
Multi-Threaded Message Dispatcher - a Design Pattern with Innate Support for Mission
Critical Applications

Marcel-Titus Marginean and Chao Lu

Computer and Information Science, Towson University
8000 York Rd

Towson, Maryland/21252, USA
E-mail: mtm@mezonix.com; clu@towson.edu

Abstract

The usage of well-tried software design patterns and application frameworks is often encountered in Mission and
Safety Critical Applications development due to the high stakes involved in the case of failures. To increase
reliability, some frameworks attempt to separate the implementation of business logic and low level implementation
details and move the latter inside of framework-implementation in order to allow the developers to focus on the
problem as much as possible, while still providing the necessary infrastructure in easy to use API’s. In this paper
we present a framework for message processing which takes advantage of the newer C++11 features to enforce
separation of concerns, perform dead-lock avoidance, and encourage unit testing. This paper expands on our
previous work presented in June 2016 at IEEE/ACIS SERA.

Keywords: Design Patterns; Critical Application; Multithreading; Message Dispatching.

1. Introduction

To implement the House Hub and House Intelligence
Unit from the sDOMO system presented in our previous
papers [1, 2] we designed a Multi-Threaded Message
Dispatcher (MTM- Dispatcher) framework to support
the processing of sDOMO Messages and Packet. The
problem we addressed with this design is the typical
problem of multiple messages incoming
asynchronously, which is that they need to be processed
by message handlers specific for each type of messages.
Message processing needs to happen in parallel to take
advantage of modern multicore CPUs but care has to be
taken with accessing shared resources to not violating
critical section discipline, while also to not creating a
risk of the system entering the deadlock. The framework
was designed to be reusable for other applications that
require message processing, and will be offered as
open-source.

 Taking advantage of the lessons learned from other
engineers’ experience is the main reason for using well
known design patterns instead of “reinventing the wheel
from scratch” and running the risk of wasting time
solving the same problems and making the same
mistakes. A whole set of design patterns are well known
in literature and we are reviewing a few related with our
work.
 Reactor Pattern [3] handles concurrent requests
delivered to an application, by synchronously de-
multiplexing them within the context of a single thread
and delivering them to the appropriate service handlers.
The Reactor is a very influential pattern and our MTM-
Dispatcher can be viewed as a multithreading extension
of it.
 To handle concurrency, Monitor Object Pattern [4]
synchronizes executions to ensure only one method runs
within an object at any given moment in time. Active
Object Pattern [5] provides each object its own thread of

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

22

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

control and decouples method invocation from method
executions. A review of other very useful concurrency
design patterns can be found in [6].
 The Leader/Follower design pattern [7] addresses
some of the same concerns as our Dispatcher
framework, mainly: Efficient de-multiplexing of
handles, threads and preventing race conditions.
However not being purposely designed for the advanced
template metaprogramming abilities that are available in
modern C++ compilers, Leader/Follower pattern is
unable to perform some safety checks at compile time,
providing a strong separation of concerns and enforcing
discipline for data access to aid development of safety
and mission critical applications.
 In “Design for Verification” [8] the authors developed
a set of frameworks to aid the task of developing a
system from separately verifiable parts, in order to
increase the reliability of the system and therefore
making it more suitable for mission critical applications.
 Like our Dispatcher, the Proactor design pattern [9]
takes advantage of the efficiency that can be achieved
by using asynchronous I/O operations in order to speed
up the processing and also proposes a design method to
increase the separation of concerns in building the
applications. It however does not address compile time
enforcement of data access discipline and support for
unit-tests for the handlers, as these features require
advanced support from C++ compilers that was
obviously not available at that point in time.
 The core idea behind the design of this framework has
been the suitability for Safety and Mission Critical
Application development therefore attempting to aid
with a few of the challenges encountered during
application development: Deadlock Prevention,
Separation of Concerns and Software Testability.
 The work on this design pattern has been presented in
an earlier phase in the conference paper [10] and this
article just expands on the previous work providing
more details and introduces some features added after
the previous work has been presented at the conference.

2. Problems

The problem of having to process messages coming in
concurrently from multiple devices, as illustrated in
Figure 1, is a typical occurrence in software engineering
and as presented in review, many design patterns have

been implemented to attempt to deal with it. The most
common approach has been the Reactor pattern which
serializes the messages into a queue and then handles
them in the context of a single thread. While Reactor is
a highly successful design pattern it fails to take
advantage of modern CPU’s providing multiple cores,
limiting it usability on modern high end systems.

The work for the present Dispatcher design started as a
multi-threaded extension of the Reactor, allowing
simultaneous processing of messages in the context of
multiple threads. However, in the designs that handle
the processing in the context of multiple threads the
critical section problem arises. A critical section is a
fragment of code that is operating on some resource on
which other threads in the system can operates too. To
prevent data inconsistencies the programmers must
provide synchronization methods to prevent two or
more critical sections accessing the same resource to be
executed simultaneously. This is achieved by
synchronization primitives like Mutexes or Semaphores.
 While solving the critical section problem by mutual
exclusion there is the potential for another problem to
be introduced, the deadlock problem. The deadlock
occurs when two or more processes competing for the
same two or more resources enter into a circular wait.
The simplest example to illustrate the deadlock problem
is the situation when the thread T1 already owns
resource A and waits for resource B in order to do its
job, while the thread T2 already owns B and waits for A
which it is necessarily to be able to continue the work.
The two processes will wait indefinitely making the
application program non-responsive.

