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Abstract

Bayesian networks have been widely used for classification problems. These models, structure of the
network and/or its parameters (probability distributions), are usually built from a data set. Sometimes we
do not have information about all the possible values of the class variable, e.g. data about a reactor failure
in a nuclear power station. This problem is usually focused as an anomaly detection problem. Based on
this idea, we have designed a decision support system tool ofgeneral purpose.
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1. Introduction

Decision support systems (DSS) are widely used for
industrial damage detection2,6,19. It is not an easy,
nor cheap, task to maintain industrial units as every
component suffers damage continuously due to us-
age. However, there are several advantages in using
automated systems to carry out this maintenance.
This type of system provides a health status predic-
tion about the monitored units5,24, which is very
useful for human beings because it gives them in-
formation about what components might be failing
or are close to fail. This fact translates into an im-
provement in the time required to detect the failure
and in the determination to detect what unit is fail-
ing.

There are a wide range of industrial environ-
ments which have different requirements. For some
of them, e.g. electric companies, working without
interruptions is a priority1,15. For those cases, these

decision support tools are used to carry out a pre-
ventive maintenance, helping to detect any problem
and solving it as soon as possible or even before it
occurs.

Different data mining techniques has been used
for, what is usually called, health management2.
They use information about the machinery compo-
nents to learn a behavioural model which is used to
predict their health status. Usually, this kind of prob-
lems are treated as a classification one, which means
that the prediction will be one choice of a finite set
of options29,30,31,32. Supervised classification tech-
niques need data from all these different options to
carry out the learning process. However, in some sit-
uations this is not the case. For instance, in a nuclear
power station, there might not be data from a situa-
tion of the reactor failure. For this kind of problems
there are some approaches which instead of learn-
ing a behaviour model for all the possible outcomes,
they focus on the detection of anomalies with respect
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to standard functioning9,25. In this work we pro-
pose a method based on Bayesian networks to de-
tect anomalous behaviours in this type of systems,
encouraged by the significant examples of success-
ful applications of Bayesian networks to condition
monitoring from27,22, predictive maintenance from
6,3,18 and fault detection/diagnosis from28,26.

In order to design that DSS, we will start from
the methodology for detecting faults and abnormal
behaviours described in22. Afterwards, we will de-
sign a new metric to improve the behaviour of the
previous methodology in some general cases. In or-
der to demonstrate the usefulness of our new pro-
posal, we will generate some artificial datasets and
we will compare the performance between the orig-
inal methodology and our proposal.

This study is structured as follows. In Section
2 we briefly introduce Bayesian networks. Section
3 contains the description of our DSS, describing
as well the methodology proposed in22. Later, in
Section 4 we will explain the kind of industrial sys-
tem our application will work for, and we will dis-
cuss the benefits of our proposal through an artifi-
cial dataset. Also some tests are carried out in order
to evaluate its performance. Section 5 contains our
concluding remarks. Finally, in Appendix 1 we de-
scribe the designed decision support web-based ap-
plication, while in Appendix B we show the param-
eters of the Bayesian networks (probability tables)
used to generate the synthetic datasets.

2. Bayesian Networks

Bayesian networks (BNs) are mathematical objects
which inherently deal with uncertainty11,13. When
used for probabilistic reasoning, a BN represents
the knowledge base of a probabilistic expert system.
From a descriptive point of view, we can distinguish
two different parts in a BN, which respectively ac-
counts for the qualitative and quantitative parts of
the model. Figure 1 shows an example of a simple
BN.

A

C D

B

P(A)

P(B|A)

P(C|B) P(D|B)

Fig. 1. An example of BN with four variables.

The qualitative part of the network is represented
by a directed acyclic graph (DAG),G , whose nodes
represent the random variables in the problem do-
main and whose edges codify relevance relations be-
tween the variables they connect. When the network
is built by hand with the help of domain experts,
these relevance relations are usually ofcausalna-
ture, while when the network is learnt from data,
we can only talk about probabilistic dependence, but
not causality. The whole graphical model codifies
the (in)dependence relations among all variables and
can be interpreted by using the D-separation crite-
rion 23 in order to carry out a qualitative or relevance
analysis.

On the other hand, the quantitative part of
the model consists of a set of conditional proba-
bility distributions, one for each node (variable):
P(Xi|paG (Xi)), wherepaG (Xi)

a are the parent nodes
of Xi in the DAGG . From the independences cod-
ified by the DAG, the joint probability distribution
can be recovered from the BN factorization as shows
the Eq. (1).

P(X1,X2, . . . ,Xn) =
n

∏
i=1

P(Xi|pa(Xi)). (1)

Once a BN has been built for a given problem
domain, it becomes a powerful tool for probabilis-
tic reasoning, with a great range of exact and ap-
proximate convenient algorithms to form the infer-
ence engine4. Depending on the target domain
and the availability of domain experts and/or data,
the network can be manually constructed by using
knowledge engineering techniques14,12, automati-
cally learnt from data7,21, or combining both tech-
niques.

a From now on we will simply writepa(Xi) instead ofpaG (Xi) when no confusion about the graph/network is possible
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Figure 2: An example of DBN structure unfolded over time. Dashed arcs are the temporal relations.

An important and attractive issue of BNs is their
ability to incorporate thetemporal dimension, al-
lowing in this way reasoning over time. Thus, while
a static BN represents a fixed capture of the do-
main environment in a given instant,dynamic BNs
(DBNs) allow to explicitly represent different in-
stances of the same variables over time, as well as
temporal relations between them. Figure 2 shows
the most used way of dealing with DBNs in the lit-
erature20, which consists of a basic structure (slice),
which represents a static BN, together with a set
of temporal relations representing the dependences
from timet −1 to timet. This structure is unfolded
as many times as needed in order to forecast the val-
ues of variables at timet +k. As can be noticed, the
Markovian condition is assumed in DBNs.

