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Abstract

Indeed, interesting properties of artificial neural networks approach made this non-parametric model a
powerful tool in solving various complicated mathematical problems. The current research attempts
to produce an approximate polynomial solution for special type of fractional order Volterra integro-
differential equations. The present technique combines the neural networks approach with the power
series method to introduce an efficient iterative technique. To do this, a multi-layer feed-forward neural
architecture is depicted for constructing a power series of arbitrary degree. Combining the initial con-
ditions with the resulted series gives us a suitable trial solution. Substituting this solution instead of the
unknown function and employing the least mean square rule, converts the origin problem to an approxi-
mated unconstrained optimization problem. Subsequently, the resulting nonlinear minimization problem
is solved iteratively using the neural networks approach. For this aim, a suitable three-layer feed-forward
neural architecture is formed and trained using a back-propagation supervised learning algorithm which
is based on the gradient descent rule. In other words, discretizing the differential domain with a classi-
cal rule produces some training rules. By importing these to designed architecture as input signals, the
indicated learning algorithm can minimize the defined criterion function to achieve the solution series
coefficients. Ultimately, the analysis is accompanied by two numerical examples to illustrate the ability
of the method. Also, some comparisons are made between the present iterative approach and another
traditional technique. The obtained results reveal that our method is very effective, and in these examples
leads to the better approximations.
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1. Introduction

Fractional calculus is old subject but it recently has
found numerous applications in various fields of
science and engineering 1'>3*3_ Fractional deriva-
tives are powerful and efficient tools to describe
the physical systems that have long-term memory
7.8 Especially, in modeling the complex dynamic
systems it can be seen that fractional differential
equations naturally arise once power-type non-local
interacting systems with power-law memory 1
Differential equations of the fractional order have
gained applications in modeling non-conservative
systems 14 A large amount of research works has
been devoted to tackle a wide variety of fractional
equations, particularly generalized odd dimension
mechanics is suggested in Refs 12131415,

The analytical and approximate analytical methods
are used to achieved the solutions of differential
equations '®. The fractional deferential equations
are solved using generalized analytical, approxi-
mate analytical methods and numerical methods!”*.
The iterative methods is utilized widely and found
the solution of the equations in the area of the initial
and boundary value problems. We already have a
number of famous computational techniques deal-
ing with the solution of high order fractional dif-
ferential equations, such as weighted essentially
non-oscillatory scheme '®, Chebyshev collocation
method !%2°, Green functions method 2! and block-
by-block approach ?>. Moreover, as an excellent
modeling tool, fractional integro-differential equa-
tions issue have attracted much attention recently
23,24

The artificial neural networks (ANNs) approach has
attracted much consideration to its advantages, such
as learning, adaptivity, fault-tolerance, etc 23262728,
Recently, a modification of ANNs approach has
been developed to the treatment of related boundary
problem in two-dimensional case . On the other
hand, power series method has received consid-
erable attention in dealing with complicated math
problems. This method provides the solution func-
tion as a series polynomial in which its coeffi-
cients can be determined via an appropriate standard
method. Here, we intend to extend the application of
neural networks approach and power series method
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as an iterative minimization strategy for the numeri-
cal solution of the mentioned fractional order initial
value problem. It is worthy of note that, representa-
tion of solution in terms of a suitable truncated series
expansion is the fundamental issue in approximation
theory. After discretizing the problem domain into
elements and making substitutions, the mentioned
equation is transformed to minimizing problem by
using the least mean square (LMS) error function.
Now, the generalized delta learning rule is used to
minimize the mentioned error function on the un-
known space. After determining the unknowns, the
solution can be calculated via a convergent series
polynomial 2°.

The brief outline of this paper consists of the fol-
lowing steps:

Current research begins the procedure in sec-
tion 2, by reviewing basic definitions and fundamen-
tal issues of neural networks and fractional calcu-
lus. Here, the given initial value problem is also
investigated via the offered combination numerical
method. Two numerical examples are given in sec-
tion 3 to show that our method yields accurate ap-
proximates of the mentioned problem. Since, the
mentioned problem usually has no exact solution
in the fractional order, the obtained numerical re-
sults can not be compared with exact ones. So to
have the better understanding of the method, we help
the error caused by the proposed method, and we
show that by growing the number of iterations, this
error is reduced. Finally, conclusion is described
in section 4.