Figure 1. Multiple Message Sources and Shared Data
Talking to One Message Processor

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

23

 Having the software engineers constantly switching
their attention between the business logic they have to
implement and low level implementation details (for
example the deadlock-prevention or validating pointers)
opens opportunities for mistakes. This constant switch
of attention between different domains is a known weak
spot in the process of focus and is a problem that is best
addressed by software design. The principle of
Separation of Concerns recommends separating clearly
the two domains, allowing the programmer to focus on
and address a single class of concerns at a time.

 Despite efforts in design and implementation, errors
are likely to slip in during development, and software
testing is the most commonly used way to detect them
in order to be eliminated. Among testing methodologies
Unit Testing emerged as a very good testing strategy
allowing small units of the program to be independently
put into a test harness and exercised in isolation in a
controlled way. This strategy allows various
combination of parameters both within the normal
range, outside of it and at the boundaries to be passed to
the tested fragment of code making sure that most, if not
all of, the branches of the code are verified properly.
Unfortunately, unit testing is neither easy nor cheap
when the program was not been designed with unit
testing in mind, because usually each unit makes
references to other units and this increase in cascade of
the complexity makes good tests harnesses notoriously
hard to write.

 Lastly while coding standards are usually employed to
have the programmers following a certain discipline,
there is usually no other way but code inspections to
verify that the discipline has been respected. A
framework that can enforce at least a small portion of
the discipline by employing the compiler for this task it
is highly desirable. If the code does not compile in case
that a certain rule has been violated, the programmer
will be informed right away about his or her mistake
and have no other option but to fix the violation before
being able to go ahead with any other work.

3. Proposed solution

While solving all of the previous problems in a general
way that is suitable for any type of application program
is most likely a non-achievable dream, if we focus of a
certain category of problems the task of being able to
implement a framework that addresses all the issues
above it is a task well within the realm of possibilities.
The category of problems we attempted to solve with
this work came to us from the work to implement the
sDOMO protocol where we have a large number of
devices simultaneously sending messages that needs to
be processed by a central processing entity and we also
look at the typical set of problems encountered by the
authors in embedded and unmanned vehicle industry.

Figure 3. Class Diagram Related to Safe Data Access

Figure 2. Dispatcher Main Components

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

24

 These type of problems arise all over the place in
embedded, networking, enterprise and business
applications so a general design-pattern for a solution to
them is going to have wide field of applicability.
 The typical problem this framework addresses is the
problem of multiple devices sending data in messages
toward a central message processor (MP) which has to
process the information by calling specific Message
Handler Functions and eventually sending messages
towards the devices in response. It addresses the
problems of mutual exclusion and deadlock by a set of
specific features:

• Associates a Mutex to each Shared Data Object

• Ready to use Locking/Unlocking discipline
implemented by the framework

• Ready to use Deadlock Avoidance algorithm
implemented inside the framework

• Compiler-enforced discipline of accessing
critical shared resource

Following the system architecture presented in Figure 1
and software component architecture illustrated with
Figure 2, devices are software components able to send
messages; the system accepts multiple devices of the
same kind as well as different kinds of devices. A
“kind” of device is characterized from the types of
messages that it emits and receives. Some devices can
be just simple software components either one way like
a logger or two ways like a database or some other type
of data store, others can have real hardware backing as a
camera or GPIO card. Since devices send messages
asynchronous from one another and some messages can
be just re-routed to other devices with little or no
processing, it makes sense for the message router and
processor to operate using multi-threading in order to
make best use of all available CPU cores and achieve
higher throughput.
 Because the message processing may require access to
shared data, mutual exclusion has to be implemented in
order to avoid race-conditions, and whenever multiple
threads and mutexes are employed there always exists
the possibility of deadlock. The Dispatcher code takes
charge of the locking and unlocking of the mutexes
associated with the shared data however, a programmer
may interfere with the deadlock avoidance algorithm by

locking or unlocking the mutexes of interest from within
the handlers. To prevent this from happening, we use
the C++ compiler to disallow direct access from user
code to shared data and their associated synchronization
objects. This discipline enforcement combined with the
outsourcing of synchronization problem to the
framework code also aids the programmer to focus on
the problem that is being solved instead of
synchronization details.

 As depicted in the sketch from Figure 2, the main
entities of the software model are a set of message
sources S1… Sn which asynchronously produce
Messages which the framework adds into the Priority
Queue. The Message Dispatcher owns one or more
thread which extracts the next Message (in the order of
priority) from the queue. Upon successfully validating a
Message, the Dispatcher looks-up all the Message
Handling Entries registered for this particular message
and allocates the list to a Dispatcher Thread. A Message
Handling Entry consists of a Message Handler Function
(Handler 1() ... Handler m ()) and a tuple of one or
more references to Shared Data Objects (D1... Dp).
 For each Entry, the Thread will lock the mutex
associated with each Data Object using the “partial
ordering deadlock avoidance algorithm” as proposed by
Dijkstra as a solution to “Dinning Philosophers
Problem”. Once all the resources are acquired, the
Dispatcher Thread calls the function handler passing a
reference to Data Objects as parameters to the function.

Figure 4. Class Diagram for Message Management

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

25

3.1. Critical Application Support

The proposed design has a set of features to provide
support for development of applications that are vital for
an organization or system or for safety of people
around.

1) Dealing with Race Conditions and Deadlock
Prevention
 The main goal in designing this framework was the
ability to allow multi-threaded message processing
while making sure the access to shared resources would
never result in a deadlock situation that would make the
system unresponsive and unable to perform its mission
critical role. The framework implements a deadlock
avoidance procedure that guarantees a deadlock-free
dispatching as long as the accesses to Data Objects are
non-blocking, i.e. implementing request/completion
asynchronous operations.

