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Abstract

Molecular dynamics (MD) simulations are very important to study physical properties of the atoms and
molecules. However, a huge amount of processing time is required to simulate a few nano-seconds
of an actual experiment. Although the hardware acceleration using FPGAs provides promising results,
huge design time and hardware design skills are required to implement an accelerator successfully. In
this paper, we use a heterogeneous computing system for MD simulations, that can be used in C-based
programming environment. We propose an FPGA accelerator designed using C-based OpenCL for the
heterogeneous environment. We achieved over 4.6 times of speed-up compared to CPU-based processing,
by using only 36% of the Stratix V FPGA resources. We also evaluate the processing times of different
tasks in the heterogeneous environment.

Keywords: OpenCL for FPGA, molecular dynamics simulation, hardware acceleration, scientific com-
puting.

1. Introduction

Molecular dynamics (MD) simulations 1 are very

important in the fields of computational chemistry
2, materials science 3, bio-informatics 4, etc to study

the physical properties of atoms and molecules. In

MD simulations, classical physics is used to com-

pute the movements of atoms and molecules. Cur-

rently, there are many publicly available and widely

used software packages for MD simulations such as

AMBER 5, Desmond 6, GROMACS 7, LAMMPS 8,

CHARMM 9, etc. All of those methods are based on

an iterative computation method, where the compu-

tation results of one iteration are used as the inputs

in the next iteration. Each iteration consists of two

major phases: force computation and motion update

as shown in Fig.1. MD simulations require millions

of iterations and a huge amount of processing time

on general purpose CPUs to simulate few nanosec-

onds of the real time. Months to years of process-

ing time is spend to find at least some useful results

while simulating an actual laboratory experiment is

not possible even today.

Hardware acceleration is already used to reduce

the huge processing time in MD simulations. ASIC

(application specific integrated circuit) implemen-
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tations of MD simulation are already proposed in

Refs. 10–12. However, designing such special pur-

pose processors requires years of design, debug-

ging and testing time and also involves a huge fi-

nancial cost. Therefore, ASICs are out-of-reach for

most researchers, although their performances are

quite excellent. A cheap way of hardware acceler-

ation is provided by FPGAs (feild-programmable-

gate-arrays) 13,14,15. Although the cost is extremely

small compared to ASICs, the design time is still

very large. FPGAs are designed using hardware de-

scription language (HDL) so that hardware design

skills and experiences are required for a successful

FPGA implementation. When there are algorithm

changes and hardware updates, it is often required

to redesign the whole FPGA architecture.

Fig. 1. Molecular dynamics simulation model. Force com-

putation and motion update of the atoms are repeated for

millions of iterations.

To overcome these problems, OpenCL for FPGA

has been introduced 16. It is a complete framework

that includes firmware, software and device drivers

to connect, control and transfer data to and from the

FPGA. It provides a heterogeneous system consist

of a host CPU and a device which is an OpenCL ca-

pable FPGA. Lightweight tasks can be processed on

the host CPU while the heavyweight tasks can be of-

floaded to the FPGA. The host program is written in

C code and the device program is written in OpenCL

code 17 which is also similar to C code. FPGA im-

plementation can be done entirely using software

without requiring a single line of HDL code. Re-

cently, some works such as Refs. 18, 19 propose

FPGA accelerators using OpenCL.

This paper is an extension of our previous work
20 that describe the basic FPGA accelerator for MD

simulations using OpenCL. The FPGA design time

has been reduced to just few hours due to software

based design. Any algorithmic change could be eas-

ily implemented by just changing the software code,

and the same code can be re-used in any OpenCL ca-

pable FPGA board. In this paper, we discuss the het-

erogeneous processing on the host and the FPGA in

depth. We also evaluate the processing and the data

transfer times. In this paper, we demonstrate that

it is possible to achieve over 4.6 times of speed-up

compared to CPU implementation for the most time

consuming non-bonded force computations. This

speed-up is achieved by using only 36 % of the

FPGA resources. If we assume a 80% resource us-

age, we can achieve a similar speed-up compared to

custom FPGA accelerators designed using HDL. We

also highlight the problems of the FPGA-based het-

erogeneous systems such as data transfers between

the host and the device and shows some insights

to tackle those problems in future OpenCL capable

FPGA-based systems.