3. Fault Diagnosis Methodology

One of the main applications of DSS is helping to
carry out a predictive maintenance. It builds a model
from a set of examples which is used to predict the
health status of the monitored system2. Usually,
data is labelled and we know the class for each in-
stance (if it is a normal behaviour, or on the con-
trary if some component is failing), so supervised
data mining techniques can be used to build the pre-
diction model. However, sometimes this informa-
tion cannot be acquired, and other approaches have
to be used. For example, nearest neighbour based
anomaly detection techniques uses the definition of
a distance or similarity measure between data in-
stances to determine if an example is an anomaly or
not 47,46. Clustering based anomaly detection tech-
niques tries to group similar data instances into clus-
ters. Afterwards, if an incoming instance does not

belong to any cluster it would be an outlier33,34.
Sometimes, this assumption is relaxed and an in-
coming instance is marked as an outlier if it is far
away from the centroid of the cluster that it be-
longs to 35,36, or if it belongs to a sparse cluster
37,38. Statistical anomaly detection techniques say
that an observation which is not generated by the as-
sumed stochastic model is an anomaly. These mod-
els are built from data using parametric45,44,43 or
non-parametric techniques42,41. Also, classifica-
tion based anomaly detection techniques has been
widely used40,39,22. These techniques learn a model
which distinguishes between normal and anomalous
classes.

In this paper we aim to propose a failure detec-
tion tool whose goal is to detect generic failures
from the information collected in a sensored sys-
tem. This tool is based on a technique included
in the last mentioned group (classification based
anomaly detection techniques), and in more detail,
using Bayesian networks as models to represent the
behaviour of the system. Therefore, our BN-based
system is not targeted for the detection of a concrete
type of failure in a particular machine or set of ma-
chines, but on the contrary, what we aim is to be able
of detectingany anomalousbehaviour of the system
(that can be inferred from sensors readings). Obvi-
ously, dealing with such a so general problem rep-
resents a disadvantage with respect to tailored sys-
tems, due to the absence of problem domain knowl-
edge. On the other hand, it is more general and real-
istic because we can detect previously unknown fail-
ures. In our case, the system being monitored can be
viewed as a black box (Figure 3).
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Fig. 3. General system structure

We cannot consider to deal with this problem by
using supervised classification methodologies be-
cause of the nature of the input data. In particular,
we do not have data about each possible wrong be-
haviour of the system, in fact, we only dispose of
data corresponding to one or more status of the ma-
chinery working in absence of failures. Our goal is
to predict whether the current behavioural state of
the physical system iscorrect or on the contrary it
stands for some kind offailure. Therefore, instead
of a fully supervised classification methodology, we
opt for the use of ananomaly detection2 based one.

In this type of methodologies, a model is con-
structed to represent the failure-free behaviour of the
physical system, and it is used to check if an incom-
ing sensor reading does not match it, producing a
failure warning (or alarm) in such a case. We will
start from the methodology detailed in22, adapted
to our case of such general problems. However, as
we will discuss in Section 4, the previous method-
ology has problems in some specific circumstances.
In order to improve the performance of our DSS in
such cases, we have introduced a new model defini-
tion (in addition to the failure-free behaviour one) to
represent the anomalous behaviour. As an overview,
the workflow of our DSS is shown in Figure 4.

Every cycle (reading-detection) has the follow-
ing behaviour: (1) readings are taken from the sen-
sors and stored in a data base; (2) these readings,
possibly manipulated, give rise to the observations
entered into the expert system for classification; (3)
the probabilistic expert system (composed of two
Bayesian networks) computes the prediction (fault
or non-fault); (4) if apossiblefailure has been identi-
fied, an alarm is generated and a human operator su-
pervises it; finally (5) the knowledge-base is updated
according to this information (false or true positive
alarm).

Therefore, the proposed DSS has been designed

as a generic tool, where no specific problem domain
has been considered. Nevertheless, it is noteworthy
that if some previous knowledge is available, it can
be incorporated to our system, as this is one of the
main advantages of using a Bayesian network to rep-
resent the knowledge base. In order to deal with a so
generic failure detection system, we impose the two
following assumptions:

• The tool needs a first stage in which it collects
data from the monitored system (sensors readings)
working properly, i.e. without failures. From
these readings, the system will construct/learn a
correct behaviour model. This is not a hard as-
sumption, since long periods in the absence of
failures are common in industrial machinery.

• Some degree ofsupervisionis needed. As we
do not have prior information about how a failure
looks like, once a suspicious behaviour is detected
from the sensors readings because it deviates from
the (learnt) correct behaviour model, we need that
a human operator confirms if the detectedanoma-
lousbehaviour actually corresponds to a failure in
the system or if it is just a false positive. This in-
formation will be used as feedback to improve the
prediction models.

This section is structured in the following sub-
sections. First, in Subsection 3.1 we are going to
describe both models for failure-free and anomalous
behaviour. Then, in Subsection 3.2 we detail the
metrics used in our DSS and how we combine them
to detect anomalous behaviours. Finally, in Sub-
section 3.3 we detail how these models are updated
when a human operator tells the system about false
or true positive alarms.

3.1. Bayesian networks to detect anomalous
behaviours

As we said before, we are going to use two Bayesian
networks: Mc, the model to represent failure-free
behaviours andM f for anomalous behaviour.