The algorithm for deadlock avoidance works as follows:

1. All Data Objects are made inaccessible from
regular user code using DataProtector template
class, this makes race conditions impossible
since any attempt to access a Data Object
outside of the framework control results in a
compiler error.

2. For each Message that needs to be handled,
one or more function handlers must be
declared and registered with the Dispatcher.

3. Handler registration specifies for each
Handling Function the set of Data Objects that
should be bound to its parameters during a call.

4. When a Message is handled, the Dispatcher
will lock the Data Objects in the order of their
unique locking priority, avoiding the
possibility of deadlock by the partial ordering
solution.

5. The references to Data Objects are retrieved by
the ExecCaller object created by the Dispatcher
which has a friend Relationship with
DataProtectors, access their embedded data and
passes it to the Handler Function as
parameters.

2) Support for Separation of Concerns
 Separation of Concerns is a design principle in
software engineering that asserts the need to minimize
the amount of time, the mind of the programmer
performs context switches, like for example between
high-level business logic and low-level implementation
details. According to psychology studies constant
context switches are a weak link in the process of focus;
allowing programming errors to slip through. The
presented framework design attempts to aid the
programmer into the task by taking a small set of tasks
on its own and enforcing others.
 The fact that messages are sequenced in a priority
queue guarantees that lower priority processing will not
delay critical messages from being handled. Once the
software engineer determines the priority of each
message, either role-based or by rate-monotonic
scheduling(RMS), the framework will take care of
handling the proper task with the appropriate priority
without further programmer’s attention.
 Instantiating each of the Data Objects under the control
of a DataProtector prevents the programmer from
accessing them directly, forcing them to rely on the
framework in order to access each Data Object. This
eliminates the need for the programmer to care about
Critical Section problem outsourcing it to the
framework. As a matter of fact, since all the handlers
registered for a particular message are called
sequentially under the context of a single thread, this
also eliminates the need for the programmer who writes

Figure 5. Class Diagram Illustrating Message Dispatching

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

26

Message Handler Functions to care about multi-
threading at all. From the point of view of programmer
writing handlers there is no difference between the fact
that a particular handling function is called from the
Multi-Threaded Dispatcher or just called from a regular
function into a mono-threaded program. All the
synchronization and deadlock avoidance procedures are
hidden inside the framework, “out of sight out of mind,”
for application programmers.
 The biggest support for separation of concerns
brought by his framework is however the ability of Data
Objects to generate messages in response to changes in
the values of member data. This ability allows to
implement software featuring strong separation between
business logic and input/output operations as will be
illustrated in the guide to implementation.

3) Support for Unit Testing
Having all shared Data Objects constructed under a

Protector, forces the programmer to declare the required
shared objects as parameters to the message handler
function in order to be provided by the framework. As a
result, all message handler’s functions are self-sufficient
pieces of code that can be tested individually in a test
harness that just passes the required parameters to the
handler subject to testing. Because the framework also
takes care of all the multithreading and synchronization
issues hiding this aspect from the author of the handler,
all the message handler’s unit-tests can be performed
into a single-threaded easy to use environment.

3.2. Design Details

Two interfaces serve as the base for the Data-Protectors.
LockableObjectInterface is the base for any class that
the MTM-Dispatcher class is supposed to lock before
calling the handler and releasing it after.
DataProtectorInterface is a template abstract class
parameterized with a data type that will be passed to the
message handler function. The DataProtectorInterface
have two protected member functions returning pointers
to a LockableObjectInterface and the data type used to
instantiate the template.
 An auxiliary template interface SelectiveDataProtector-
Interface serves as the base class for registering arrays
of shared data-objects in order to pass to the handler one
of them based on some information from the incoming
message that is being processed.

 When a handler function is being registered, the
references of the classes extending DataProtector
template class or SelectiveDataProtectorInterface are
being passed to the registration procedure.
 The framework uses a friend relationship with the
protectors in order to access the methods that provide a
pointer to data or associated locking mechanism.
 The abstract class MsgSourceInterface is the base for
all the objects that will send messages to be handled by
function handlers. A message is a class inheriting a
specialization of template Messages with two integer
parameters, CategoryID and MessageID, and then
defining their own data. Message Sources have the
ability to enqueue into the Dispatcher an object of type
MsgHandle which references an actual Message that
needs to be sent. When the Dispatcher dequeues a
message reference, it uses it to get access to the actual
Message via the method getMessage() from the
MsgSourceInterface. This two-step access (using a
handle that resolves to message instead enqueuing a
direct pointer to the message) has been implemented to
address two important problems: event cancellation and
messages instantiated in special memory segments.
 Event Cancellation is best understood considering a
time-out timer started when a request to a remote server
is launched and which calls a time-out function if the
answer has not been received in time. If the response is
received, the reception handler will cancel the timer.
However, if the queue is not empty when the reply is
received, the reply message is enqueued at the end of
the queue and until it will be served, it is possible that
the time-out event will also be enqueued to be executed
later. Without a two-step look-up, both reception and
time-out handlers must perform extra accounting steps
to keep track of a particular request/time-out pair since
just canceling the event will have no effect on the time-
out event being already enqueued as a message. With a
two-step look-up, when the answer handler is processed,
it cancels the timer and when the time-out event reaches
the execution state, the source will just return a null
message avoiding the time-out handler from being
called, so event cancellation is achieved without adding
any external code from the point of view of the
application programmer, in direct accordance with the
Separation of Concerns principle.
 Dual step look-up also allows large messages to be
kept in a memory managed by the Message Source
itself, which can, for example, manage blocks of data in

