
Wireless Extension Mechanism and Logic Design for
FPGA-based Ethernet Powerlink Node

Kailong Zhang, Panfei Zuo, Liang Hu, Xiao Wu, Kejian Miao

School of Computer Science and Engineering, Northwestern Polytechnical University, Youyi
West Road, Xi’an, Shaanxi,

Xi’an, 710072, China
E-mail: kl.zhang@nwpu.edu.cn

Abstract
Real-time networks, such as industrial network, field bus and so on, have been becoming one vital com-
ponent to develop large-scale and cooperative embedded systems. As one important branch, the wireless
mode of realtime networks also raises more and more attentions in recent years since its conveniences
to construct a flexible control system. Ethernet Powerlink is such a typical real-time industrial network
protocol, and provides a master-slave, time-slot mechanism that can well avoid radio collisions. With the
designed FPGA-based hardware node, in this paper, a new method to extend wireless capability of
Powerlink is explored and described. Concretely, Powerlink architecture and especially its original mech-
anisms are analyzed at first. For effectively connecting OpenMAC module of Powerlink and RF module,
an interface logic at MAC layer is introduced and is typically designed in a multiplexing mode with a
dual-FIFO logic according to the limited resource on FPGA, some key designs and mechanisms of which
are detailed later. Finally, all designed mechanisms and logics are implemented as an extension part of
IP core of Powerlink in VHDL language, and the communication functions and performance of such
extended protocol areverified.

Keywords: Industrial Network, Powerlink, Real-time, MAC, Wireless Extension, Multiplexing, IP Core

1. Introduction

Nowadays, networking and intelligence have been

becoming two remarkable emergent characteristics

for novel industrial embedded systems with innova-

tive information technologies. Thereinto, real-time

network is one key infrastructure for its capability

to flexibly connect electronic devices inside equip-

ments and construct flexible product lines. With

these obvious advantages, such networks andcorre-

sponding application technologies have increasingly

raised engineering and researchinteresting.

In recent decades, several different industrial net-

works have been developed, in which ethernet-based

real-time networks formed one main branch. For in-

stance, EtherCAT, Profinet IRT and Ethernet Pow-

erlink(EPL) are three typical ones123. Surround-

ing this topic, many studies to improve the perfor-

mance of these networks are also carried out. Y-

oon et al. 4 studied a redundancy ethernet based on

ring topology and designed a new topology adapta-

tion network management protocol, which can pro-

vide a recoverable control network. After analyzing

the schemes and performances of EtherCAT, Ros-

tan et al. 5 studied an EtherCAT enabled control ar-

chitecture with extraordinary real-timeperformance

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

12

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

and flexible topology. On the basis of Dynam-

ic Frame Packing (DFP) algorithm in Profinet IRT,

Schlesinger et al. 6 proposed an automatic packing

mechanism with subframes, the positions of which

are recognizable for each device. This design makes

a scheduling dispensable and achieves better perfor-

mance than DFP, especially in star and tree topology.

Schlesinger et al. 7 compared the performance of

three real-time ethernets, and thought that Profinet

IRT gains the advantage with asymmetric through-

put data payloads, while EtherCAT and VABS is

better for very small data payloads. Limal et al.
8 employed a model-checking approach, concretely

timed finite state automata, to validate the medium

redundancy management part of the ethernet Power-

link high availability extension in the context of spe-

cial power critical applications. From current work,

we can find that these studies are mainly focused on

the optimization of protocols andapplications.

On the other hand, some researchers also attempt

to migrate real-time networks to wireless mode be-

cause its convenience and flexibility to construct lo-

cal control networks. Typically, Kjellsson et al. 10

discussed how the WISA(Wireless Interface for Sen-

sors and Actuators) concept can be efficiently inte-

grated into wired field networks, and proposed a-

mendments to WISA to improve the 802.11b/g co-

existence and harmonize the integration of WISA.

Seno et al. 11 analyzed the possibility to realize the

wireless capability of ethernet Powerlink protocol

based on 802.11. These work show that wireless

mode is feasible for some real-time networks, be-

cause the capability to avoid radio collisions with

time-division multiple access (TDMA) or other no-

competitive communicationmechanisms.