Bayesian networks assume discrete values as in-
puts. However, this is not usual in the case of sensor
readings, e.g. temperature. One option would be
to use Hybrid Bayesian networks48 instead, which
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Fig. 4. System behaviour

can deal with real input values using a conditional
gaussian model. However, this approach has some
drawbacks, as imposing certain restrictions about
the topology of the network. Another option, used
in this work, consists on applying a pre-processing
discretization step, where the discretization intervals
can be provided by domain experts, obtained by ap-
plying some unsupervised discretization technique
16 or just using equal width binning.

In the following subsubsections we detail how
Mc andM f are built (Subsubsection 3.1.1 and 3.1.2
respectively).

3.1.1. Probabilistic model forfailure-free
behaviour:Mc

The physical system for which we intend to carry
out the predictive maintenance can be in a serie of
(hidden) states. We have no direct access to these
inner states, but to some observable measures pro-
vided by a set of sensors (e.g. light, vibration, tem-
perature, etc.) attached to the machinery. Let us
assume we haven sensors{S1, . . . ,Sn} each one tak-
ing values indom(Si) = {vi

1, . . . ,v
i
r}. That is, we

assume each sensor can take value in afinite set of
discrete/nominal values.

The main goal is to obtain a probabilistic model
which represents the behaviour of the system work-

ing properly, that is, without any defective compo-
nent and so assuming correct sensors readings. This
probabilistic model, which we will callMc needs to
deal with then sensors but also with the temporal
relations among them, as the evolution on the value
of a given sensor, will provide clues on its correct
or incorrect functioning. Because of these require-
ments, we have chosen the formalism of DBNs20 to
represent our knowledge base.

For the sake of simplicity and because of the lack
of prior domain knowledge we have resorted to a
simple DBN model with fixed graphical structure.
In the model, each sensor is independent of the restb

but depends on itself at timet−1, that is, there is no
arcs of typeSi → Sj , but we includetemporalarcs of
typeSt−1

i → St
i . In this way, as there are no relations

between different sensors, it can be seen as indepen-
dent Bayesian networks (one per sensor). However,
the definition that we propose in this work contem-
plate a more general situation, where sensors can be
dependant of others at the same timet.

In practice, for better readability reasons, we ac-
tually deal with a static BN, in which temporal rela-
tions are taking into account by unfolding the DBN
for a given number of temporal slices (in this work
equals to 24). In fact, the way to procede with DBN
is to unfold 1 layer at each time, forgetting (or not)

b Notice that this is only a modelling assumption, not an strong constraint. In fact, if problem domain knowledge is available indicating
direct dependence between two sensors, then this dependence can be simply added to the model, as we will see in Section 4.
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the past layers. However, we determined to use this
strategy (unfolding the 24 layers at once) because
of the monotonous behaviour of these types of en-
vironments: even if the machinery carries out dif-
ferent operations depending on the hour of the day,
this pattern is usually the same every day (24 hours).
The resulting model is shown in Figure 5, where we
represent 24 consecutive hourly measures for each
sensor, that is, we model a full day of the physical
system.

Fig. 5. Graphical structure of the unfolded DBN

Once we have described the structure of our
probabilistic graphical modelMc, we need to pro-
vide the numerical parameters, that is, the condi-
tional probability tables. To do this we use the
dataset containing sensors readings captured dur-
ing a period of correct functioning of the monitored
system. Our first task is to transform the captured
dataset, containing hourly readings for then vari-
ables (sensors) to a new one containing 24×n vari-
ables. The process is described in Figure 6.

From the transformed dataset, where eachsk
i

belongs to dom(Si), we estimate the marginal
{P(S1

i )}
n
i=1 and conditional {P(St

i |S
t−1
i )}i=n,t=24

i=1,t=2
probability distributions (tables) by using Laplace
smoothing17. In general, if more dependence re-
lations are included in the graphical model, then the
set of conditional probability tables would be esti-
mated as{P(St

i |pa(St
i )}

i=n,t=24
i=1,t=1 .

3.1.2. Probabilistic model foranomalous
behaviour:M f

Apart fromMc that models the normal behaviour of
the physical system, we propose the use of afailure
modelM f which models the anomalous behaviour
of the physical system, that is, how the readings
look-like when some failure is happening or is close
to happen. In our case, as we have previously de-
scribed, due to the generality of the approach we

have no data to learn this model. Nonetheless, we
have decided to use a random failure model,M f ,
which has the same graphical structure asMc, but
whose parameters (local probability distributions)
have been randomly generated using an uniform dis-
tribution. The rationale behind using this model is
that normal sensors readings will have a high likeli-
hood of being generated byMc and a very low like-
lihood of being generated byM f . However, in the
case ofabnormal sensors readings, the likelihood
with respect toMc should decrease, while the one
with respect toM f shoud increase or at least do not
change substantially.

3.2. Anomaly detection procedure

After learningMc and generatingM f , they are used
to process new sensor readings. The goal is to pre-
dict whether a new reading represents a failure-free
behaviour for the machinery, or on the contrary it
represents some anomalous behaviour, which can be
associated with a failure or with awarningthat indi-
cates a forthcoming failure.

In the following subsubsections we present two
metrics and the way they are combined in order to
classify input readings into failure-free and anoma-
lous behaviours. In Subsubsection 3.2.1 we show a
metric based exclusively inMc, used in the method-
ology proposed in22. Then, in Subsubsection 3.2.2,
we explain our proposal to improve the performance
of the previous methodology. Finally, in Subsubsec-
tion 3.2.3 we detail how we detect anomalous be-
haviours combining the previous metrics.