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

27

shared or non-uniform memory blocks. When the look-
up of the handler is performed, the right block can be
mapped into the process address space and a pointer is
returned. Enqueueing directly a pointer to the memory
would require the memory to be mapped early and stay
idle for the entire period the pointer is enqueued or it
would require data copy into process memory. By
contrast, the two-step look-up minimize the amount of
time the memory segment is locked to the period when
the data is effectively access improving the overall
performance of multi-process systems.
 With every call to the template method registerHandler
of the MTM-Dispatcher a new DeferredCaller entry is
added to the map indexed on the pair CatID,MsgID. The
DeferredCaller entries holds the pointer to the function
handler to be called and references to the data protectors
associated with the data that needs to be passed to the
function.
 A feature that can be seen from the example in Figure
7 is the fact that the registerHandler template method is
deducing the message IDs from the signature of the
handler itself, the programmer not having to provide the
message IDs as a separate parameter. By outsourcing
the IDs deduction to the framework as opposed to the
programmer we can guarantee that miss-registration is
not possible, therefore preventing from the start
potential system crashes due to an erroneous registration
of a handler to the wrong message.
 The Dispatcher starts one or more dispatching threads.
Each thread runs a loop which will dequeue an
MsgHandle which used to retrieve from the owning
message source a pointer to the actual message. If the
resolved pointer is not null, each DeferredCaller entry
associated with this message is called with the message.
Beside the Message pointer, a pointer to the
DispatcherLocker object owned by every thread is
passed along to the call(…) method of the
DeferredCaller. The DeferredCaller uses the
DispatcherLocker and the functor it holds to instantiate
on the stack an ExecCaller functional object. The
ExecCaller performs object locking in accordance to a
partial ordering solution and then calls the actual
function handler with the references to the data whose
pointer has been retrieved from the Protectors.
 The rationale for having the intermediary ExecCaller
instantiated on the stack instead of allowing the
DeferredCaller itself to perform locking is to assure that
the same DeferredCaller can be simultaneously called

from two or more threads. The rationale as to why we
want that is because we have the possibility to register
as handler parameter an array of data objects from
which one can be selected at runtime based on the
message content. If two messages resolve to the same
object, the locking mechanism will be blocked and only
one handler will be executed at a time, however if the
messages generates separate elements of the array, the
two handlers can execute simultaneously. Creating the
intermediate object ExecCaller on the stack helps solve
the problem in an elegant manner.

After all the handlers have been successfully called,
the dispatching thread releases the Message data with the
source and waits on the MsgHandler queue for the next
message.

4. Recent enhancements

After the conference presentation a few featured has
been added to the architecture mainly driven by the
need to break with the overly simplistic model of
dispatching to the same set of objects.

4.1. Registration for an Array of Objects

If a handler is registered for a message, regardless of the
content of a message (other than Message ID and
Category ID), the same set of Data Objects will be
bound to the message handler during dispatching. It is
logically however that we may have the need to
dispatch to a different set of objects based on the data
the message contains.
 For example, the images coming from a set of cameras
mounted on a house may have a camera ID field and we
want to dispatch them to a particular Data Object for
each camera. A naive solution will be to register the
same handler for all the possible cameras with the
separate object and inside the handler check if the
camera id is a match and return immediately otherwise.
While the naive implementation will work correctly it
performances will be very poor because the framework
has to lock (potential involving wait) all N-1
combinations of parameters just to have to unlock them
again when the comparison fails.
 To address the issue, the template class
SelectiveDataProtectorInterface is inheriting the same
base class template class DataProtectorInterface which
is also extended by DataProtector and therefore they can
be passed to the registerHandler template method of the

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

28

Dispatcher which expects as parameters a variable
argument list of DataProtectorInterfaces.
 The support for the selective arrays of data is provided
by the template class DataProtectorInterface which
defines two pure virtual methods that gets a pointer to a
message as their parameter:

 The implementation of DataProtector just ignores the
parameter returning the protected data and the wrapper
to the mutex respectively. However, classes derived
from the template SelectiveDataProtectorInterface
overrides them in order to analyze the parameter and
return the appropriate values in the array.
 Since the only parameter passed to these methods is a
pointer to a constant object the Dispatcher is able to
evaluate the values before performing any locking,
therefore no unnecessary locking/unlocking delays
happens, making this method the fastest selection
possible.
 The limitation to this approach is that all the
information required to make the decision have to be
present in the message and there is no way to make the
selection based on the content of other objects.

4.2. Locking extra objects inside a handler

The ability to register for arrays of objects is a powerful
method to increase the flexibility of the platform when
the selection information is fully determined by the
content of the message. However, this may not always
be the case. It is likely that we will encounter situations
when the need to access a different object cannot be
determined until during a handler call once information
from the message and the state of other objects is
integrated.
 One potential solution that will not need added extra
support in the Dispatcher would be to temporary create
a registration for a one shoot event then trigger that
event. The drawbacks of this solution are that the wait
time until the temporary handler is called is likely to be
large into a busy system since all the queuing and
handling have to start anew. Another drawback is that
this solution cannot be extended to be used in safety
critical applications because of the need to alter the
dispatching table at run-time.

 The solution is to find a way to lock the mutex
associated with the new data object safely while
obeying the partial ordering solution. This option is
going to employ an Accessor object which uses
conversion operator to present itself as a smart pointer
to the object of interest. The Accessor template class
have a friend relationships with the Dispatcher and the
DataProtectorInterface allowing it to use the method for
re-locking and unlocking.