The employment of a time-slot-based mechanis-

m makes it’s feasible to transplant Powerlink pro-

tocol from wired mode into wireless mode9. Af-

ter analyzing the architecture and characteristics of

Powerlink, in this paper we design an new interface

logic at MAC layer to extend the wireless interface

of a Powerlink node, without considering any se-

cure problem described in 12. Primarily, FIFO-based

multiplexing mechanisms at the physical and data

link layers are explained in detail. And finally, some

key implementation methods are alsopresented.

2. Architecture of Wireless Ethernet
Powerlink(WEPL)

Time-slot communication mechanism of Powerlink

is the key foundation to realize a wireless mode. In

this section, related features of this protocol and the

self-designed FPGA-based hardware are explained

firstly.

2.1. Ethernet Powerlink Architecture

Ethernet Powerlink (EPL), regarded as a combi-

nation of Ethernet and CANopen, was originally

defined by the specification subsequently included

in the IEC 61784 International Standard9, and its ar-

chitecture, shown as Figure.1, is consistent with the

OSI standard. EPL is completely compatible with

legacy Ethernet since it is based on the definition

of a data link layer protocol placed on top of the

Ethernet Medium Access Control(MAC) layer. This

means EPL frames are encapsulated and transmitted

by means of Ethernet protocol data units. Among d-

ifferent physical layers encompassed by the original

Ethernet specification, EPL standard refers explic-

itly to 100BASE-X with half-duplex transmission.

And at higher layers of the communication stack,

it includes an application layer protocol based on

CANopen profiles. Especially, the Procedure Data

Object (PDO) and Service Data Object (SDO) of

object dictionary are kept to make EPL open and

flexible11.

Fig. 1. Architecture of EPL.

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

13

In EPL networks, all EPL stations are connected

via either hubs or switchers, and one managing node

(MN) is responsible for polling a set of controlled n-

odes (CNs). Actually, the operation of EPL is based

on a cycle of predefined fixed duration, continuously

repeated on the network and handled by the MN. As

shown in Figure.2, MN broadcasts a Start-of-Cycle

frame (SoC) at the beginning of each cycle to in-

form all CNs that a new cycle is started. After this

initialization, an isochronous period is launched in

which MN polls all the CNs according to a round-

robin technique. Concretely, a Poll-Request frame

(PReq) is issued by MN to each CN which carries

command data, and when received a PReq the ad-

dressed CN responds a Poll-Response frame(PRes)

with data. Typically, the communication procedure

is always organized as the ”Cycle i-Classic” shown

in Figure.2. During this period, if MN does not

receive a correct PRes from a CN within a prede-

fined interval (EPL time-out), it marks that query as

failed and moves on the next CN, and if one CN

does not respond for a predefined number of con-

secutive cycles, it is removed from the isochronous

cycle. At the end of each isochronous period, MN

broadcasts SoA to inform CNs that an asynchronous

period has started, in which a station that made a re-

quest during one of the previous isochronous periods

may be granted to transmit an asynchronous mes-

sage. Additionally, in the optimized EPL procedure,

Poll-Request-Chaining (PRC) technology is adopted

based on the synchronized distributed timer on each

EPL node, as ”Cycle i-PRC” shown in Figure.2.

Thus, most repeated hand-shaking between PReq

and PRes will be eliminated, and the transmission

efficiency of the whole EPL network increases at

about 40%.

Fig. 2. TDMA Mechanism at EPL Data Link Layer.

2.2. FPGA-based WEPL HardwareStructure

In the industry, Powerlink protocol are typically im-

plemented with standard C or VHDL, being able

to run on heterogeneous platforms. In our previous

work, we have designed a FPGA-based hardware, as

shown in Figure.3, in which a CC2530 RF module

is adopted for the possible wireless extension.

According to the requirements of performance,

when we designed the hardware one Altera Cyclone

IV FPGA is choosed as the central protocol pro-

cessor, and a 50MHz crystal oscillator and other

peripheral circuits are also attached. Meanwhile,

one CC2530, which owns built-in MCU and a RF

transceiver at 2.4GHz, is employed to serve as RF

module, with a 32MHz crystal oscillator. According

to our analysis, these two module can satisfy the

expected requirement well. While, oscillator fre-

quencies and data formats between FPGA and the

RF module are apparently different, it requires the

IP core logic of EPL must be extended. This is ob-

viously the key problems we should consider.