3.2.1. Metric con f(e)

The methodology proposed in22 is based on mea-
suring the conflict between the model and the sen-
sor readings. A fault (an anomaly) will be detected
when that measurement reaches a threshold. To de-
tect if a particular case or reading is coherent with
the modelMc or not, it uses a procedure which is
based on the well knownconflict(conf) measure pro-
posed in10 (see also11 ). The measurement is de-
scribed in Eq. (2).
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Fig. 6. Database transformation

con f(e) = ln
PM (e1)×·· ·×PM (en)

PM (e)
, (2)

wheree stands for the joint configuration ofn find-
ings, i.e.,e= (e1,e2, . . . ,en).

The idea behindconf measure is that findings
coherent with the model should be positively cor-
related, thus,PM (e) should be greater than the
product of independent (marginal) probabilities,
PM (e1), . . . ,PM (en). Therefore, a negative number
would indicate thate is coherent with the modelM ,
while a positive one is an indicator of a conflict. The
bigger the number, the more probable the conflict is.

From a computational point of view, computing
con f(e) requires two propagations (inferences)11

over the probabilistic graphical model: (1) in the
first one, no evidence is entered into the network, so,
marginal probabilitiesP(e1), . . . ,P(en) are obtained;
and (2) in the second one, all the findingse1, . . . ,en

are entered as evidence, andP(e) = P(e1, . . . ,en) is
obtained after the propagation by computing in any
node the normalization constant.

In our case, as we are interested in the predic-
tive maintenance of the machinery, we use as find-
ings the sequence of readings from timeti to time
t j , where 16 i, j 6 24 andw = j − i is a positive
integer. This is because a failure usually does not
happen abruptly, but gradually, so we consider the
sequence of readings in order to evaluate possible

trends. However, we consider a maximum time win-
dow sizew (temporary difference betweent j and
ti), because if we take into account the whole set of
readings, the information provided by the last mea-
surements would have a small impact as they are di-
luted by the rest of the readings.

3.2.2. Metric rc f(e)

The previous metric detects anomalies paying atten-
tion to the dependencies between variables. As it
will be discussed in Section 4, an uncommon se-
quence of readings might be considered a failure-
free behaviour. In order to improve the performance
of our DSS, we will introduce a second measure-
ment (which uses both models,Mc andM f ). This
new measure, called ratio correct vs fault (rc f ), is
shown in Eq. (3).

rc f (e) = ln
PM f (e)

PMc(e)
(3)

At the begining, when the parameters ofM f

has been initialized randomly, a change in the be-
haviour of the system should not affect substantially
to PM f (e). On the contrary, if that situation corre-
sponds to an abnormal behaviour,PMc(e) should de-
crease and therefore the ratior f c(e) should increase.
On the other hand, if readings correspond to a nor-
mal situation,PMc(e) should be higher thanPM f (e)
as the parameters ofMc has been learnt from data
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in abscence of failures. Moreover, when the model
M f has been updated with data from anomalous be-
haviours, the measurerc f (e) should improve its per-
formance as the parameters of the modelM f has
been updated using data of anomalous situations,
and thereforePMc(e) andPM f (e) should behave op-
positely.

As in conf(e), we will use as evidence the se-
quence of readings from timeti to t j , wheree has
the same meaning as in Eq. (2) and the same win-
dow sizew is used.

3.2.3. Use of con f(e) and rc f(e) for anomaly
detection

In this section we are going to explain how we use
conf(e) and rcf(e) to detect anomalous behaviours.
The basic idea behind this is to use two thresh-
olds, one for each metric. Each time one measure is
greater than its associated threshold, then an anoma-
lous behaviour will be detected. However, we re-
alised that using the whole evidencee to compute
each measure has some drawbacks. As aforemen-
tioned, it is an unusual situation that a component
fails, and usually when it happens only a few sen-
sors would be involved. Because of that, if the sys-
tem is composed of a large number of sensors, the
information of an anomaly can be diluted by the rest
of sensors and the failure detection can be noteless.

In order to deal with that problem, the previously
described measures (con f and rc f ) are separately
computed for each different sensor in our system,
using as evidence the readings from that sensor and
from all its ascendants in the network (for time win-
dow w). This gives us information about the proba-
bility that a concrete sensor reading comes from an
anomalous behaviour or not. Moreover, we are able
to detect if there is a failure on the machinery and if
so, the defective component.

Finally, we use the information of all these in-
dividual measures to decide if the input represents
a (forthcoming) failure, and so analarm must be
fired. We have set two thresholds (tcon f and trc f ),
one for each measure respectively. If any of the com-
puted measures is greater than its associated thresh-
old, then analarm (related to the evaluated sensor) is
triggered. For the sake of clarity, in our experiments

(see Section 4) we do not pay attention to what com-
ponent is failing, but only if any component in the
whole system is failing or not.

3.3. Models updating

Even if no domain knowledge is used to build the
model, the information about its performance can
be used as feedback. Therefore, if at some point
the system triggers an alarm, a person who checks
the status of the monitored system can tell the DSS
if the behaviour has been correctly classified or not.
This information can be used to update the models
and improve their predictions.

Given a certain alarm, if it is marked as a false
positive it means that data come from a correct be-
haviour, so the modelMc will be updated using this
information (as described afterwards). On the con-
trary, if it is marked as an actual failure, it means
that data come from an anomalous behaviour, so the
modelM f will be updated. The data used to make
the model updates correspond to those contiguous
readings from the first detection of the alarm to the
last one (the reading before data is considered again
as normal behaviour).