Figure 6. Adding a New Object to a Lock Set

 The algorithm for locking a new object is illustrated in
Figure 6 with a simple example. In it, the Locking Set
already holds the objects with unique IDs 1,2,4,5 when
the object with ID 3 needs to be locked. To achieve this,
the Dispatcher have first to unlock all of the objects
with an ID higher than the new request; in the example
above it will unlock the objects with ID 4 and 5. It will
then add the 3 to the locking set and re-lock all the
unlocked elements in the locking set in the order of their
IDs.
 From the simple example above, it is easy to
understand that after the partial release of the locked
objects from the set, any thread waiting on the released
objects but on none of the objects on which the lock is
still held will get it chance to run. This has the potential
to delay the re-locking process, therefore it must be
understood that the object accessing with an already
locked handler came at a cost in speed. However, the
cost is definitely smaller than the cost of the alternate
solution where all the mutexes would been released
therefore allowing even more threads to pick-up and
run; and on top of that we would have the overhead of
registration/de-registration, queue waiting etc. Hints for
implementer to minimize this delay will be provided on
the next chapter. The typical usage of an Accessor is
explained in the following code snippet:

virtual T *dataPointer(const MessageInterface *)=0;
virtual LockableObjectInterface *lockingPointer(const
MessageInterface *)=0;

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

29

4.3. Eavesdropper Handlers

It is often encountered in software engineering the need
to implement loggers, monitors or recorders that
intercepts the set of messages, analyze them without
alteration then perform some I/O operations on the
resulted data. While all these operations can be
performed in regular handlers it makes sense to be able
to write non-locking handlers that operates on classes of
messages to do the monitoring task. To facilitate this
type of solutions the Dispatcher allows to register
objects inheriting the EavesdropperInterface and
override the virtual method

 void process(const MessageInterface *)=0;

in order to implement the specific processing. The
Eavesdroppers registration happens for a whole class of
messages as opposed for a specific message ID. In our
implementations Eavesdroppers are called before the
actual handlers gets called, but there is nothing that will
restrict the order in other implementations.

5. Typical usage

The typical scenario of using the presented design
pattern is in implementing applications that exhibit the
semantic of parallel processing of incoming messages
by a set of message handler functions. While it is true
that in theory any type of application can be re-factored
to exhibit this semantic, it is always a matter of
judgment for the engineers and software architects to
decide if the re-design is worth or not. If the change in
architecture is making the code harder to understand,
update and debug then the re-factoring is an obvious
mistake. However, most of the applications in:
Networking, Gaming, Automation, Autonomous
Vehicles and Robotics exhibit an innate Message
Processing semantic therefore are ideal candidates to be
implemented with the presented framework. In the
following paragraphs we take a closer look at the steps

required to implement a Message Handling Application
using the presented dispatcher framework.

Figure 7. Typical Usage of Dispatcher vs. Reactor

 The typical usage of the presented framework consists
into a straight forward set of steps:

1. Design your application as a set of handlers
responding of Messages emitted by Message
Sources. The Messages can be not only “real
messages” received from other computers over
some type of network, but also events like
hardware interrupts/signals or timer events or
even changes in the state of some variables as a
result of processing.

2. Design the Message Sources as objects
providing an Asynchronous Interface. For
example instead of having a Read() method
that waits for the operation to complete, the
object will export an BeginRead() method that
initiate the process and the object will emit a
Message when the operation completes and
data is available. It often make sense that the
BeginRead() method returns an Transaction ID
to allow the application programmer to easy
identify the operation upon receiving the
completion message.

3. Define the set of Messages that are being
processed by the application. The Framework
creates messages as parametric templates with
two integer parameters, named as CategoryID
and MessageID allowing flexibility in mapping
the messages ID coming from various device
types. A Message class typically extends the

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

30

specialization of the parametric template for
the two parameters, adding the member
variables to hold data of interest.

4. Define all the structure of Shared Data Objects
that are required to process the messages. The
Shared Data usually is a C++ struct or class
grouping together various pieces of data that
make semantic sense when associated from the
point of view of the business logic. They can
also be classes that implements the Message
Source Interface to be able to emit Messages in
the system.

5. Write function handlers for each message,
having as the first parameter a reference to the
Message class, followed by references to all
Shared Data Objects that need to be accessed
by the function handler.

6. Instantiate each Shared Data Objects inside a
Protector. Practically, declare each shared
variable as a variable of the type DataProtector
parametrized with the type of interest. The
DataProtector constructor requires a reference
to the Dispatcher to be passed as it first
parameter. It is the responsibility of code
reviewers to make sure that no global variables
exists that are not constructed under
DataProtector control unless they inherit the
Active Object base class.

7. Instantiate the Message Source Servers, they
also have to be written to receive a reference to
the Dispatcher since it is required for
construction of Message Sources Interface. All
Message Source Servers must inherit Active
Object base class or be constructed under the
control of a Data Protector as any shared
variable. If a class inherits the Active Object it
is the responsibility of class designer to make
sure that all the public method exhibit Monitor
like behavior by providing non-blocking self-
synchronization.

8. Register the handlers with the Dispatcher,
passing also the list of the Protected Shared
Data Variables that contains the data of
interest.

9. Call the method start() of the Dispatcher.

10. Call the start() method for all the Message
Sources.

The termination procedure of the program begins by
calling stop() method for all the Messages Sources to
insure that no new messages will be enqueued then the
stop() method of the Dispatcher is to be called. Of
course all Data Objects and Messages Sources shall
have proper destructors to correctly clean-up the
resources upon termination of the program.
 The Dispatcher framework has been purposely design
to enforce certain design choices, however not all of
them can be enforced at the compile time and as
specified above, the code reviews should be employed
to aid in detecting potential mistakes. Here are a few of
the potential problems that reviewers shall keep an eye
onto.