Fig. 3. FPGA-based Wireless EPL Hardware Logic.

3. Multiplexed Interface LogicDesign

By the EPL protocol stack, OpenMAC is a particular

unit that connects to Packet Buffer via DMA chan-

nel, and meanwhile with the physical interface via

OpenFILTER. And in fact, it separates the protocol

layer from interface layer. So, only logics andinter-

faces between OpenMAC and physical layer need

to be changed. In our design, the extended logics

mainly include one S2P/P2S unit, two data FIFOs

(FIFO-O and FIFO-I), and one I/O Multiplexer unit.

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

14

Additionally, a dual-port RAM logic and 40 pins are

set up on FPGA for the parallel communication with

master system.

3.1. Dual-FIFO Mechanism

To eliminate the differences of data formats and

communication frequencies, data buffers are intro-

duced between OpenMAC and RF unit. Concretely,

FIFO-I and FIFO-O are employed to buffer datafor

or from RF unit. These two buffers are implemented

Fig. 4. SPC Logic and Signal Definition.

Table 1. I/O Definition of SPC.

with existing DCFIFO model in QuartusII because

this mode can support the synchronized adjustments

of different clocks via its inside wrclk and rdclk sig-

nals.

In concrete implementation, each FIFO is set as

the Legacy synchronous FIFO mode, which can sat-

isfy the possible transmission delay in WEPL hard-

ware. And two 8-bit data buses, named q[7:0] and

data[7:0], are adopted as the input and output bus re-

spectively. Meanwhile, wrreq, wrfull, and wrempty
are defined as the writing request, FIFO full, and FI-

FO empty signals, separately; And, emphrdreq, rd-
full, and rdempty are indicated for reading operation

as the reading request, FIFO full, and FIFO empty

signals, respectively. With these signals, the other

designed logics can operate FIFOs in effective oper-

ation series.

3.2. Serial-Parallel-Coverter Logic

Serial-Parallel Converter (SPC) logic is further de-

signed as a internal interface between OpenMAC

and FIFOs. Its main function is to convert 2-bit

data stream from OpenMAC to 8-bit data stream,

write converted data into FIFO-O, and notice Mul-

tiplexer to read data from FIFO-I. When received a

read signal from Multiplexer, it reads a 8-bit data

frame, converts to a 2-bit data stream, and transfers

to OpenMAC. The detailed logic of SPC is present-

ed in Figure.4, where the Tx Block and Rx Block

are designed to carry converting functions, and the

details of I/O definitions are defined in Table 1.

Symbol Description

Clk Clock signal.

nRes Transmission reset signal.

rCrs Dv Carrier monitoring signal.

rRx Dat1 High bit received from OpenMAC.

rRx Dat0 Low bit received from OpenMAC.

rTx En Carrier signal to OpenMAC.

rTx Dat1 High bit sent to OpenMAC.

rTx Dat0 Low bit sent to OpenMAC.

rWr En Write-end signal to Multiplexer.

rWr Req Req-signal for writing FIFO-O.

rWr Data[7..0] 8-bit output data interface.

rWr Empty FIFO-O empty signal.

rWr Full FIFO-O full signal.

rRd Req Req-signal for reading FIFO-I.

rRd Data[7..0] 8-bit input data interface.

rRd Full FIFO-I empty signal.

rRd Empty FIFO-I full signal.

rRd Dv Read enable signal to SPC.

3.2.1. Tx Block Processes

Tx Block of SPC is composed of two hardware pro-

cess modules: Tx Sm process and Tx Ctl process.

The former process receives control signals in real-

time, and shifts the status of state automata accord-

ing to received signal. The later process executes

corresponding functions under a special state. Con-

cretely, control signals, states and their relationships

of Tx Block are presented in Figure.5, where R Idl,

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

15

R Crs, R Sof, R Rxd, and R Stat are the idle state,

data monitor state, start state, receiving state and ter-

minate state, respectively.

It should be cleared that the signal Wr En sent to

I/O Multiplexer in R Stat must be kept in high level

for a long enough time because the clock frequen-

cy of I/O Multiplexer is different from that of SPC.