The update process keeps the model structure
invariable but changes the parameters (probability
tables). Let{P(S1

i )}
n
i=1 be the marginal proba-

bility table for the sensori in the first layer, and
{P(St

i |S
t−1
i )}i=n,t=24

i=1,t=2 the conditional probability ta-
ble for the sensori in layer t. First we calcu-
late the probabilities using only the data from the
alarm detection, following the same procedure de-
tailed in Subsubsection 3.1.1. That is, first we apply
the database transformation procedure (see Figure 6)
and then we estimate the marginal{P(S1

i )
′}n

i=1 and
conditional {P(St

i |S
t−1
i )′}i=n,t=24

i=1,t=2 probability tables
by using Laplace smoothing17. Finally, we com-
bine both parameters to get the updated probability
tables ({Pu(S1

i )}
n
i=1 and{Pu(St

i |S
t−1
i )}i=n,t=24

i=1,t=2 ) using
a weighted average as it is shown in Eq. (4) and
Eq. (5):

{Pu(S
1
i )}

n
i=1 = α · {P(S1

i )
′}n

i=1+

(1−α) · {P(S1
i )}

n
i=1

(4)
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{Pu(S
t
i |S

t−1
i )}i=n,t=24

i=1,t=2 = α · {P(St
i |S

t−1
i )′}i=n,t=24

i=1,t=2 +

(1−α) · {P(St
i |S

t−1
i )}i=n,t=24

i=1,t=2
(5)

The parameterα determines the “memory” of
the system about past readings. Its range is[0−1].
As it closes to 0, it gives more importance to the
information about the past. Therefore, the model re-
quires more time to be adapted to a new behaviour.
On the contrary, as it closes to 1, the model tends
to represent exclusively the recent behaviour of the
monitored system, forgeting the past behaviour in a
small window of time.

4. Simulated Case of Study

In this section we are going to test the predictive ca-
pability of the original methodology explained in22

and compare it with our proposed DSS. In order to
do that, we are going to generate synthetic data rep-
resenting different scenarios. Our aim is to test the
following situations. The system has been trained
using data in abscence of failures. Then:

• The behaviour does not change, so no alarms
should be triggered.

• The behaviour suddenly changes. Alarms should
be triggered, but two scenarios can be tested in
this case depending on the given feedback: It
comes from an anomaly, or from a change in the
behaviour of the monitored system.

For that, we have designed a simulated environ-
ment with four different sensors usually presented
in industrial machinery:Temperature (T), Humidity
(H), Vibration (V) andActive Power (AP). To gen-
erate the synthetic data from that environment, we
have modeled its behaviour using a Bayesian net-
work Bb and then we have generated samples from
it. In order to represent a change in the behaviour
of the monitored system, we have used two alterna-
tives:

• Keep the Bayesian network structure ofBb but
change its parameters.

• Change the structure of the Bayesian networkBb.

Next we are going to explain in detail the models
and the process to generate the synthetic data from
them.

The first modelBb, used to generate the initial
behaviour and the first alternative, is shown in Fig-
ure 7. We have set a direct dependence between Ac-
tive Power and Temperature, and also between Hu-
midity and Vibration. These dependences have been
replicated in the 24 hourly layers, that is from [0:00-
1:00) to [23:00-0:00). Regarding the domain for
each variable, we have considered that the four vari-
ables take values in the set{Low,Medium,High}.
Therefore, as we deal directly with discrete values
instead of real numbers, there is no need to apply
the discretization stage.

...

...

...

...

T1

AP1

V1

H1

T2

AP2

V2

H2

T24

AP24

V24

H24

Fig. 7. Graphical structure (Bb) for the simulated case of
study

After setting the structure of the model, we have
parameterized it into two different ways:

• Basic behaviour, which represents the usual ma-
chinery functioning (Wb). In this case,Bb has
been parameterized in the following way: all sen-
sors tend to generate theLow value with more
probability than theMediumone, and thisMedium
with more probability than theHigh one. Further-
more, and due to the dependences in the graphical
model, Vibration and Temperature tend to follow
the measures of Humidity and Active Power re-
spectively, and each sensor tends to follow its own
measure in the previous layer (time). To see the
specific values, see Table B.1 in the Appendix B.

• Alternative behaviour 1, which represents a situ-
ation in which we detect more vibration than usu-
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ally (Wa1). In this case, the networkBb is param-
eterized in a different way: Temperature, Humid-
ity and Active Power have a similar behaviour as
in basic behaviour (Wb), but Vibration will tend
to get higher values. Specific values for Vibration
variables are shown in the Appendix B, Table B.2.

The second model structure,Ba is similar toBb

but any dependence of the variableVibration has
been removed (see Figure 8). The parametrization
of this network is as follows:

• Alternative behaviour 2, which represents a sit-
uation in which vibration readings follow the uni-
form distribution (Wa2). Therefore, we take (Ba)
as basic structure and parameterized it according
to the following description: All the states of Vi-
bration have the same probability while the re-
maining probability distributions are set as in the
basic behaviour (Wb).

...

...

...

...

