.5556 0.4017
L3(a∗ = 0.5) 0.4952 0.3940
L3(a∗ = 1) 0.4501 0.3853

9 10 L1 0.2396 0.2281
L2 0.2278 0.2196

L3(a∗ = 0.1) 0.2377 0.2272
L3(a∗ = 0.5) 0.2371 0.2269
L3(a∗ = 1) 0.2364 0.2265

11 L1 0.3027 0.2155
L2 0.2901 0.2000

L3(a∗ = 0.1) 0.3002 0.2118
L3(a∗ = 0.5) 0.2994 0.2105
L3(a∗ = 1) 0.2985 0.2091

12 L1 0.4022 0.2580
L2 0.3718 0.2449

L3(a∗ = 0.1) 0.3908 0.2548
L3(a∗ = 0.5) 0.3873 0.2537
L3(a∗ = 1) 0.3834 0.2525

12 13 L1 0.3870 0.2577
L2 0.3728 0.2498

L3(a∗ = 0.1) 0.3854 0.2571
L3(a∗ = 0.5) 0.3848 0.2569
L3(a∗ = 1) 0.3842 0.2566

14 L1 0.2821 0.2458
L2 0.2701 0.2387

L3(a∗ = 0.1) 0.2796 0.2448
L3(a∗ = 0.5) 0.2788 0.2445
L3(a∗ = 1) 0.2779 0.2441

15 L1 0.3173 0.2326
L2 0.3078 0.2220

L3(a∗ = 0.1) 0.3151 0.2300
L3(a∗ = 0.5) 0.3143 0.2291
L3(a∗ = 1) 0.3135 0.2281
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Table 4. Simulated predictors and PIs for unobserved records YU(k),k = 1, ...,n, based on another independent observed record
sample of size m.

Prior 0 Prior 1
Loss function Predicted values 95% PIs Predicted values 95% PIs

m n YU(k)
6 4 L1 0.8372 (0.0696, 1.9504) 0.8880 (0.1880, 1.8580)

L2 0.7895 (0.1082, 1.4858) 0.8417 (0.1736, 1.3285)
YU(1) L3(a∗ = 0.1) 0.7049 (0.1171, 1.9701) 0.7551 (0.1908, 1.8611)

L3(a∗ = 0.5) 0.6359 (0.1273, 1.9776) 0.6974 (0.1919, 1.8623)
L3(a∗ = 1.0) 0.5243 (0.1381, 1.9874) 0.6127 (0.1933, 1.8638)

L1 1.4669 (0.4917, 3.0124) 1.5775 (0.7786, 2.5618)
L2 1.3936 (0.5747, 2.1219) 1.5452 (0.7285, 2.0040)

YU(3) L3(a∗ = 0.1) 1.3531 (0.6719, 3.0864) 1.5027 (0.8075, 2.5700)
L3(a∗ = 0.5) 1.2109 (0.7287, 3.1178) 1.4745 (0.8190, 2.5731)
L3(a∗ = 1.0) 1.2565 (0.8071, 3.1608) 1.4381 (0.8342, 2.5770)

L1 1.7330 (0.6956, 3.4447) 1.8141 (0.9984, 2.8124)
L2 1.6792 (0.7720, 2.3517) 1.7823 (0.9392, 2.2048)

YU(4) L3(a∗ = 0.1) 1.6252 (0.9175, 3.5629) 1.7480 (1.0440, 2.8232)
L3(a∗ = 0.5) 1.5866 (1.0042, 3.6164) 1.7233 (1.0625, 2.8273)
L3(a∗ = 1.0) 1.5381 (1.1335, 3.6930) 1.6920 (1.2876, 2.8326)

9 6 L1 0.8228 (0.0970, 2.1196) 0.8910 (0.1394, 2.0942)
L2 0.7234 (0.1018, 1.8077) 0.8242 (0.1364, 1.7410)

YU(1) L3(a∗ = 0.1) 0.6213 (0.1074, 2.1320) 0.7212 (0.1414, 2.0982)
L3(a∗ = 0.5) 0.5328 (0.1105, 2.1367) 0.6430 (0.1422, 2.0997)
L3(a∗ = 1.0) 0.3965 (0.1142, 2.1428) 0.5254 (0.1432, 2.1016)

L1 1.6811 (0.6191, 3.2753) 1.7497 (0.7560, 3.0590)
L2 1.5893 (0.6324, 2.6786) 1.6948 (0.7487, 2.5779)