To realized accurate control, we design a 128-period

time counter, Stat Count[7..0], and only when its

highest bit Stat Count[7] switches to 1 the automa-

ta shifts to R Idl. With this counter, a qualified

Wr En signal in 2.56μs can be generated. On the

other hand, rCrs Dv signal plays a role of data be-

ginning synchronization, and via monitoring its up-

edge R Crs can learn the correct beginning time of

the data frame from OpenMAC. In fact, this is an

empirical design to eliminate the lost of partial data

that we have observed during experiments. To trans-

form four 2-bit data frames to a 8-bit data frame, a

shift register logic Rx Sr is also designed in Tx Ctl

process. At each clock period, two bits Rx Dat[1]

and Rx Dat[0] will be serially shifted into this reg-

ister, and after every 4 clock periods a 8-bit data is

formed.

Fig. 5. State Automata in Tx Block.

3.2.2. Rx Block Processes

Similar to Tx Block, Rx Block also contains two

blocks, the state automata logic Rx Sm and the read-

related control logic Rx Ctl. As shown in Figure.6,

R Idl, R Bop, R Pre and R Txd indicate the idle s-

tate, initial state, pre-sending state and sending state,

separately. In R Bop state, all required registersand

timers will be initialized, and then Rx Block shifts

into R Pre state. And in R Pre state, Rx Ctl pro-

cess sends the beginning ethernet frame, meanwhile

keeps detecting the timer signal Tx Time. When

Tx Time signal changes to 1, the state automata of

Rx Block switches to R Txd. It needs to be cleared

that in Rx Ctl a shift register is also adopted to trans-

form received data to 8-bit format. After a reading

operation, the state automata shifts to Rd Idl state

again.

Fig. 6. State Automata of Rx Block.

3.3. I/O Multiplexer Logic

To realize duplex communication with limited I/O

resources between FPGA and RF module, a I/O

Multiplexer logic is designed, which connects to R-

F module, FIFOs and SPC logic, as presented in

Figure.7 and Table 2. The main role of this module

is, fir detecting data direction between FIFOs and

RF module via detecting control signals, and further

dynamically scheduling I/O channels to serve each

communication.

Specifically, F Rd Dv and C Wr Start are two

defined important signals. When applying the use

of multiplexed data bus C Data, OpenMAC trig-

gers F Rd Dv signal, and RF module will trigger

C Wr Start signal when applying C Data. Obvious-

ly, there must exist a resource competition problem

between such two mutually-exclusive operations. In

our work, it is resolved via introducing the state au-

tomata Mult Sm, Rx Ctl and Wr Ctl processes with

decision-making logics detailed asbelow.

Fig. 7. I/O Multiplexer Logic and Signal Definition.

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

16

Table 2. I/O Definition of Multiplexer.

Symbol Description

F Rd Dv Control sig from SPC.

F Rd Req Read-req sig to FIFO-O.

F Rd Data Read sig from FIFO-O.

F Rd Full FIFO full sig of FIFO-O.

F Rd Empty Idle sig of FIFO-O.

F Wr Req Write data signal.

F Wr Data Write sig to FIFO-I.

F Wr Empty Idle sig of FIFO-I.

F Wr Full FIFO full sig of FIFO-I.

F Wr En Control signal to SPC.

C Rd Clk Sync sig to RF module.

C Rd Start Transmission-start sig to RF.

C Rd End Transmission-end sig to RF.

C Data 8-bit data bus.

C Wr Clk Sync sig from RF.

C Wr Start Transmission-start sig from RF.

C Wr End Transmission-end sig from RF.

3.3.1. Mult Sm Process

State automata Mult Sm implements the main

multiplexing logic, covering five statuses, t-

wo independent and mutually-exclusive state

rings, as shown in Figure.8. In the left ring

”R Idl R Rd R RdE R Idl”, Rd Ctl pro-

cess transfers data from F Rd Data to RF mod-

ule through C Data, and in the right ring

”R Idl R Wr R WrE R Idl” Rd Ctl pro-

cess transfers data from C Data to FIFO-I via

F Wr Data. In the R Idl state, Multiplexer logic

monitors aforementioned direction signals. When

there’s new data from RF module, Mult Sm shifts to

R Wr state, and when Wr Start=0 and F Rd Dv=1

are all satisfied it switches to R Rd state. Impliedly,

data from RF module will be preferentially trans-

ferred in our designed Mult Sm logic. In R RdE s-

tate, Multiplexer sends termination signal F RdEnd

to RF module, and then Mult Sm turns into R Idl s-

tate to wait next operation. To be clear, ”req”, ”sig”,

and ”sync” are abbreviations of ”requirement”, ”sig-

nal”, and ”synchronous”, respectively.