T1

AP1

V1

H1

T2

AP2

V2

H2

T24

AP24

V24

H24

Fig. 8. Alternative graphical structure (Ba) for the simu-
lated case of study

In order to obtain the datasets for the simulations,
the models are sampled by layers (firstt = 1, then
t = 2, etc.) and inside each layer, a probabilistic
logic sampling8 is guided by a topological ordering
(e.g.AP,H,T,V). We consider two cases:

• Initial time slice (t = 1). First, variables without
parents in the network are (independently) sam-
pled from their marginal distribution. That is,
P(AP1) andP(H1) for Wb andWa1, andP(AP1),
P(H1) and P(V1) for Wa2. Once the values for
these variables are known (call themap, h andv),

the rest are sampled from the marginal distribu-
tions: P(T1|AP1 = ap) andP(V1|H1 = h) for Wb

andWa1, andP(T1|AP1 = ap) for Wa2.
• Rest of time slices (t > 2). Now the values

for all the variables in the time slicet − 1 are
known, therefore the marginal distribution to be
sampled by order are: (1)P(APt|APt−1 = apt−1),
P(Ht |Ht−1 = ht−1), P(Tt |APt = ap,Tt−1 = tt−1)
andP(Vt |Ht = h,Vt−1 = vt−1) for Wb andWa1; (2)
P(Vt), P(APt|APt−1 = apt−1), P(Ht|Ht−1 = ht−1)
andP(Tt |APt = ap,Tt−1 = tt−1) for Wa2.

From these models we have sampled four
datasets. Each one contains 4320 readings
(〈ap, t,v,h〉), corresponding to 6 months, 30 days per
month and one reading every hour.

• BasicT. This dataset is sampled from the Basic
behaviour modelWb and will be used to Train the
correct behaviour model (Mc).

• BasicV. This dataset is sampled from the Basic
behaviour modelWb and will be used to validate
the correct behaviour model (Mc).

• AlternativeU. This dataset is sampled from the
Alternative behaviour model 1Wa1 and will be
used in two different ways, to update the correct
and failure behaviour models (Mc andM f ). In
other words, telling the DSS that alarms corre-
spond to a change in the behaviour of the system
or to an anomaly.

• AlternativeR. This dataset is sampled from the Al-
ternative behaviour model 2Wa2 and will be used
as well in two different ways, to update the correct
(change in the behavuour of the system) and fail-
ure (anomaly) behaviour models (Mc andM f ).

4.1. Simulation data

In this section we will discuse how the two models
Mc andM f and their behaviours evolve during the
simulation. The parameters used arew= 24 for the
time window,tcon f = trc f = 1.0 for the alarm thresh-
olds andα = 0.5 for updating the models. Note that
even ifw= 24, in this experimentation the nodes in
the last layer of the Bayesian networks are not con-
nected to the nodes in the first layer. That means
that whent = 1 it only uses data from the first hour
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of the day, while whent = 24 it uses the information
of the whole day (it can be seen as a variable win-
dow size, fromw= 1 tow= 24). The experiment is
as follows.

Firstly, we create the structure of both mod-
els Mc and M f as described in Section 3, that
is, dependence relations between sensors in the
same layer are not included, because we sup-
pose that we do not have such domain informa-
tion. Of course, if these relations (or others)
are available as problem domain knowledge, they
can be added to the graphical structure. Then,
we use BasicT dataset to learn the parameters
for Mc, that is, P(AP1),P(T1),P(H1),P(V1) and
P(APt|APt−1),P(Tt |Tt−1), P(Ht |Ht−1), P(Vt |Vt−1).
In the case ofM f these distributions are initialized
at random (uniform distribution).

After Mc and M f have been built, five differ-
ent situations are tested:BasicV is used to validate
the correct behaviour model (Mc); AlternativeU is
interpreted first as normal behaviour and afterwards
as anomalous behaviour, in order to check the adapt-
ability of the system; Finally, the same experimen-
tation is done with the data setAlternativeR.

For all the experiments we show three graphics.
The first two correspond to the measures (per hour)
for con f and rc f respectively, while the last one is
the number of detected anomalies per day by our
proposal, and so the number of alarms sent. For the
first and second graphics we show the first 1440 (two
months) measures instead all the 4320 (the whole six
months) because graphics get clear and the change
in the data trend is inappreciable thenceforth.

4.1.1. BasicV as correct behaviour

The datasetBasicV is used to test the proposal. As
BasicV comes from the same distribution asBasicT,
the process should detect few anomalies, and so the
number ofalarmssent should also be small. In this
case, as we know the inputs (sensors readings) cor-
respond tocorrectmachinery functioning, the oper-
ator will identify the alarm asfalseand modelMc

will be accordingly updated/refined.
As we can observe in Figure 9, the proposed pro-

cess works properly and the number of alarms stays
low or even decreases as the days go on and the

model is refined. In this case, both measures,con f
andrc f , give the maximum value in the early hours
of the day and the minimum at the last one. This
is because at the beginning of the day is when these
measures takes the lowest amount of information, as
we only use readings from the same day. Because
of that, as the day progresses and more information
can be used, bothcon f and rc f go to their lowest
values. As both measures have a similar behaviour,
the performance of the initial methodology and our
proposal would be very similar.

4.1.2. AlternativeU as correct behaviour

The datasetAlternativeU is now used to test the pro-
posal, but interpreting it as a change in the opera-
tion mode of the machinery. That is, something in
the functioning, environmental condition, etc. has
changed, which produces the differences in the sen-
sors readings regarding the data used for training,
however, each time analarm is sent, the operator
marks it as correct behaviour (i.e. a false positive).

As we can observe in Figure 10, the number
of anomalies detected is very low even at the first
days. This is because the modelMc is quickly up-
dated/refined according to thefalse anomalies de-
tected, and the new data is understood as normal be-
haviour. It is worthpointing that only vibration read-
ings has changed with respect to the basic behaviour
(BasicV), and this change consists on higher values
for these readings over the time. Therefore, the most
relevant change in the probability distributions will
lies inP(V1), because in the following layers (as well
as for the basic behaviourBasicV) sensors tend to
follow their own measures in the previous layer.