2. Molecular dynamics simulation

Fig. 2. Bonded and non-bonded forces consider in MD sim-

ulations.
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The atoms in a system have many interaction

among each other. Those can be classified in to

bonded and non-bonded interactions. The bonded

interactions are the acts between atoms that are

linked by covalent bonds. As shown in Fig.2,

stretching, angle, torsion, etc are due to bonded-

forces among atoms. Bonded forces only affect a

few neighboring atoms, and can be computed in

O(N) time for N atoms. Non-bonded interactions

are the acts between atoms which are not linked by

covalent bonds. These are caused by the electro-

static potential, Lennard-Jones potential due to van

der waals forces, etc. The forces that cause such

interactions are called non-bonded forces. Those

forces exist among all atoms so that the computation

requires O(N2) processing time. There are several

techniques available to reduce the computation cost

and to accelerate non-bonded force computation.

Fig. 3. Division of the simulation box in to cells.

MD simulation is done for a system that is usu-

ally represented by a box of atoms. To reduce the

computation complexity, the box is divided in to

multiple cells. Fig.3 shows a 2-D representation of

the cell division. A cut-off distance is set between

two atoms and the neighboring cell-pairs within the

cut-off distance are extracted to a cell-pair list. Non-

bonded force computation is done for the atoms of

the cell-pairs in the list. As a result, we do not have

to consider all atom-pair combinations for the force

computation. Since the atoms move in the box, the

cell-pair list is updated in each iteration. A periodic

boundary condition is used when an atom leaves the

box. We assume that the same box is replicated at

the boundaries so that an atom leaves from the box

reappears from the opposite direction. Using this

method, we can simulate a large system by using

only a small number of atoms.

Even with these techniques, MD simulation

takes a huge amount of processing time. Non-

bonded force computation occupies most of the total

processing time. Therefore, we accelerate the Non-

bonded force computation using FPGA. The FPGA

acceleration is based on the MD simulation software

“myPresto/omegagene” 21,22.

3. MD simulation accelerator architecture
using OpenCL

3.1. Parallel processing using loop-pipelining

OpenCL for FPGA uses pipelines on FPGA to im-

plement parallel computations. Fig.4 shows a typ-

ical pipeline that contains four operations, multi-

plcation, subtraction, division and addition. Mul-

tiple functional units are used to implement differ-

ent operations. Registers are placed in between two

functional units to temporally hold the intermediate

results. A pipeline stage is assigned for the opera-

tions processed between two adjacent registers. In

each clock cycle, data proceeds from one stage to

another. The data set in Fig.4 contains N data val-

ues. In each clock cycle, data are read in serial man-

ner. For example, in clock cycle t0, data inA[0] is

read and the multiplication operation is done. In

clock cycle t1, subtraction corresponds to inA[0] and

multiplication corresponds to data inA[1] are done

simultaneously as shown in the time chart. Simi-

larly, in clock cycles t3, t4, ..., all four operations are

done simultaneously for different data. At this time,

we call the pipeline is fully filled. In this comput-

ing method, parallel processing is done in multiple

pipeline stages, even the data are read in serial. The

clock period of the pipeline is decided by the slowest

stage, which is called the bottleneck stage. If we di-

vide the slowest stage in to multiple pipeline stages

that have smaller processing times, we can increase

the clock frequency.
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Fig. 4. Parallel processing using pipelines. Multiple opera-

tions are done on different data simultaneously.

The Altera offline compiler (AOC) reads an

OpenCL code and implements pipelines for the

computations inside loops. This is called “loop-

pipelining”. A pipeline stage is designed for each

operation in the OpenCL code. In fact, even a sin-

gle operation such as 32-bit multiplication is divided

into several pipeline stages to reduce the processing

time of a stage. As a result, we can achieve high fre-

quencies that are over 200MHz. Since FPGAs have

a large number of registers, pipelines with thousands

of stages can be designed easily.