2. Description of the Method

As indicated, unique capabilities of artificial neu-
ral networks have persuaded researchers to serve
these as powerful tools in solving complex real
world problems. The main aim of this section is
to combine the ANNs approach and a modification
of polynomial series technique as an efficient iter-
ative method to approximate numerical solution of
a linear Fredholm integro-differential equations of
fractional order. In order to better clarify all the fun-
damental mathematical features of the method pre-
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sented in this research, first some preliminary defini-
tions and necessary notations in neural networks are
given, which will be utilized in the following parts.

2.1. Basic Idea of ANNs

First, let us have a brief part of introduction on
typical neural networks. The most striking ques-
tion about neural networks is why they have been
applied. To gain insight into this question, we go
through the paper and also we will explore the rea-
sons why they are useful for solving certain types
of tasks and it is believe that algorithmic and math
problems are solved by computers which are as a
specific piece of technology. It is sometimes seen
that there are likely a lot of failed mathematical al-
gorithm. There are a couple of problems that are not
effortless to be expressed into an algorithm such as
facial recognition and language processing. How-
ever, these tasks are trivial to humans. One impor-
tant and pioneering feature of artificial neural net-
works is that their design enables them to process
data in a similar way to our own biological brains
which is done by drawing inspiration from the form
of our own nervous system functions. This qual-
ifies them more sophisticated at solving problems
like facial recognition, which our biological brain is
capable of doing it easily. We also do a good job
understanding of operating the designed neural net-
work and processing data. An Artificial neuron is
conceived as a model of biological elements (neu-
rons). There are many References on neural nets
field 2326,

Figure 1, illustrates a widely used structure con-
sisting of a external input and one hidden layer of
the identity activation type which are completely in-
terconnected to a single linear output neuron. It is
worth mentioning that there can be any number of
limited edition series of nodes per layer and there
is exactly one hidden layer to pass through before
reaching the output layer. It is needed to say that if
an appropriate number of nodes and layers could be
chosen during optimizing, neural network would be
implemented appreciatively. In the diagram shown,
since the signals are passed through the layers of the
neural network in a single direction, this diagram
is called a feed-forward back-propagation network.
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Here, output unit can travel into the opposite direc-
tion to input signals. In this paper, we introduced
an additional adaptive multi-layer neural network
and its significant qualities. In the following, the
designed architecture will be considered which is
capable of approximating solution of the mentioned
nonlinear math problem, to any desired degree of
accuracy. As the model is running, training patterns
from each input signal are weighted and then intro-
duced into the hidden layer, where they are summed
and passed through given activation functions. By
computing the resulting values are weighted and
summed to be the networks output. Assume that the
parameters v;,w; (for i = 1,..,n) and b denote the
corresponding connection weights and bias term,
respectively. According to the above, the relations
in each neuron of proposed network structure can be
expressed as follows:

e Input unit:

o' =x. ey

e Hidden units:

o} = f(net;), )

net;=x.v;, i=1,...,n.

e Output unit:

3)

Hidden
neurons

Input
neuron

Output
neuron

Fig. 1. Block diagram of the represented neural architec-
ture.

The most important issue is that is that the de-
signed neural network will not be able to perform
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the given target by itself. Therefore, we must adopt
a procedure that given the network parameters to
be adjusted in order to achieve the ultimate goal.
There are many effective ways which help us to
achieve this goal. One of the famous methods is
the back-propagation learning algorithm. The men-
tioned learning algorithm was fully introduced in
1986 by Rumelhart and Mc-Clelland °. The con-
cept of forward propagation is that the given ar-
tificial neurons are located in network layers, and
then generate its signal output to forward direction.
Back-propagation which is a supervised algorithm
means that the errors back must be propagated to
adjust the weighs and bias parameters. For this aim,
the calculated output is compared with the desired
one, and then network error can be calculated via a
suitable rule easily. In this algorithm it is assumed
that the network parameters have been randomly
quantified with small real valued numbers. Now, at
each learning step the network output is calculated
and it looks for the minimum of the error function.
To the better approximation, a combination of intro-
duced neural network mathematical modeling tech-
nique with a modification of power series method
will be described in the following parts of paper.