Finally, again as both measures have a similar be-
haviour, the performance of the DSS would be very
similar, whether we use the proposed improvement
or not.

4.1.3. AlternativeU as anomalous behaviour

Now we use the same datasetAlternativeU but un-
derstanding its readings as failures. Thus, we start
with the modelMc trained withBasicT data. As in
this case all the alarms sent by the algorithms are
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Fig. 9. Testing process overBasicV. Same operation mode.

confirmed as anomalies by the operator, the updated
model isM f and notMc.

As we can observe in Figure 11, in the first days
the number of anomalies detected is small. How-
ever, after a few days, whenM f is refined, almost
all the (24) readings are classified as anomalies. We
can see that the values ofcon f are similar to those in
the previous case, whereAlternativeU is understood
as normal behaviour (just in the early hours of the
day values tend to be higher). This is due tocon f
detects anomalies paying attention to the dependen-
cies between variables, and as we said above, the
model Mc learnt that sensors tend to follow their
own measure in the previous layer, so if vibration
readings are high it will consider the most probable
next reading will be also a high value. On the con-
trary, onceM f is refined,rc f gets higher values as
PM f (e)> PMc(e).

In this case, the measurecon f does not detect
any anomalous behaviour. However, once the first
triggered alarms are marked as failures,rc f starts to
identify correctly the new ones, and is directly re-

sponsible of the increase in the number of alarms
sent. In this case, our proposal is able to adapt
the new situation and classify the new instances as
anomalous behaviour while the methodology which
only uses the measurecon f is not.

4.1.4. AlternativeR as correct behaviour

The datasetAlternativeR is now used to test the pro-
posal, but interpreting it as a change in the opera-
tion mode of the machinery. That is, something in
the functioning, environmental condition, etc. has
changed, which produces the differences in the sen-
sors readings regarding the data used for training,
however, each time analarm is sent, the operator
mark is as correct behaviour.

As we can observe in Figure 12 the number of
anomalies detected is high at the first days, while
this number decreases as the modelMc is updated,
and the new data is understood as normal behaviour.
This is because now we are in a more complex
situation than when usingAlternativeU as correct
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Fig. 10. Testing process overAlternatuveU interpreted as
no failures.

behaviour. Now, apart from updatingP(V1), also
P(Vt |Vt−1) needs to bere-trained in order to incor-
porate the behavioural change inMc.

4.1.5. AlternativeR as anomalous behaviour

Finally we use the same datasetAlternativeR but un-
derstanding it as failures. Thus, we start with the
modelMc trained withBasicT data. As in this case
all the alarms sent by the algorithms are confirmed
as anomalies by the operator, the updated model is
M f and notMc.

As we can observe in Figure 13, in the first days
almost all the (24) readings are classified as anoma-
lies. It is worthpointing that, even if it looks like
both measurescon f and rc f have the same impor-
tance in this case, the first measure has more impor-
tance. If we pay attention to the first day, we can see
thatrc f follow the tend ofcon f. What is really hap-
pening is that firstcon f detects the anomaly (but not
rc f ), and after a few updates ofM f thenrc f will be
able to detect as well ascon f the anomalies (but no

before these first updates). However, our proposal
uses a combination of both measures. Therefore all
the cases are detected correctly as failures, so the
performance of both methodologies would be quite
similar.

5. Conclusions

We have designed a general and robust decision sup-
port system tool for health management in industrial
environments. The core of the system is a proba-
bilistic expert system based on dynamic Bayesian
networks. Fault detection is based on both conflict
analysis and likelihood-ratio test.

Different types of failures has been tested, and
due to the use of two measures to trigger alarms,
they have been correctly detected. It is worth point-
ing that the second measure based on likelihood-
ratio test only affects directly in one of the tested
cases. However, it is an important case because
it could represent a change in the usual operation
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Fig. 11. Testing process overAlternatuveU interpreted as
failures.

mode of the monitored system. Additionally, al-
though dependences between sensors are not consid-
ered by default, if some knowledge about the prob-
lem is available it can be included as a consequence
of using Bayesian networks for modelling.

The expert system-based application has been
implemented using multi-platform technology, so it
can be deployed on any operative system. In order
to avoid problems derived from editing the system
configuration in parallel, we only allow one person
to be editing the the system description at the same
time. Because of that, it is recommendable that only
one person would be the manager of the system.

Finally, even if the tool can be used on any kind
of system, the time windoww and the thresholds
used to trigger alarms have to be fixed by an expert
in order to obtain a good performance.
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Appendix A Application

The designed software is used as a DSS, so it
can be used for both monitoring data and check if
the system might be failing or not through the pre-
dictions. It follows the web-like client/server model:
the information is managed and stored in a central-
ized system (the server) and clients can access to this
information on demand.

On the server side we have two components,
which can be deployed in the same machine or not.
These are the database server and the web page
server. The first one stores the data provided by
the sensors, while the web page server provides a
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Fig. 12. Testing process overAlternatuveU interpreted as
no failures.

web interface for clients to use the application. The
technology used to construct the models and make
predictions is JAVA, and PHP to generate the web
page and to implement web services (used by clients
throughout AJAX). There are also some XML files
to store information about the monitored system and
preferences that clients can configure.

On the client side we use HTML5 plus Javascript
to generate the webpage. It also will use AJAX to
dynamically load the requested data.