Fig. 8. Mult Sm Logic.

3.3.2. Rd Ctl and Wr Ctl Processes

Rd Ctl process is for processing signals and trans-

mitting data to RF module in R Rd and R RdE s-

tates. When the state of Mult Sm shifts to R Rd,

Rd Ctl will generate a F Rd Req signal and monitor

the status of FIFO-O: Empty or Full, continuously.

At the same time, it sends control signals C Rd Clk

and C Rd Start to RF module, guaranteeing a cor-

rect data reception. When in R RdE, Rd Ctl pro-

cess will trigger the termination signal C Rd End,

and switch Mult Sm into R Idl state.

Corresponding to Rd Ctl process, Wr Ctl pro-

cess is in charge of things related to receive data

from RF module in states R Wr and R WrE. When

in state R Wr, Rd Ctl continuously receives signal-

s C Wr Clk, C Wr Start, and C Wr End from RF

module. Such mechanism is valuable to ensure all

data from RF module will be received synchronical-

ly and correctly. Then, Wr Ctl process will write

received data into FIFO-I via triggering F Wr Req

signal if FIFO-I is in correct status, such as not ful-

l. When Mult Sm transfers to R WrE state, Wr Ctl

notifies SPC logic to get data from FIFO-I via a ter-

mination signal F Wr En, and switches Mult Sm in-

to R Idl state.

3.3.3. Sampling SynchronizedSignal

As aforementioned, synchronization is animportant

factor for correct data transferring. For WEPL, it

means the synchronization signal Wr clk triggered

by RF module must be sampled exactly. At begin-

ning, we set the time of Wr clk in high level be

longer than one sampling period, and notexceeding

two periods. However, the abnormal phenomena

are observed that when a synchronization period is

bigger than a sampling period, redundant synchro-

nization signals are always sampled. This leads to

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

17

false sampled data bits. And we also find another

phenomenon that when a synchronization signal is

sampled, a up-level signal with the duration equal

to one sampling period will be generated. Thereout,

we set two signal monitoring registers L1 and L2

to store two sampled synchronization signals intwo

continuous clock periods. And in Multiplexer logic,

only when the signal in L1 is low level and signal

in L2 is high, it outputs Wr Req to FIFO-I, as the

example shown inFigure.9.

nication interface of RF module to be frequency-

reconfigurable with programmable capabilities of l

WEPL nodes according to their requirements via

hal RFInit().

4. Node Integration and Verification

4.1. Integration of WEPL Node

All extended logics designed above are develope-

d with VHDL language, via Quatus and ModelSim,

and software in RF module is developed in IAR Em-

bedded Workbench. Then, we solidified the imple-

mented IP Core on WEPL node hardware, and the

final WEPL node is shown in Figure.10. Based on

such WEPL node, all fundamental functions of the

designed IP Core are debugged and verified firstly

via a logic analyzer Salea16, including the analysis

and verification of the waveforms, frequencies, and

time series of all signals.
Fig. 9. Synchronized Sampling Singal.

3.4. Driving RF Chip

In the RF module, we design a group of func-

tions, covering hal McuInit(), hal port init(), and

hal RFInit(), to set I/O ports of CC2530 as a com-

munication interface and initialize the correspond-

ing functions. Concretely, P0 is in general I/O mod-

e, P1 is in GPIO mode, and the lower three bit-

s of P1 are set as output. Further, P1 0, P1 1,

P1 2, P1 3, P1 4, P1 5, and the port P0 are de-

fined as the Wr Clk, Wr Start, Wr End, Rd Clk,

Rd Start, Rd End, and C Data respectively. Based

on these signals, rfRecvData(), hal port send(),

hal port receive() and rfSendData() functions are

designed to receive/send wireless data. Because the

coupling relationship of CC2530 and Multiplexer,

the logics of these functions are similar to that of

Multiplexer.