2.2. Implementation of the method

Increasing use of fractional problems modeled by
integro-differential equations (IDEs), has led to the
development of new research on these mathematical
problems. As previously indicated, many different
algorithms are available to the numerical solutions
of differential equations of fractional order. Due
to the power series method’s computation produc-
tivity and less storage requirements, it seems to be
the most commonly used one in modeling fractional
problems. In the work mentioned here, we focus
on the numerical solution of mentioned initial value
problem via a combination of neural nets approach
and power-series method.

Let us recall notations and some general concepts
regarding fractional calculus that are significant in
this study 13436,

Definition. If u(x) is continuously differentiable
function on interval [a,b] up to order k. Then the
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Caputo derivative Dy,
tor I7Y, of order & > 0 are defined by

dku(kx) ’
Dy fux)] =9 “

and fractional integral opera-
123,456.

u)(z)

Mi—a) Ja GonerrdT, X > a,
4)
whereo =kcNand0<k—-1<a <k
Lo u(e)
% - / J s
a,x[u(x)] F((X) ; (X—’L')l_a T, )

respectively. Where I'(.) denotes the Gamma func-
tion. Recall that for the Caputo sense, derivative of a
constant is zero, and the following useful properties
hold:

0 kezt k<[06_|
D§ =1 Tus) s 7 |
0 X] { (k+1+axk x>c, kezZt k>[al,
(6)
Clk+1)
9K = ST ke o gt 7
R F(k—|—1+06)x ke (7N

In the above relations, notation [o¢| is denoted the
smallest integer greater than or equal to constant
a 123436 Now, we intend to solve the following
linear Volterra integro-differential equation of frac-
tional order:

P(0)Dg [u(x)] + Q)2 2 u(t)] = R(x),  (8)

]
0<a17a2<17 (9)

subject to initial condition

u(0) =B,

where P, Q and R are given real-valued analytic
functions on open set (0,7). This mentioned equa-
tion is one of the simplest forms of fractional
integro-differential equations, which is important in
modelling real world phenomena. Sufficient and
necessary conditions and theorems for existence and
uniqueness solutions of present differential problem
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(8) can be found in 3132, In general, the particular
solution u is not easy to be found, therefore the un-
known to be approximated using a suitable alternate
method.

2.2.1. Discretization of the problem

Often, finding an analytical technique really is pretty
impossible to determine the exact solutions of ap-
plied mathematical problems. The power series so-
lution method has been traditionally developed by
several authors, as an approximate but theoretically
acceptable method to solve most variety of differ-
ential equations. In other words, capacity of power
series to introduce any analytical function with alge-
braic series is coming up with the idea of develop-
ing approximate solution. The method considered
here aims to produce a specific solution with a se-
ries of unknown coefficients. Ones, the power se-
ries polynomial is substituted in given differential
problem, a system of equations is provided in lin-
ear or non-linear case. Now, ANNs approach is em-
ployed to obtain the initial or boundary value based
unknown coefficients. This procedure will lead us
to approximate unknown functions for the solution
coefficients. Note that existence, particularity and
smoothness of the solution are well defined.

The proposed combination method first consists
of substituting solution in the decomposition form
given by:

u(x) =Y ax’. (10)
j=0

It should be considered that the proposed test func-

tion (10), must be satisfied in the corresponding ini-

tial conditions. In order to subdue this imperfection,

the series solution is modified by:

Uiriat(X) = B+ ) ajx’. (11)
j=1
It is reasonable to consider that the designed feed-
forward neural net is fully associated with the first
(n+1) terms of series (11). The offered architecture
satisfies by construction the given initial condition,
and also contains unknown coefficient in which to
be determined. Assuming that u,;,(x) symbolizes
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the trial solution with adjustable parameters a;, the
problem is transformed from the original construc-
tion to an unconstrained one by direct substitution
(11) in (8). Thus, we have:

P()DE[B + iajxf1

FOMWIELM (B + Y, aji )] = R(x), (12)
j=1

= P Y Ll @
=

QM0+ Y &l ] = R(),

j=1
0<051,052<1, (13)
where
(o TU+D o BT+
Tl o) T+ 1+m)’
C(j+A+1)
o - 14
& TG+htont )™ (14)

Now, a set of acceptable node points must be de-
fined for the discretization of resulting equation. Let
an uniform partition on domain [0, 7] with the node
points x, = % (for r =0,...,n) (for positive integer
n'). After truncating the power series (11) with n+1
power series terms, and then placing the collocation
point x, into the Eq. (12), the origin problem will be
transformed into the following form:

P(xr) Z ijiial
=1

Q) [ 4 Y Epd ] — R(x,),
=1
(15)

In the following part, we will review the iterative
technique which help us to solve the resultant sys-
tem for unknown coefficients.
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2.2.2. Proposed error function

The conventional way in artificial neural networks
approach is to start with an initial neural architecture
with untrained network parameters (weights and bi-
ases), presentation training patterns to calculate the
corresponding neural outputs and then employing an
error correlation rule to update the parameters at ev-
ery stage of repetition. The error correlation rule
is a suitable combination of a given criterion func-
tion of the weights and bias parameters and an ef-
ficient learning algorithm that minimizes the crite-
rion function for the set of connection weights and
biases. In other words, the network parameters are
adjusted to reduce the network error. The least mean
square (LMS) output error which is a quadratic er-
ror correcting rule, represents the most commonly
used criterion function 33, Here, one starts with the
indicated criterion function as follows:

1 - i
By = 5 (Plxr) Yo Gpd = + a1 (w9
j=1
n
+ X & R,
j=1

(16)

where for simplifying, the above mathematical sym-
bols are defined with:

I'(j+1) r(+1)
= ——aj, § = ———"—a,,
VST a) S T T o)
vi=x"' wi=aandb=8, r=0,...,n.

Then the total error is obtained by summing the pre-
determined error function over all the collocation
points, as:

Eventually, an attempt is made to the adjustment of
network parameters through an efficient learning al-
gorithm. In other words, we intend to employ the
training rules for minimizing the network error by
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adaptively updating the network parameters. In or-
der to achieve this goal, one possible error correc-
tion rule as the steepest gradient descent based back-
propagation algorithm must be essentially used to
optimize the weight terms. Further details in this re-
spect can be found in 34,

2.2.3. Proposed learning algorithm

Learning in neural networks is choosing the appro-
priate network parameters where the total network
error is minimized by using each training pattern.
Now, the well-known back-propagation algorithm
lies in and calculates to detect how much the net-
work error depends on the input signals, network
output and connection weights. To learn, first the in-
put signals are quantified by arbitrary initial guesses,
and then neural network will calculate the output for
each training set. Then, the defined LMS error func-
tion is employed to train the proposed network. So,
we use an optimization technique which in turn re-
quires the computation of the gradient of the error
with respect to the net parameters. finally, the super-
vised back-propagation learning algorithm is used
for adjusting the parameters such that the network
error to be minimized with respect to the input sig-
nals. The performance of this algorithm is well sum-
marized in the following paragraph.

Now, the initial network parameters a; (for j =
1,...,n) are chosen randomly to begin the learning
process. The weight change for any hidden layer
parameter a; can thus be written as:

aj(t+1)=a;(t)+Aat), j=1,...,n, (17)
Aaj(t) = —n.% +vy.Aa;(t—1), r=0,...,n,
Baj

where 1] and Y are the small valued constant learning
rate and the momentum term constant, respectively.
In the above relation, the symbol ¢ in a;(t) returns
to the index of iteration number and the subscript j
in a; is the label of the training weight parameter.
In addition, a;(t + 1) and a;(¢) symbolize the up-
dated and current weight values, respectively. It is
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interesting to note here, the learning rate 7 utilizes
a scaling factor in order to establish an adjustment
to the old weight. Given the variation in the train-
ing set is not large, the neural network may learn as
fast as possible, if the factor has been set with a large
value. Generally, the idea to find out the better learn-
ing is to set the factor to a small value initially and
then increase it. On the other hand, one of the most
impressive factors in artificial neural networks is the
momentum constant. The momentum factor 7y basi-
cally provides some changes to the weights to persist
for a number of adjustment cycles. Using the chain
rule for derivatives, the above partial derivative can
be expanded as:

JE,
8aj

— (P() Zlc

09 + Y End P4 RG] x
=1
(18)

% j—o Al % JtA+on
(P(xr) aajxr +xr Q(xr)[aajxr )7

where

9 _ TG+ 9% TG+
da, T(j+1-o0y) da, T(j+1+0m)
(19)

o
r=0,.,n;j=1,..,n.

It is clear that existing a mathematical software with
high quality will be necessary to omit wasting time
and enhance the accuracy of complicated calcula-
tions. In this study, the presented numerical exam-
ples have been tested with mathematical programing
software Matlab v7.10.