• All data objects accessed by handlers must
either be instantiated under the control of a
Protector or be implemented as Asynchronous
Active Objects. The Protector template is
making sure that the programmer gets a
compiler error if attempting to access data in
unsafe way, but it can do nothing for variables
declare outside of the framework control.

• A special consideration of the previous point
is pertinent to any locking primitive. The
framework guarantees that Deadlock and
Critical Section problems can never be
encountered, but only as long as the
application programmer does not interfere
with the deadlock avoidance algorithm
implemented by the Dispatcher. Therefore,
with the exception of Monitor behavior in
Asynchronous Active Objects no other usage
of locking primitives is permitted, nor
necessary.

• While implementing all I/O as non-blocking
Asynchronous Message Sources is not
mandatory, it is highly recommended and shall
be the default choice of implementing I/O.
The rationale for this, is that any blocking I/O
will keep locked at least one data object
therefore reducing the degree of parallelism
and therefore the overall performance of the

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

31

system. The framework will achieve the
maximum possible throughput only if no
unnecessary thread inter-locking is taking
place. Asynchronous I/O solves this problem.

 As already presented, it is possible for a Data Object to
extend the MsgSourceInterface in order to allow
Messages to be posted when certain conditions are met
as a result of a handler updating data into an object. As
a matter of fact, in a real life project, most of the Data
Objects would probably be implemented this way
allowing a clean segregation of tasks that brings the
Separation of Concerns principle as “first class citizen”
in our design.
 More precisely, based on their intended task, message
Handlers functions can be divided into three categories:
Incoming Handlers, Business Logic (BL) Handlers, and
Outgoing Handlers.
 When an incoming message comes from an external
source, the set of Incoming Handlers receive the data,
validate it and unpack-it into the appropriate data
objects. As a result of changing the state of data objects,
they emit various business logic messages like posting
an alert condition, requesting an adjustment to another
value, etc. These messages are handled by the set of
Business Logic Handlers which implement domain
specific knowledge to assess and react to BL events.
Either as a result of processing BL, by timers or other
triggering sources, a set of Outgoing Request Messages
are emitted which are used by the set of Outgoing
Handlers to pack and send the data to external devices.
 In Figure 8 a simple example of this approach is
illustrated with a trivial real-time example. The two input
data ports IN 1 and IN 2 receives messages from outside
world and as a result sends messages that will be
processed by the Input handlers IH 1 to IH 3. These
message handlers after verifying the data will update the
information into the set of Data Objects DO 1, DO 2 and
DO 3 respectively.
The update process triggers a set of events to be fired by
the Data Objects, events for which the set of Business
Logic handlers BH1 to BH3 are registered for. The BH
set of handlers will access the Data Objects of interest in
order to perform the required calculations and update
other variables of the Data Objects on their turn. For
example, in the Figure 8 is illustrated the fact that BH 3
is triggered by the changes in DO 2, then access its data
and updates DO 3 with the results of the processing. The

DO 3 does not contain any data that is updated from
input handlers, instead it contains only data processed by
BH 3.

Figure 8. Taking advantage of Separation of Concerns

 Finally, the output of the sample program above is
generated by a real-time timer which periodically
launches the output handler OH 1. OH 1 is the output
data integrator collecting data from both DO 1 and DO 3
and building the outgoing message sent to the output
port OP.
 The clear separation between the operations of
Handling External Data and Business Logic processing
provides two advantages.
 First, it allows different team members to focus on their
specific tasks reducing the cross-domain coupling. The
programmer implementing the business logic is not
concerned with the format of the input or output data,
nor with the hardware/protocol differences for various
I/O handler objects. The only task he or she needs to be
concerned about is the correctness of the business logic
handlers to be implemented. The same is also valid for
the programmer having to implement the input or output
handlers whose only concern will be parsing and
validating the data then using it to update the data
objects of interest, without being concerned how, what
and when that data is being to be processed.
 The second advantage of this approach is the increase
in code portability. Any change in the hardware, protocol
or the format of In-Out data have no impact on the
Business Logic code already written. Porting an existing

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

32

application to a new type of equipment requires a rewrite
only of the input and output handlers without any need to
tweaked or change the set of Data Objects or Business
Logic Handlers.
 A side effect of increased portability can be exploited to
perform full testing and validation of business logic.
Replacing Input and Respectively Output handlers with
code that injects well known input values and validates
the output allows an easy way to test the business logic
without the need to perform any code change into the
business logic section of the code.
 An important issue to note in implementation of data
sources that needs event cancellation is to make sure that
in any handler needed to cancel an event must share at
least a lock-able object (i.e. an regular Shared Data
Object) and not only Active Objects. The rationale for
this is to make sure that the handler have an object it
have to wait onto. An alternative design approach will be
to also make the Timers or Input Sources as Shared
Objects instead of Active Objects, however this second
approach may have some negative performance impact
on the handlers that share many Timers/Input Sources.
 An aspect that have to be kept in mind when allocating
the priorities for the shared objects is the timing impact
of this ordering. Since the resources priority IDs are
allocated in the constructor, the order of the variable
declaration is used to control the order of the IDs. Please
remember that the C++ standards make no mention
about the order on which global constructors on different
files will be process, so it is recommended to instantiate
all the Shared Objects into a single source file or as local
variables in the main() of course paying attention to not
exceed stack size (especially for embedded devices).
 As seen from the example shown to illustrate the late-
locking, the smaller the ID of the object that needs to be
locked there the largest the performance penalty to be
incurred by the thread performing this operation.
Therefore, it make sense to declare the resources that
need to be often allocated inside handlers as late as
possible to insure they have highest priority IDs
therefore unlocking the smallest number of resources
during the re-locking process. By contrast, smaller IDs
are recommended for Data Objects that are usually not
shared very much between different messages to
minimize the amount of time when other threads waits
on them.