When there are no data dependencies between

nested loops and if AOC identifies such situations,

AOC automatically generates a fully pipelined ar-

chitecture. Otherwise, a separate pipeline is imple-

mented for the inner-loop. Therefore, an iteration

of the outer-loop proceeds only after all the itera-

tions of the inner-loop are finished. The computation

of the outer-loop stalls until the inner-loop finishes

its execution. To avoid this, we can fully unroll the

inner-loops. However, fully unrolled loops process

all its iterations in parallel, so that a lot of hardware

resources are required to implement such process-

ing.

3.2. FPGA architecture using OpenCL

Fig. 5. Algorithm of the non-bonded force computation

method using cell-pair list.

As explained in section 2, non-bonded force

computation is the hardest and the most time con-

suming part of the MD simulation. Therefore, we

accelerate this computation using FPGAs. The soft-

ware programs 22 use cell-pair list to reduce the

computation amount. However, this process in-

volves many conditional checking and nested loops.

The outline of the cell-pair list based computation

algorithm is shown in Fig.5. It consists of three

loops. The outer-loop proceeds for each cell-pair in

the list. In the inner-loops, two atoms from each cell

in the cell-pair are selected to compute non-bonded

forces. Many conditional branches are used to re-

duce the computation amount 21. The loop bound-

aries of the inner loops are depend on the number of

atoms in a cell. Since different cells contains differ-

ent number of atoms, the loop boundaries vary with

cells. Moreover, Since the atoms moves in each it-
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Fig. 6. Flow-chart of the CPU-FPGA heterogeneous pro-

cessing.

eration, the atoms in a cell also changes. Therefore,

the loops boundaries are not fixed and those are data

dependent.

Due to such data dependencies, AOC cannot

generate a fully pipelined architecture for this al-

gorithm. Moreover, we cannot manually unroll the

inner-loops since the loop boundaries are not fixed.

Therefore, this algorithm is not suitable for OpenCL

implementation due to the stalls in the outer-loops

as explained in section 3.1.

To solve this problem, we separate the force

computation from the atom-pair selection. We first

extract the complete list of atom-pairs based on the

cell-pair list. Then we perform the force compu-

tation for each atom-pair in the list. The atom-

pair-list extraction is just a searching procedure that

does not contain heavy computations. On the other

hand, force computation contains many multiplica-

tions and divisions. Therefore, we use the host com-

puter for atom-pair list extraction and transfer the

list to the FPGA for force computation. Once the

list is extracted, only a single loop is sufficient for

the force computation of all the atom-pairs in the

list. As a result, AOC can implement loop-pipeling

on FPGA to accelerate the computation.

Fig.6 shows the flow-chart of the proposed CPU-

FPGA heterogeneous processing. Bonded-force

computation is done on CPU while non-bonded

force computation is done on FPGA. After comput-

ing all the forces, the atom coordinates are updated

using the Newton’s equations. Then a new atom-

pair-list is extracted. In this method, we get two

overheads, atom-pair-list data transfer to FPGA and

force data transfer from FPGA. We will further dis-

cuss this problem in the evaluation and suggest some

solutions.

Fig.7 shows the processing done in the FPGA ac-

celerator. The FPGA accelerator access the atom-

pair list in the global memory and read atom-pairs

one-by-one in serial manner. For each atom-pair,

their distance is calculated and compared with the

cut-off distance. If it is larger than the cut-off dis-

tance, further computations are stopped and a new
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atom-pair is read. Otherwise, potential and force

computations are done. The outputs are the force

data.