Further, CC2530 allows the carrier frequen-

cy range from 2394MHz to 2507MHz and 1MHz

step-width, and provide 16 channels conforming to

IEEE802.15.4-2006. So, we expand the commu-

Fig. 10. Integrated WEPL Node.

4.2. Experiments and Verification

Further, we construct a prototype wireless network

with three nodes, in which one node serves as the

master and the other are slaves. On this basis, sever-

al experiments are carried out to verify the commu-

nication performance.

Figure.11 shows the waveform of a shortest data

frame captured from openMAC, at 50MHz. It’s ob-

vious that the transmission-enable signal Tx En of

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

18

openMAC is kept in high level for 6.08μs, anddur-

ing this period 8-byte Ethernet head, 64-byte data

and 4-byte CRC code are transmitted on 2-bit da-

ta bus within Th(640ns), Td (5.12μs)and Tc(320ns).

It’s easy calculated that one byte can be transmit-

ted in T1(80ns), and the bandwidth of openMAC is

about 12.5MB/s.
Figure.12 presents the data and time series when

Multiplexer transmits 8-bit data from FIFO-O to C-

C2530. As shown in this figure, C Rd Start signal

is triggered firstly to notify CC2530 to prepare are-

ception, while C RD End is the last one to be trig-

gered, which indicates the transmission procedure

is completed. C Rd Clk is the signal to active C-

C2530 to sample data on C Data. The width of da-

ta signal is bigger than that of C Rd Clk signal en-

sure the signal correctness. It’s also observed that

waveforms of both rRD Data and C Data are totally

same, which means the data is correctly transferred

via Multiplexer. Trough experiments, we can mea-

sure the duration time of C Rd Start is 138us, and

the effective transmission time is 136us. Thus, we

know the transmission rate of Multiplexer is approx-

imated 500KB/s.

Figure.13 presents one typical time series of

waveforms when one 8-bit data is transferred from

CC2530 to Multiplexer. It’s obvious that setting the

duration time of each bit being bigger than that of

C Wr Clk, and the width of C Wr Clk in up-level

being no less than the sampling period (1us) of Mul-

tiplexer, will guarantee the correct samplingof syn-

chronous data well. which is Considering the de-

lay led by software code, the widths of C Wr Clk

and each data bit are set to be 1.06us and 4.26-

4.22us, respectively. Thereout, we can know that

sending one byte from CC2530 to Multiplexer need-

s almost 4.24us, and the data rate is approximately

235.85KB/s. Figure.14 indicates the time relations

and data transmission procedure when Multiplexer

writes FIFO-I. For the designed filtering mechanis-

m in Figure.9, the average transmission time of one

8-bit data frame is almost 4.375us, so the receiving

speed of Multiplexer isapproximately 228.57KB/s.

Based on the prototype network, the full com-

munication performance is also evaluated. When

the average length of data frame is 64 bytes, the

maximum transmission and receiving speeds of WE-

PL are 29.27KB/s and 27.56KB/s,respectively. As-

sume that the two slave nodes are independent, their

shortest control period can be 5ms. For our designed

Pattern-Sewing machine that compose a three-axis

linkage electromechanical-mechanism, forming a

cooperative movement between X-Y plane and a

needle in vertical direction. For the three-axis link-

age system based on WEPL, as long as its maximum

control time of X-Y plane motion at each frame is

not over 10ms the maximum sewing speed will reach

3000 needles per minute, which satisfies our require-

ments.

5. Conclusion

Real-time networks have been becoming one main-

ly technology for novel industrial systems and em-

bedded applications. For the TDMA mechanism

of Powerlink, extending it with a wireless interface

is possible. In this paper, we proposed a wire-

less extension scheme at MAC layer on the basis of

a self-designed WEPL hardware. Further, a dual-

FIFO based multiplexer logic and interface are de-

signed and implemented when several synchroniza-

tion problems are well resolved. Experiments show

that the basic communication performance can sat-

isfy the requirements of different applications.

Our ongoing and future studies on this topic are

mainly on the optimization of hardware design and

protocols, applying this extension to other time-slot

based protocol, and the applications of such real-

time wireless networks in the design of novel indus-

trial equipments.