6. Conclusion and results

 The presented framework has been used to rewrite the
House Hub from sDOMO project in order to allow
scalable processing of multiple devices once the original
proof of concept implementation reached it limits. It is
being used also in the implementation of House
Intelligence Unit from the same project. It is also
evaluated for being used for some support applications
in unmanned aircraft industry.
 The framework implements unique features for
mission and safety critical applications being able to
offer compile time checking of errors in message
registration, enforce the usage of a deadlock avoidance
protocol that guarantees the system will not lock-up due
to a programming mistake, and enforce separation of
concerns allowing the implementer to focuses on the
problem at hand instead of low level mutual-exclusion
problems. Because the framework uses handler
registration, messages and shared objects that can be
easily defined at any time MTM-Dispatcher framework
is highly extensible and can be successfully employed in
projects that are envisioned to need to scale up a lot in
the future. The separation of concerns implemented by
this framework allows each handler to be written as a
standalone piece of code, avoiding coupling that reduces
the scalability. This aspect of enforcing stand-alone
handlers that are fully defined by their parameters,
makes the framework highly suitable for test-driven
development which is a practice highly regarded in
safety critical applications.
 To assess the scalability in performance of the
presented Dispatcher framework, a set of tests have
been run on a multiprocessor computer having 12 CPU
cores. The main question to be answered by the
performance testing was if the new multithreaded
dispatching frameworks scale well with the number of
dispatching threads. The test employed 10 Message
handlers, all of them subscribing for the same message
from a single message source that has been
implemented both as an Active Object without the need
to have the Dispatcher lock it during dispatching of the
message, and respectively as Data Object requiring the
Dispatcher to lock it for the duration of dispatching.
There were three tests run to assess the performances.
 Test #1 had the handlers printing a message then idling
for the required amount of time, while Test #2 had the
handlers performing CPU intensive calculations for the

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

33

same amount of time. For Test #3 we used the same
handler functions as for Test #1 but the Source emitting
the message to be delivered to handlers was, as of this
time, a Data Object which required the Dispatcher to
lock it therefore preventing other threads to run on the
same time. This is a degenerated case that transformed
the MTM-Dispatcher behavior in something similar
with Reactor framework. For each test we run the
dispatcher 32 times with a number of dispatching
threads from 1 to 32 with the same workload each time.
As can be seen from the graphic in Figure 9, for the
tests #1 and #2 the amount of time required to terminate
the work decreased very fast until all the available
CPU’s cores (12) has been used by the Dispatcher. After
that, the curve leveled as expected. There were no
differences between the behavior of I/O and CPU
intensive handlers, they took the same amount of time to
complete.
 By contrast, for the Test #3 where we used a Blocking
Source forcing all the threads to wait for the current one
holding the lock, the curve is almost flat as we would
expect also from the Reactor pattern which is using a
single dispatcher thread to handle all the processing. In
theory, the same way as the Reactor is using a single
thread to perform all the dispatching, in the degenerated
case of MTM-Dispatcher we would expect the curve to
be absolutely flat regardless of the number of threads
employed.

Figure 9. Illustration of the Scalability with Number of
Threads

 However; a closer look at the graph above shows that
even for this Test #3 there is a very small improvement
in performance with an increasing number of threads.
The explanation for this improvement is that besides the
work required to be performed by the handlers (on
which the resources are locked), the Dispatcher itself
has to perform some “house-keeping” overhead to
manage the messages. While in the case of the Reactor
pattern this overhead is executed on the same thread as
the handler, in the case of MTM-Dispatcher the
overhead work performed before the resources are
locked and after they are unlocked takes place on a
parallel thread to the one currently holding the lock and
operating inside the handler. Therefore, even in the
absolute worst case scenario when due to resource
management our dispatcher degenerates into Reactor
behavior, MTM-Dispatcher still outperforms the
Reactor due to the ability to parallelize the overhead
work.
 In order to test the Accessor impact on the
performance, we run an experiment featuring five
handlers and five types of messages that have been sent
to the handlers. Each Message Mi triggered the handler
Hi at a frequency of 5 Hz. Handlers 1 to 4 each had their
own counter that incremented at each call and they also
performed a delay of 100ms before termination. The
fifth handler has been implemented in two versions. The
version A registered for all four counters to display one
of them based on the timer message, then perform an
100ms delay. The version B registered for the counter
number four only, then based on the timer message
decides which one of the remaining three counters is to
be displayed using an Accessor. It waits 50 ms before
using the Accessor to lock the picked object then waits
another 50 ms with the object locked, the expected total
sleep duration is 100 ms in this case as well.
 The fact that the version B of the handler locked only
has an extra counter therefore allowing two of the other
threads to run while it is executing its body is expected
to show some performance improvements. The
experiment has run twice with the version A and with B
respectively, for each handler one run had the Counter-
4, locked used always, at the highest and respectively
the lowest priority. The time on which the test program
completed on each case are presented in the table
below:

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

34

 The measurements show that selective locking is more
efficient and therefore validates the creation the
Accessor template class as a good design decision to
improve the overall performance. It also highlights that
using the Accessor increases the total time spent in the
handler by 16 ms and respectively 68 ms. None of these
results are unexpected, however we have to note the
significant variation between both total processing times
(33 s to 30 s) and the handler execution time (116 ms to
168 ms) based on the priority assigned to the shared
objects. As predicted, better overall performance of the
system are being achieved at the expense the speed of
the handlers using Accessors. This makes clear that the
effort to design the priority allocation of shared
resources can pay big dividends in a real life project.
 The Reactor design pattern [1] has been used for over
20 years to implement countless projects in mission
critical applications and will still be used for a long time
for application where mono-threading dispatching is
preferred. Today however, due to the advancements in
C++ language, on multi-core systems we are able to
provide a better alternative that not only outperforms it
in every aspect but also improves the safety and speed
of code development by compiler enforcement of the
separation of concerns.
 Future work to develop this pattern may include usage
of Readers-Writers locking pattern to optimize the
dispatching even further by allowing multiple handlers
to run simultaneously if they share only constant data
objects. It is also required some research work to
investigate whether we can allow multiple parallel
handling for some message or not. Another envision
enhancement will be to export a Dispatcher interface as
an Data Object allowing handlers to safely modify the
dispatching table as needed at run-time. This
enhancement will increase the flexibility of the

 Dispatcher for Mission (non-Safety) Critical
applications. For Safety Critical applications this is
forbidden by rules and certification policies.
 One drawback of this framework it is that like any
registration based framework, the process of debugging
an application written as handlers is more difficult
because the framework itself interposes between the
message source and the code for handling it. The
recommended debugging procedure for the user code
will be to put break-pointers on the handler code for a
particular message and use logging to trace the message
presence at the source. However, due to the
development aid offered by the framework to the
application writers, we hope that the amount of
debugging required for any application implementing
this framework is much lower than without it.
 Another drawback to this Dispatcher framework is that
it requires C++ techniques that are available only in the
compiler that implements the C++ 2011 standard and
newer, while the Reactor can be implemented in any
older dialect of C++ language and even in less evolved
languages like Java, C or Ada. Unfortunately, the
industry for mission and even more so safety critical
applications are very slow in accepting new versions of
the language.
 There is, however, a follow-up effort to research Java
Reflection technique as a potential means to provide
help in porting a “light-weight” version of the
Dispatcher to Java. We are also planning to try
exploring the potential for a “light-weight”
implementation in Python. A “light-weight”
implementation will not have parameter checking for
handlers at compile time on registration statement, but
will throw a run-time exception if a mismatched
registration is encountered at dispatching time.
Therefore “light-weight” implementations may be
undesirable for Safety Critical applications.
 As of this moment and in the foreseeable future, due to
required strong compiler support for templates, C++11
and newer editions are the only languages in which a
full-featured (“heavy-weight”) MTM-Dispatcher
framework can be implemented. Once the adoption of
C++11 becomes mainstream in Mission/Safety Critical
software development, this drawback will no longer
exist.

Total
 Hnd 5

Counter-4 Highest Counter-4 Lowest

Hnd-5 A 39.86 s
100.28 ms

39.76 s
100.28 ms

Hnd-5 B 33.40 s
116.76 ms

30.09 s
168.14 ms

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

35

References

1. Marcel-Titus Marginean and Chao Lu, “sDOMO – A
Simple Communication Protocol for Home Automation
and Robotic Systems”, IEEE International Conference on
Technologies for Practical Robot Applications; May 11 –
12, 2015.

2. Marcel-Titus Marginean and Chao Lu, “sDOMO in the
context of Internet of Things”, International Conference
on Computer Science, Technology and Applications;
March 18 – 20, 2016.

3. Douglas C. Schmidt, “Reactor – An Object Behavioral
Pattern for De-multiplexing and Dispatching Handles for
Synchronous Events”, 1995.

4. R. Greg Lavender and Douglas C. Schmidt, “Monitor
Object - An Object Behavioral Pattern for Concurrent
Programming”, 1996.

5. R. Greg Lavender and Douglas C. Schmidt, “Active
Object – An Object Behavioral Pattern for Concurrent
Programming”, 1996.

6. Ifran Pirali et al.,”Patterns for Efficient, Predictable,
Scalable, and Flexible Dispatching Components”. 7th
Pattern Languages of Programs Conference (PLoP '00)
in Allerton Park, Illinois, August 2000. Addison-Wesley,
2000.

7. Douglas C. Schmidt et al., “Leader/Follower A Design
Pattern for Efficient Multi-threaded Event
Demultiplexing and Dispatching”. PLoP 2000,
http://www.cs.wustl.edu/~schmidt/PDF/lf.pdf.

8. Peter C. Mehlitz, John Penix, “Design for Verification,
Using Design Patterns to Build Reliable Systems”.
Proceedings of the Sixth ICSE Workshop on Component-
Based Software Engineering., 2003.

9. Proactor – An Architectural Pattern for Demultiplexing
and Dispatching Handlers for Asynchronous Events -
Pyarali, Harrison, et al. 1997.

10. Marcel-Titus Marginean and Chao Lu, “Multi-Threaded
Message Dispatcher Framework for Mission Critical
Applications”. IEEE/ACIS International Conference on
Software Engineering Research, Management and
Applications, June 2016.

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 22–36

36

	1. Introduction
	2. Problems
	3. Proposed solution
	3.1. Critical Application Support
	1) Dealing with Race Conditions and Deadlock Prevention
	2) Support for Separation of Concerns
	3) Support for Unit Testing

	3.2. Design Details

	4. Recent enhancements
	4.1. Registration for an Array of Objects
	4.2. Locking extra objects inside a handler
	4.3. Eavesdropper Handlers

	5. Typical usage
	6. Conclusion and results

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