Fig.8 shows the proposed CPU-FPGA hetero-

geneous processing system for molecular dynamic

simulations. The FPGA board is connected to the

CPU through a PCI express bus. Initially, the

atom-pair list and the atom coordinates are trans-

ferred from the host computer to the global memory

(DRAM) of the FPGA board. After the computa-

tions are done on the FPGA board, force data are

read by the host computer. This data transfer is done

through the PCIe port of the host computer moth-

erboard. The FPGA accelerator read the input data

from the global memory and performs the compu-

tation. The outputs are written back to the global

memory. The data read, computation and write-back

is fully pipelined, so that force data are written to

the global memory in every clock cycle after the

pipeline is filled.

Fig.9 shows the accelerator architecture expected

to be generated by AOC. It contains several compu-

tation modules for force and distance computations.

The distance between the two atoms in the atom-pair

is calculated using x,y,z coordinates of the atoms.

This computation requires several subtraction, mul-

tiplication and addition operations and one squire-

root operation. The Lennard-Jones (L-J) potential

computation requires divisions, additions and many

multiplications 23. Similarly, electrostatic potential

computation requires divisions, additions, subtrac-

tions and multiplications 21. After the potentials are

computed, non-bonded force computation is done

and the output force data are written to the global

memory. The total computation requires, many ad-

ditions, subtractions, divisions, multiplications and

square-root operations. AOC generates pipelines

stages for all operations. Therefore, even we pro-

cess atom-pairs in serial manner, the pipelined ar-

chitecture allows many parallel operations for dif-

ferent atom-pairs at the same time. As a result, we

can achieve a considerably large processing speed.

Fig. 7. Flow-chart of the processing in FPGA accelerator.

Fig. 8. Diagram of the CPU-FPGA heterogeneous process-

ing system for molecular dynamic simulations.
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Fig. 9. FPGA accelerator architecture.

4. Evaluation

Fig. 10. The implemented heterogeneous system with a

CPU and an FPGA.

For the evaluation, we used DE5 board that con-

tains Stratix V 5SGXEA7N2F45C2 FPGA. Fig.10

shows a picture of this heterogeneous system. The

operating system is CentOS 6.7. The FPGA is con-

figured using Quartus II 15.0 with OpenCL SDK.

The molecular dynamics simulation contains 22,795

atoms. The width, height and the depth of the box

are 61.24×10−10 m each.

Table 1. FPGA resource usage.

Resource Usage Percentage used (%)
Logic (ALMs) 83,653 35.64

Registers 91,682 9.76

Memory (Mbits) 3.35 6.70

DSPs 49 19.14

Table 1 shows the FPGA resource utilization

details. The most used resource is ALMs (adap-

tive logic modules) and 36% of the total ALMs are

used for the implementation. From those resources,

around 19% of the resources are used for the I/O im-

plementations such as PCIe and memory controllers,

etc. As a result, we can increase the parallel process-

ing by 4 times using 80% of the FPGA resources.

The measured clock frequency of the accelerator is

202 MHz.
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Table 2 shows the processing times of one iter-

ation on CPU and FPGA. Note that, in this evalua-

tion, we implemented the force computation method

shown in Fig.5 on FPGA using OpenCL, without ap-

plying any algorithmic changes. That means, both

the CPU and the FPGA execute almost the same

code. According to the CPU implementation re-

sults, the non-bonded force computation takes 79%

of the total CPU processing time. This shows, we

can reduce most of the processing time by accel-

erating the force computation. However, using the

same code on FPGA does not give any acceleration

as demonstrated by the processing time results on

FPGA. The processing time is more than 129 times

larger compared to that in CPU.

Table 2. Comparison of the processing time using the straight
forward method by using the same software code used in CPU
implementation.

CPU FPGA
Non-bonded force computation 0.68 s 88.03 s

Total computation 0.86 s 88.24 s

Table 3 shows the processing time comparison

when the proposed atom-pair list based method is

implemented on FPGA. We achieved a speed-up of

4.6 times compared to CPU implementation. The

work in 15 reports 11.1 times speed-up using a sin-

gle FPGA, while the work in 24 reports over 13

times speed-up using multiple FPGAs. However, di-

rect comparison is difficult since both CPUs and FP-

GAs of the previous works are quite different from

what we have used. In our implementation, we used

only 36% of the FPGA resources. If we used upto

80% of the FPGA resources, we can theoretically in-

crease the speed-up to 18.4 % if memory bandwidth

permits. This evaluation shows that a considerable

speed-up can be achieved using OpenCL implemen-

tation.