YU(3) L3(a∗ = 0.1) 1.5312 (0.6975, 3.3164) 1.6374 (0.7832, 3.0708)
L3(a∗ = 0.5) 1.4751 (0.7290, 3.3336) 1.5949 (0.7944, 3.0754)
L3(a∗ = 1.0) 1.4030 (0.7744, 3.3571) 1.5401 (0.8099, 3.0815)

L1 2.5706 (1.2772, 4.4939) 2.5864 (1.4669, 4.0211)
L2 2.4617 (1.3010, 3.5500) 2.5315 (1.4721, 3.3875)

YU(6) L3(a∗ = 0.1) 2.4324 (1.4788, 4.5927) 2.4962 (1.5514, 4.0486)
L3(a∗ = 0.5) 2.3829 (1.5882, 4.6397) 2.4631 (1.5906, 4.0602)
L3(a∗ = 1.0) 2.3213 (1.7899, 4.7092) 2.4215 (1.8531, 4.0761)

12 8 L1 0.7924 (0.1076, 1.9409) 0.8857 (0.1501, 1.8947)
L2 0.7114 (0.1081, 1.8183) 0.8207 (0.1549, 1.7616)

YU(1) L3(a∗ = 0.1) 0.6172 (0.1136, 1.9470) 0.7229 (0.1521, 1.7976)
L3(a∗ = 0.5) 0.5407 (0.1156, 1.9492) 0.6516 (0.1528, 1.7987)
L3(a∗ = 1.0) 0.4240 (0.1179, 1.9521) 0.5451 (0.1538, 1.7603)

L1 1.8729 (0.8578, 3.2779) 1.9659 (1.0053, 3.1741)
L2 1.8051 (0.8352, 3.0217) 1.9226 (1.0528, 3.0003)

YU(4) L3(a∗ = 0.1) 1.7609 (0.9372, 3.3000) 1.8783 (1.0446, 3.1839)
L3(a∗ = 0.5) 1.7194 (0.9695, 3.3083) 1.8455 (1.0606, 3.1876)
L3(a∗ = 1.0) 1.6668 (1.0121, 3.3189) 1.8038 (1.0821, 3.1924)

L1 2.8015 (1.6010, 4.4560) 2.8449 (1.7839, 4.1588)
L2 2.7223 (1.5448, 4.8359) 2.8004 (1.8942, 3.9318)

YU(8) L3(a∗ = 0.1) 2.7000 (1.8028, 4.5046) 2.7740 (1.8933, 4.1797)
L3(a∗ = 0.5) 2.6635 (1.8998, 4.5230) 2.7481 (1.9419, 4.1880)
L3(a∗ = 1.0) 2.6179 (2.0305, 4.5465) 2.7156 (2.1122, 4.1992)
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Table 5. MSEs of the predictors of unobserved records based on two-sequence
prediction problem.

m n YU(k) Loss Function Prior 0 Prior 1
6 3 YU(1) L1 0.1606 0.0518

L2 0.1907 0.0446
L3(a∗ = 0.1) 0.1898 0.0386
L3(a∗ = 0.5) 0.2195 0.0353
L3(a∗ = 1) 0.2596 0.0339

YU(2) L1 0.1830 0.0626
L2 0.3151 0.0558

L3(a∗ = 0.1) 0.3041 0.0535
L3(a∗ = 0.5) 0.3274 0.0523
L3(a∗ = 1) 0.3771 0.0531

YU(3) L1 0.2927 0.0790
L2 0.4185 0.0603

L3(a∗ = 0.1) 0.4755 0.0646
L3(a∗ = 0.5) 0.5972 0.0604
L3(a∗ = 1) 0.6474 0.0707

9 6 YU(1) L1 0.1582 0.0306
L2 0.1189 0.0385

L3(a∗ = 0.1) 0.1794 0.0371
L3(a∗ = 0.5) 0.1868 0.0406
L3(a∗ = 1) 0.2144 0.0490

YU(3) L1 0.1703 0.0742
L2 0.1975 0.0775

L3(a∗ = 0.1) 0.1988 0.0759
L3(a∗ = 0.5) 0.2108 0.0773
L3(a∗ = 1) 0.2281 0.0797

YU(6) L1 0.2266 0.1458
L2 0.2458 0.1300

L3(a∗ = 0.1) 0.2506 0.1280
L3(a∗ = 0.5) 0.2660 0.1227
L3(a∗ = 1) 0.3138 0.1170

12 9 YU(1) L1 0.1145 0.0314
L2 0.1324 0.0365

L3(a∗ = 0.1) 0.1246 0.0344
L3(a∗ = 0.5) 0.1295 0.0363
L3(a∗ = 1) 0.1392 0.0408

YU(5) L1 0.2054 0.1157
L2 0.2247 0.1123

L3(a∗ = 0.1) 0.2261 0.1112
L3(a∗ = 0.5) 0.2343 0.1101
L3(a∗ = 1) 0.2453 0.1092

YU(9) L1 0.3093 0.1147
L2 0.3050 0.1148

L3(a∗ = 0.1) 0.3077 0.1130
L3(a∗ = 0.5) 0.3085 0.1130
L3(a∗ = 1) 0.3107 0.1133
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Table 6. Simulated predictors and PIs for the 9th, 10th and 11th future records.