The monitored system is logically divided into a
hierarchical structure (see Figure A.1). Motes are
the basic components which represent the physical
sensors defined by the way we can access to their
measures. To give a flexible abstraction layer, the
way we can access to those measures is through a
database. Hence, physical sensors send their mea-
sures to a server in charge of storing the data in a
database. Because of that, there is a small delay in-
troduced between the sensor readings and its pro-
cessing in our DSS. However, for the scope of this

application, this delay is assumable.

Machines represent a whole working unit,
formed by a set of motes. It is not required that
the sets of motes are disjoint. This allows the
user to specify physical working units (physical ma-
chines with their associated sensors) as well as logi-
cal working units (a set of components in charge of
some specific tasks, which might be shared between
different physical machines).

Operations are associated with machines. They
are represented by a subet of sensors (motes) from
the associated machine. This is useful because
sometimes is not desirable to monitor all the sensors
of a particular machine, i.e: if we know the activity
of a machine under supervision (cutting, polishing,
etc.) we probably would prefer to monitor only the
sensors allocated in the module in charge of doing
that operation.

In Figure A.2 we can see the interface to manage
the motes configuration. Throughout this interface
we can specify the whole set of sensors used in our
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failures.
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Figure A.1: Logical hierarchical structure of the monitored system.

environment.
Respect to the visualization, the interface is di-

vided into two parts. The first one, designed to man-
age machine and operation definitions, as well as to
monitor the sensor readings. The second part of this
interface corresponds to the health status prediction.

We can see the first part in Figure A.3. For the
management, we can select the desired machine or

operation from their respective drop list and use the
edit or remove buttons. To add new machines or op-
erations, the proper option appear in the drop lists.

For the monitorization, the requested data is plot-
ted in two different widgets: a speedometer and a
timeline. The first one is used to show the last mea-
sure while the last is used to see the trend. In time-
line widgets we can define intervals and associate
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Fig. A.2. Example of use: Motes management.

Fig. A.3. Example of use: monitoring data.

colors to each one. Finally, we can set a time win-
dow to select the data to be monitored. Every fixed
amount of time (specified in a configuration XML
file) this window time will go forward the same pe-
riod of time.

The second part of this interface corresponds to
the health status prediction (see Figure A.4). We can
learn the models specifying a period of time (data in
that interval will be used to build such models), or
delete them in order to re-learn later. Once the model
has been learnt we can see the measures given by the
functionscon f(e) andrc f (e) described in section 3
throughout two timeline plots. When the interpre-
tation of these formulas means a failure alert, this
information is shown in the table below.

Fig. A.4. Example of use: health status prediction.

Appendix B Bayesian network parameters

In this appendix we are going to detail the pa-
rameters for the BNBb. Note that the parameters
for the BNBa are the same but those for the vari-
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Table B.1: Parameters for nodes in the Bayesian networkBb.

(a) Parameters for nodes without ascendants (X ∈ {AP1,H1}).

Low Medium High
P(X) 0.600 0.300 0.100

(b) Parameters for nodes with only one ascendant
(∀t > 1,X ∈ {T1,V1,APt ,Ht}).

Parent(X) Low Medium High
P(X =Low) 0.750 0.200 0.050

P(X =Medium) 0.500 0.400 0.100
P(X =High) 0.350 0.450 0.200

(c) Parameters for nodes with two ascendants (∀t > 1,X ∈ {Tt ,Vt}).

Xt−1 Low Medium High
Parent(Xt ) Low Medium High Low Medium High Low Medium High

P(Xt =Low) 0.930 0.066 0.004 0.815 0.174 0.011 0.724 0.248 0.028
P(Xt =Medium) 0.815 0.174 0.011 0.595 0.381 0.024 0.467 0.480 0.053

P(Xt =High) 0.724 0.248 0.028 0.467 0.480 0.053 0.335 0.555 0.110

Table B.2: Parameters for Vibration nodes in the Bayesian network Bb for the Alternative behaviour 1.

(a) Parameters forV1.

H1X Low Medium High
P(V1 =Low) 0.029 0.194 0.777

P(V1 =Medium) 0.010 0.198 0.792
P(V1 =High) 0.004 0.123 0.873

(b) Parameters forVt wheret > 1.

Vt−1 Low Medium High
Ht) Low Medium High Low Medium High Low Medium High

P(Vt =Low) 0.220 0.390 0.390 0.086 0.457 0.457 0.040 0.345 0.614
P(Vt =Medium) 0.086 0.457 0.457 0.030 0.485 0.485 0.014 0.355 0.631

P(Vt =High) 0.040 0.346 0.614 0.014 0.355 0.631 0.006 0.234 0.760
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able Vibration, which are 0.33 for each one of its
three possible values (Low, MediumandHigh).

In Table B.1 we show the parameters for the net-
work Bb. There are three tables. In the first one (Ta-
ble B.1a) we show the parameters for nodes without
parents, that isAP1 andH1. In Table B.2 we show
the parameters for nodes with only one ascendant,
which are∀t > 1,X ∈ {T1,V1,APt ,Ht}. Parent(T1)
refers toAP1, Parent(V1) to H1, Parent(APt ) to APt−1

and Parent(Ht ) to Ht−1. Finally, the third table (Ta-
ble B.1c) shows the parameters for nodes with ex-
actly two ascendants, which are∀t > 1,X ∈ {Tt ,Vt}.
Parent(Tt ) refers toAPt and Parent(Vt ) to Vt .

In Table B.2 we show the parameters forBb used
exclusively for the Alternative behaviour 1. It con-
tains two tables. In Table B.2a we show the param-
eters forV1, while Table B.2b shows the parameters
for Vt wheret > 1.
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