Table 4 shows the processing times of different

tasks in the heterogeneous computing system. The

non-bonded force computation takes the same time

as the bonded force computation since it is done

in the FPGA. Moreover, both computations can be

done in parallel in CPU and FPGA. Therefore, we

can reduce some of the processing time by overlap-

ping the computation in FPGA with that in CPU.

However, the data transfer between the CPU and

FPGA is still a problem. The atom-pair list and

the coordinate data are transferred from the CPU to

the FPGA. Theoretically, there are O(N2) of atom-

pairs. However, atom numbers are integers and only

two bytes are required to represent those. Moreover,

the list can be compressed by removing redundant

data. For example, three atom-pairs [atom1-atom2],

[atom1-atom3] and [atom1-atom4] are represented

as [atom1:atom2,atom3,atom4] by removing the re-

dundant atom1. The number of atom coordinates in

x,y,z directions are only three times of the number

of atoms O(N). Therefore, data transfer from CPU

to FPGA is relatively fast. However, the data trans-

fer from the FPGA to CPU accounts for almost half

of the total processing time. This data transfer con-

tains the force data in x,y,z directions. Since force

is calculated for all atom pairs, the number of data

are O(N2). Moreover, four byte floating-point data

are used to represent each force value, so that data

compression is difficult. As a result, this data trans-

fer takes most of the processing time. Overall, data

transfers take more than 62% of the total processing

time.

Table 3. Comparison of the processing time using proposed
atom-pair list based implementation.

CPU FPGA Speed-up
Measured results 0.68 s 0.14 s 4.6

Estimation based on
0.68 s 0.037 s

18.4

80% resource usage (maximum)

This problem can be solved by using SoC

(system-on-chip) based OpenCL capable FPGAs,

which will be released in near future. Such a system

contains a multicore CPU and an FPGA on the same

chip. Since both the host and the device are on the

same chip, PCI express based data transfers are no

longer required. We can use on-board data trans-

fers which are much faster. If the shared memory

is utilized instead of the global memory to store the

intermediate results, we can completely eliminate

the data transfers.
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Table 4. Total processing time per one iteration of the heteroge-
neous system.

Task Time (s)
Non-bonded force computation in FPGA 0.14

Bonded force computation in CPU 0.14

Data transfer: CPU to FPGA 0.07

Data transfer: FPGA to CPU 0.25

Total processing time (simultaneous
0.51

processing on CPU and FPGA)

5. Conclusion

We propose an FPGA Accelerator for MD simula-

tions using OpenCL. We use an atom-pair list based

algorithm that requires a single loop to represent

the force computation in OpenCL. This allows AOC

(Altera offline compiler) to automatically generate

an efficient pipelined architecture. We achieved over

4.6 times speed-up compared to CPU implemen-

tation by using only 36% of the FPGA resources.

Maximum of 18.4 times speed-up is possible by as-

suming an 80% resource utilization. Such a perfor-

mance is similar to an HDL-designed custom accel-

erator.

Since the proposed architecture is completely de-

signed by software, the same program code can be

reused by recompiling it for any OpenCL capable

FPGA board. We can also implement any future al-

gorithm change by just updating the software and re-

compiling it by using just few hours of design time.

However, the data transfers between CPU and FPGA

is still a problem. This problem can be solved by

future SoC based FPGA boards that contain a multi-

core CPU and an FPGA on he same chip. Therefore,

PCI express based data transfers can be replaced by

much faster on-board data transfers. We may also

able to use shared memory to completely eliminate

data transfers.

The heterogeneous computing system we used

can contain multiple FPGAs and we can connect

many such systems to build a computing cluster.

Such would be our future works to increase the pro-

cessing speed further.
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