Number of observed records XU(n) Loss function Predicted 95% PIs
values

m = 8 XU(9) L1 42.76 (38.07,57.32)
L2 41.05 (38.06,57.05)

L3(a∗ = 0.1) 42.45 (38.07,53.48)
L3(a∗ = 0.5) 42.35 (38.07,52.31)
L3(a∗ = 1.0) 42.23 (38.07,51.04)

XU(10) L1 47.56 (38.96,68.48)
L2 45.44 (38.88,67.92)

L3(a∗ = 0.1) 46.94 (38.96,61.07)
L3(a∗ = 0.5) 46.74 (38.96,58.87)
L3(a∗ = 1.0) 46.51 (38.96,56.61)

XU(11) L1 52.36 (40.44,78.73)
L2 49.88 (40.22,77.63)

L3(a∗ = 0.1) 51.44 (40.43,67.60)
L3(a∗ = 0.5) 51.14 (40.43,64.35)
L3(a∗ = 1.0) 50.78 (40.42,61.17)

Table 7. Bayesian analysis using different priors.

Prior L1 L2 L3(a∗ = 0.1) L3(a∗ = 0.5) L3(a∗ = 1.0)
π1 α̂ 1.8193 1.8241 1.8187 1.8183 1.8160

λ̂ 0.0115 0.0122 0.0104 0.0114 0.0120
Predicted Value 42.25 41.79 42.01 41.93 41.84
95% PI of XU(9) (38.06, 50.77) (38.08, 50.40) (38.06, 48.11) (38.06, 47.24) (38.06, 47.22)

π2 α̂ 1.7965 1.8029 1.7960 1.7956 1.7934
λ̂ 0.0121 0.0123 0.0120 0.0127 0.0129

Predicted Value 42.06 41.01 41.92 41.88 41.83
95% PI of XU(9) (38.03, 52.05) (38.03, 52.52) (38.03, 50.25) (38.03, 48.15) (38.03, 48.05)

π3 α̂ 1.8304 1.8312 1.8304 1.8303 1.8322
λ̂ 0.0109 0.0113 0.0105 0.0116 0.0119

Predicted Value 42.03 41.98 41.90 41.85 41.80
95% PI of XU(9) (38.03,54.05) (38.03,54.53) (38.03,53.25) (38.03,52.15) (38.03,50.05)

π4 α̂ 1.8812 1.8791 1.8706 1.8690 1.8729
λ̂ 0.0114 0.0108 0.0109 0.0114 0.0116

Predicted Value 42.56 41.31 42.38 42.32 42.25
95% PI of XU(9) (38.04,55.26) (38.02,55.06) (38.04,54.40) (38.04,53.49) (38.04,52.43)
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Appendix A. (BEs of α and λ )
Let XU(1),XU(2), ...,XU(n) be the first n upper record values arising from a sequence of iid
WE(α,λ ) with PDF and CDF given respectively in (1.1) and (1.2). The likelihood function

Published by Atlantis Press
Copyright: the authors

363



O.M. Bdair and M.Z. Raqab

of this sample [see [6] and [4]] is

L(α,λ |data) = α
n
λ

ne−λxα

U(n)
n

∏
i=1

xα−1
U(i) . (A.1)

First, consider the case when the shape parameter α is known. By (A.1) and the prior
density Eq.(1.3), the posterior density of λ given α and data is Gamma(a+ n, b+ xα

U(n))
which has the form

π1(λ |α,data) =
(b+ xα

U(n))
a+n

Γ(a+n)
λ

a+n−1 e−λ (b+xα

U(n)). (A.2)

Under the squared error loss function L1, the BE λ̂B1 of λ is

λ̂B1 = Eposterior(λ |α,data) =
a+n

b+ xα

U(n)
.

Under Jeffrey’s prior (a = b = 0), the BE under the loss function L1, λ̂B1 is same as the
MLE of λ . For the absolute error loss function L2, the BE of λ is median of the posterior
density (say λ̂B2). It can be obtained by solving the following equation in w, numerically:

γ

(
a+n, (b+ xα

U(n))w
)
− Γ(a+n)

2
= 0.