3. Numerical Simulation and Discussion

To illustrate the ability of the method outlined in
the previous section, it was applied to the two frac-
tional order initial value integro-differential equa-
tions. Also, in order to confirm whether the men-
tioned iterative technique leads to higher accuracy,
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the test cases are compared in simulation with the
samples provided in 3. Below, we use the formal
specifications 1 = 0.03 and y = 0.05.

Example 3.1. Consider the following fractional or-
der linear Volterra integro-differential equation:

DOV DR Tuo)] + TGV 3u0)]
:6(x4+x3)+r(2)x, 0<x<1, (20)

2

with initial condition u(0) = 1 and exact solution
u(x) = x>+ 1. The mein aim is to approximate
the solution function by using the offered power
series (11). Here, the regular domain-partitioning
technique is used to construct training patterns on
interval domain [0, 1]. For the sake of simplicity, all
of the used math symbols are listed below:

Variable ‘ Description
n The order of power-series polynomial
n' The number of collocation points
t The index of iterations
Xy The training locations

Y Momentum constant
r The training index
n Learning rate

E Total error

First, the initial output-layer connection weights
a; (for i = 1,...,n) are quantified with small ran-
dom values, which have been chosen randomly on
interval [0,1]. Then the training patterns are used
to successively adjust the connection weights until a
suitable solution is found. To illustrate the more ef-
ficiency and to have the highest view of this method,
the indicated root mean square error is shown in Ta-
ble 1. It can be seen that by increasing the learning
steps, total error decreases. The error function has
been plotted in Figure 2 for ¢t = 300 and n’ = 3.

The exact and approximate solutions are plot-
ted in Figures 3—6 for different number of network
parameters. Also, the absolute error between ap-
proximate and exact solutions are plotted in Figures
7-10 for different number of network parameters.
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Moreover, the relationship between the increasing 2
of output neurons, training nodes and the perfor- e
mance analyzing of introduced ANN is given in o
Figure 11. oot
Table 1. Measured total network errors for different ——
number of network parameters.
______ n—3_ _ _ _ __ Fig. 3. Exact and approximate solutions for t=500.
t =10 n'=15 n' =20
500 | 8.7512x107% 7.0881x 107 59311 x10°® .
1000 | 6.2704 x 1078 2.3801 x 1078 2.1466 x 1078 -
2500 | 3.4298 x 1078 2.1701 x 10~® 1.9033 x 108 —
5000 | 2.6809 x 10~® 1.8378x 10~% 1.2571 x 10~ i
—————— n=5—————— ;“5’
t =10 n'=15 n'=20 o
500 | 5.4431x 105 4.8669 x 10 4.0364 x 10 w0
1000 | 3.9018 x 108 3.7442 x 1078 2.3472 x 1078 —
2500 | 3.2436 x 1078 3.3325x 1078 2.0022 x 10~% ’ v
5000 | 2.6972x 1078 2.0172x 1078 8.7112x 107° Fig. 4. Exact and approximate solutions for t=1000.
______ n=7———— — —
t =10 n'=15 n' =20
500 | 4.2369 x 1078 3.5371 x10~% 3.1022x 108
1000 | 2.4365x 1078 2.1914x 1078 1.8439 x 1078
2500 | 1.7230 x 1078 1.1920x 10~® 8.6610 x 10~° o
5000 | 1.1301 x 10™® 9.0748 x 107 7.2301 x 10~
—————— =9 e ,
t =10 =15 n'=20 W T =
500 | 3.4383x107% 2.1633x 1078 1.9175x 1078 e -
1000 | 6.4571 x 1072 3.2133 x 107 2.2344 x 10~° A
2500 | 4.1745x 1077 2.8889 x 1072 1.4580 x 1077 Fig. 5. Exact and approximate solutions for t=2500.
5000 | 3.8311 x 107 2.0716 x 1072 1.2172 x 10~

2
1.078

=
19 A
- =
-
18 -
- -
L _—
16 —
. =
] | =
> 15 —
; -
ooooo | -
£ 1s¢ 1.411.066
£
S0l oo sl
H 1o ) 04 0.405 0.41 0.415
11 R T 120 =3
n=5
n=7
i i n=9
200 Exact solutior|
1 T Il Il Il 1 L =)
100 180 200 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
The nunber o teraions e

Fig. 2. Criterion function on the number of iterations. Fig. 6. Exact and approximate solutions for t=5000.
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0.00016

0.00014

0.00012}

0.0001

Absolute error

0.00008

0.00006 -

0.00004

0.00002

Fig. 7. |u(x) — tsrig; ()] for t=500.

|Exact,olution - Approximate_olution|
T

0.0001

0.00009

0.00008

0.00007 -

0.00006 -

0.00005

Absolute error

0.00004

0.00003

0.00002

|
0.00001

L L L L /. L L L f
0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1

X

Fig. 8. |u(x) — ttsyiq ()| for t=1000.