Acknowledgments

This research is supported by the National Nat-

ural Science Foundation of China (61572403,

61502394), the postdoctoral Research Project

of Foundation Franco-China for Science and

Application (FFCSA 2012), the Fundamental

Research Funds for the Central Universities

(3102015JSJ0002), Shaanxi Provincial Technical

Innovation Project(ZDKG-83).

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

19

Figure 11: Data Waveform of openMAC, via Salea16.

Figure 12: Data and Timing Waveform when I/O Multiplexer Sending Data to CC2530, via Salea16.

Figure 13: Data and Timing Waveform when CC2530 Writing to Multiplexer, via Salea16.

Figure 14: Data and Timing Waveform when Multiplexer Writing to FIFO-I, via Salea16.

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

20

References

1. G. Prytz, A performance analysis of EtherCAT and

PROFINET IRT, IEEE International Conference on

Emerging Technologies and Factory Automation,

(Hamburg, German, 15-18 Sept 2008),pp.408-415.

2. J. A. Maestro and P. Reviriego, Energy Efficiency in

Industrial Ethernet: The Case of Powerlink, IEEE

Transactions on Industrial Electronics, (Vol:57(8), Aug

2010),pp.2896-2903.

3. C. Kunzle, D. Bursic and H. D. Doran, Embedding Real

Time Ethernet: Examining feasibility of separat- ing bus

master and application master in industrial POWERLINK

implementations, IEEE 16th Confer- ence on Emerging

Technologies & Factory Automa- tion, (Toulouse, France,

5-9 Sept,2011),pp.1-6.

4. G. Yoon, D. H. Kwon, S. C. Kwon and Y. O. Park, Ring

Topology-based Redundancy Ethernet for In- dustrial

Network, International Joint Conference SICE-ICASE,

(Busan, South Korea, 18-21 Oct. 2006),pp.1404-1407.

5. M. Rostan, J. E. Stubbs and D. Dzilno, EtherCAT enabled

advanced control architecture, IEEE/SEMI Advanced

Semiconductor Manufacturing Conference, (San Francisco,

Canada, 11-13 July 2010),pp.39-44.

6. R. Schlesinger, A. Springer and T. Sauter, Improv- ing

profinet IRT frame packing using ethernet control

characters, IEEE World Conference on Factory Com-

munication Systems, (Palma de Mallorca, 27-29 May

2015),pp1-4.

7. R. Schlesinger, A. Springer and T. Sauter, New ap- proach

for improvements and comparison of high performance

real-time ethernet networks, IEEE Emerg- ing Technology

and Factory Automation, (Barcelona, Spain, 16-19 Sept.

2014),pp1-4.

8. S. Limal, S. Potier, B. Denis and J. Lesage, Formal

verification of redundant media extension of Ethernet

PowerLink, IEEE Conference on Emerging Technolo- gies

and Factory Automation, (Patras, Greece, 25-28 Sept,

2007),pp.1045-1052.

9. Ethernet PowerLink Standardization Group: Ether- net

PowerLink Communication Profile Specification

V. 2.0, , Ethernet PowerLink Standardization Group Std.,

2003. [Online]. Available: http://www.ethernet-

powerlink.org

10. J. Kjellsson, A. E. Vallestad, R. Steigmann and

D. Dzung, Integration of a Wireless I/O Interface for

PROFIBUS and PROFINET for Factory Automa- tion,

IEEE Transactions on Industrial Electronics, (Vol:56(10),

2009),pp.4279-4287.

11. L. Seno, S. Vitturi and C. Zunino, Analysis of Ether- net

Powerlink Wireless Extensions Based on the IEEE

802.11 WLAN, IEEE Transactions on Industrial In-

formatics, (Vol:5(2), 2009),pp.86-98.

12. S. C. Smith, R. J. Hammell, T. W. Parker and L.

M. Marvel, A Theoretical Exploration of the Impact of

Packet Loss on Network Intrusion Detection, Inter- national

Journal of Networked and Distributed Com- puting,

(Vol:4(1), 2016),pp.1-10.

International Journal of Networked and Distributed Computing, Vol. 5, No. 1 (January 2017) 12–21

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