Under the LINEX loss function L3 and for any given a∗ < a+ n, the BE λ̂B3 of λ can be
obtained by using the PDF of the gamma distribution as follows:

λ̂B3 =
[
Eposterior[λ

−a∗|data]
]− 1

a∗
=

[
Γ(n+a−a∗)

Γ(a+n)

]− 1
a∗ 1

b+ xα

U(n)
.

For unknown α and λ and based on the prior distributions π1(λ |a,b) and π2(α), the pos-
terior distribution of α and λ is defined by

π(α,λ |data) =
L(α,λ |data) .π1(λ |α,a,b)π2(α)

∞∫
0

∞∫
0

L(α,λ |data) .π1(λ |α,a,b)π2(α)dα dλ

. (A.3)

Under L1,L2 and L3, the BE of any function α and λ (say θ = g(α,λ )) can be written,
respectively, as

θ̂B1 =

∞∫
0

∞∫
0

θ π(α,λ |data)dα dλ , θ̂B2 = Medposterior(θ |data),

and

θ̂B3 =

 ∞∫
0

∞∫
0

θ
−a∗

π(α,λ |data)dα dλ

− 1
a∗

.
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Appendix B. (Log-concavity of π2(α|data))
The BEs θ̂B1 , θ̂B2 and θ̂B3 , under different loss functions can’t be obtained in closed forms.
Here we propose to use sampling based technique to generate MC samples from the poste-
rior distribution π(α,λ |data). For this, we state the following lemma:

Lemma B.1. The conditional PDF of α given the data is given by

π2(α|data) ∝ π2(α)α
n

n

∏
i=1

xα−1
U(i) ×

1(
b+ xα

U(n)

)a+n , (B.1)

and it is log-concave if π2(α) is log-concave.

Proof. From the posterior distribution of α and λ , Eq. (A.3), we have

π(α,λ |data) ∝ π2(α) α
n

n

∏
i=1

xα−1
U(i) λ

a+n−1 e−λ (b+xα

U(n)).

Therefore, the PDF of α given data is

π2(α|data) ∝ π2(α)α
n

n

∏
i=1

xα−1
U(i) ×

1(
b+ xα

U(n)

)a+n .

To show the log-concavity of π2(α|data), let us consider

ln π2(α|data) =C+ ln π2(α)+n ln(α)+(α−1)
n

∑
i=1

lnxU(i)− (a+n) ln(b+ xα

U(n)),

where C is some constant. Now the second derivative can be written as

(ln π2(α|data))′′ = (ln π2(α))′′− n
α2 − (a+n)

b xα

U(n)[ln xU(n)]
2

[b+ xα

U(n)]
2 .

Since π2(α) is log-concave by the assumption, we have (ln π2(α))′′ < 0 and thus
(ln π2(α|data))′′ < 0, for a, b > 0. It follows that π2(α|data) is log-concave density.

Appendix C. (Generation of MC samples from π(α,λ ))
The method proposed by [11] can be used to generate α from the distribution with
PDF π2(α|data). We then can generate λ based on the fact that λ given α and data is
Gamma(a+ n, b+ xα

U(n)). Now, it is possible to generate MC samples from the posterior
distribution of α and λ , Eq.(A.3), and then use these samples to obtain the BEs of any
function of α and λ , θ = g(α,λ ).
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Algorithm for obtaining sample-based estimates:
• Step 1: Generate α from the log-concave density function π2(α|data), Eq.(B.1),

using the method proposed by Devroye (1984).
• Step 2: For each α , generate λ from the posterior density function of λ given α

and data, π1(λ |α,data), Eq.(A.2).
• Step 3: Repeat step 1 and step 2, M times and obtain MC samples
{(αi,λi); i = 1, ...,M}.

• Step 4: Obtain the BE of θ = g(α,λ ) with respect to the squared, absolute and
LINEX error loss functions as

θ̂B1 =
1
M

M

∑
i=1

g(αi,λi), θ̂B2 = Median{θ(1),θ(2), ...,θ(M)},

and

α̂B3 =

[
1
M

M

∑
i=1

1
ga∗(αi,λi)

]− 1
a∗

, a∗ 6= 0.

• Step 5: To compute the CI of θ = g(α,λ ), we order θ1,θ2, ...,θM as
θ(1),θ(2), ...,θ(M). Then (1 − β )100% symmetric CI of θ is given by(

θ
([M β

2 ])
,θ

([
M (1−β )

2 ])

)
.
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