0.000045 H

0.00004

0.000035

0.00003

Absolute error

0.000015

0.00001

0.000005

0.000025

0.00002

Fig. 9. |u(x) — usi01 (x)| for t=2500.

0.012

0.01F

Absolute error

0.004

0.002-

TR
SL&d

0.008

0.006

Fig. 10. |u(x) — tpjq (x)] for t=5000.
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0.00000004

0.00000008

. 0.00000006 El 0.00000003
5
g 0.00000004 0.00000002
°
g
0.00000002 0.00000001
0 0
10 15 20 10 15 20
n=3 n=5
0.000000025
0.000000006
5 0.00000002
: 0.000000004
F 0.000000015
0.000000002
0.00000001 0
10 15 20 10 15 20
n=7 n=9
Fig. 11. The performance of proposed network architecture

over different neural elements for r = 5000.

Example 3.2. As the second example, consider the
following initial value fractional problem:

[STEN)

rég) £ 16 2 X0
7))5 %

. . 3
with the exact solution u(x) = 1 —x2 +x*. Here,
we intend to compare the numerical results with

Table 2. Obtained numerical results for ¢ = 5000.

ANN
n/ ——————————————————————————————
n= n=>5 n="17
20 | 0.9813x 1078 0.7101 x 1079 0.4738 x 10~10
40 | 0.9225x 1078 0.6967 x 10799 0.4141 x 1010
80 | 0.5140 x 1078 0.5838 x 10799 0.3944 x 1010
160 | 0.2780 x 1078 0.4417 x 1079 0.1919 x 10~10
320 | 0.2184 x 1073 0.8660 x 107190.1133 x 10710
ANN HC
n/ ——————————————————————————————
n=9
20 0.6238 x 10~ 0.2878 x 107>
40 0.4638 x 10~ 0.8731 x 107°
80 0.3170 x 10~ 0.3952 x 10~°
160 0.8719 x 10712 0.1706 x 10~°
320 0.4815x 10712 0.8344 x 1077
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the ones obtained from the hybrid collocation (HC)
method 3°. The maximum absolute errors (||.||.) be-
tween approximate and exact solutions are numeri-
cally compared in Table 2. Similarly, the computer
simulations are presented in Figures 12—13.

o N & o ®

o N & o ®
x
F 7
!

Fig. 12. The performance of proposed network architecture
over different neural elements for t = 5000.

-
o

0.00020
0.00019

-

0.00018

o
o

0.00017

The cost function

0.00016
0 0.00015,
25 25

0.0001.

0.00015 0.000115

0.00024 0.000110
0.000105

0.00013
0.000100

The cost function

0.000095

60 65 70 75 75 80 85 90 95 100
The number of iterations ‘The number of iterations

0.00012
50 55

Fig. 13. The cost curve for n =3, n’ = 320 and ¢ = 100.

4. Conclusion

Through the use of power series method and neu-
ral networks approach, a combination iterative tech-
nique has been derived for finding solution of an ini-
tial value linear Volterra integro-differential problem
involving fractional order. The process begins with
the assumption that the unknown function can be ex-
pressed as a power series polynomial. In this regard,
the mentioned fractional problem is reduced to solve
a linear algebraic equations system. Then, a modi-
fication of ANNs approach is employed to the com-
parative study of achieved system. The suggested
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technique was applied to study two test cases of the
problem. The obtained results showed that the em-
ployed neural architecture is powerful mathematical
tool for solving mentioned type integro-differential
equation. Also, we compared the obtained results
with both their exact solutions and those of another
numerical method. The given numerical examples
support our claim that the employed neural architec-
ture gives rapidly convergent approximation without
any restrictive assumptions. As areas for future re-
search, extension of this method can be extended to
cover nonlinear fractional integro-differential equa-
tions.
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