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Abstract

In this paper, several cross-entropy measures for linguistic hesitant intuitionistic fuzzy information have
been developed which integrating cross-entropy measures of intuitionistic fuzzy sets and hesitant fuzzy
linguistic sets. Some desirable properties of new cross-entropy measures have been studied. Two new
multiple attribute decision making methods have been presented based on the new cross-entropy mea-
sures in which attribute values are given in the form of linguistic hesitant intuitionistic fuzzy values to
reflect human hesitantation and fuzzy thinking comprehensively. We consider different attribute weight
situations including attribute weights are completely known, partly known and completely unknown. An
optimization model is established to determine attribute weights if they are partly known and a formula is
given if attribute weights are completely unknown. Finally, a numerical example is presented to illustrate
practical advantages and effectiveness of the proposed approaches.

Keywords: Hesitant fuzzy set; intuitionisic fuzzy set; linguistic argument; aggregation operator; linguistic
hesitant intuitionistic fuzzy cross-entropy.

1. Introduction

Fuzziness and uncertainty exists extensively in de-
cision making process due to complicated decision
problems, limited decision time and fuzzy nature of
human thinking, etc. Many useful tools have been
developed including fuzzy set, intuitionistic fuzzy
set1, hesitant fuzzy set2−3, linguistic arguments4−8,
etc. In fuzzy set, the membership of each element
is a real number between 0 and 1. Intuitionistic
fuzzy set is the extension of fuzzy set, which is
characterized by membership and non-membership
summing less than 1. Hesitant fuzzy set is an-
other extension of fuzzy set, in which several val-
ues are possible for the definition of a member-
ship function of a fuzzy set. The envelope of hes-
itant fuzzy set is intuitionistic fuzzy set. Compar-

ing with other tools to model fuzzy and uncertain
information, hesitant fuzzy set is more powerful and
accurate. The hesitant fuzzy set has been studied
and applied extensively9−14. Some hesitant aggrega-
tion operators have been proposed15−17. Some clas-
sic multiple attribute decision making methods have
been extended to hesitant fuzzy environment18−20.
Some distance measures, entropy measures and cor-
relation coefficients have been generalized to ac-
commodate hesitant fuzzy information21−25. Hes-
itant fuzzy set has been extended to accommodate
intuitionistic fuzzy values26, interval-values27, tri-
angular fuzzy values28, linguistic arguments29−35,
etc. Due to fuzzy nature of human thinking, compli-
cated decision problems and limited decision time,
decision makers would like to evaluate with linguis-
tic terms rather than exact numerical values. Sev-
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eral types of linguistic models have been devel-
oped. Herrera and Martı́nez4 proposed 2-tuple lin-
guistic model to avoid information distortion and
loss. Dong et al.5 defined numerical scale and ex-
tended the 2-tuple fuzzy linguistic representation
models under numerical scale. By using 2-tuple lin-
guistic model, each evaluation value only has one
linguistic evaluation value. Rodrı́guez et al.32 de-
veloped hesitant linguistic fuzzy set in which each
element has several linguistic terms. Wang35 gener-
alized hesitant fuzzy linguistic term sets by enabling
any non-consecutive linguistic terms in them. Pang
et al.6 developed probabilistic linguistic term set in
which possible linguistic values may have differ-
ent importance degrees. The fuzzy linguistic mod-
elling based on discrete fuzzy numbers is proposed
by Riera et al.7 to manage hesitant fuzzy linguis-
tic information. Comparing with fuzzy numbers,
intuitionistic fuzzy values are more accurately to
model hesitation. The concept of a possibility distri-
bution for hesitant fuzzy linguistic information has
been defined11. But hesitation in decision making
hasn’t been modeled properly by existing linguistic
models. In decision making process, experts would
express some hesitation in evaluating with linguis-
tic terms. Intuitionistic fuzzy values can be used
to model hesitation accurately. By using intuition-
istic fuzzy values to model hesitation in linguistic
evaluating process, fuzzy nature of human think-
ing can be reflected accurately and hesitation can
be modeled properly. If an expert uses linguistic
term sα in evaluating some alternative with respect
to some attribute and he/she thinks the membership
of alternative satisfying the attribute is µ and non-
membership is ν , then linguistic intuitionistic fuzzy
element (LIFE) (sα ,(µ,ν)) can be got. If two ex-
perts use the same linguistic term and different intu-
itionistic fuzzy values, intuitionistic fuzzy values are
merged together. For example, in evaluating perfor-
mance of a candidate for a college dean, one expert
thinks the degree of ‘slightly good (S6)’ the candi-
date belonging to is (0.6,0.3) and degree of ‘good
(S7)’ is (0.7,0.2). Another expert thinks the degree
of ‘fair (S5)’ the candidate belonging to is (0.5,0.4),
the degree of ‘slightly good’ is (0.7,0.1) and the de-
gree of ‘good’ is (0.6,0.2). Then we can get lin-

guistic hesitant intuitionistic fuzzy information as
ȟ = {(S5,(0.5,0.4)),(S6,(0.6,0.3),(0.7,0.1)),(S7,
(0.6,0.2),(0.7,0.2))}. The linguistic hesitant intu-
itionistic fuzzy set is developed by Yang et al.36.
Comparing with other tools, linguistic hesitant in-
tuitionisic fuzzy values can model fuzzy and uncer-
tain information existing in decision making process
more accurate, which is the prerequisite to get scien-
tific and reasonable decision-making results.

A growing number of studies focus on entropy
measures and cross-entropy measures due to ad-
vantages of measuring fuzziness and discrimination
information37−49. Kullback and Leibler39 defined
a cross-entropy measure between two probability
distribution. The fuzzy cross-entropy has been de-
fined by Bhandari and Pal40 by using its membership
function. Zhang and Jiang41 developed vague cross-
entropy by analogy with the cross-entropy of prob-
ability distributions. Chen et al.42 developed sev-
eral cross-entropy measures for uncertain variables.
Mao et al.43 proposed a novel symmetric intuitionis-
tic fuzzy cross-entropy formula taking into account
intuitionistic fuzzy entropy and fuzzy entropy simul-
taneously. Xia and Xu44 defined two cross-entropy
measures for intuitionistic fuzzy values by normal-
izing the J-divergence intuitionistic fuzzy values in-
troduced by Hung and Yang45. Wang and Li46 pro-
posed a cross-entropy measure of the membership
degree from the non-membership degree for intu-
itionistic fuzzy values. Qi et al.47 defined a new gen-
eralized interval-valued intuitionistic fuzzy cross-
entropy measure and gave a new method to deter-
mine unknown attribute weights and expert weights
based on the new cross-entropy measure. Xu and
Xia48 defined two cross-entropy measures for hesi-
tant fuzzy information. Peng et al.26 have developed
some fuzzy cross-entropy measures for intuitionistic
hesitant fuzzy information. The cross-entropy meth-
ods have been used extensively, such as traffic signal
optimization, portfolio selection, clustering, energy
management, etc.

From the above analysis we can find that all the
existing cross-entropy measures are based on exact
numerical values, fuzzy values, intuitionistic fuzzy
values, hesitant fuzzy values. Linguistic hesitant in-
tuitionistic fuzzy values are more accurate and flex-
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ible in modeling fuzzy and uncertain information.
However, the study on cross-entropy measures for
linguistic hesitant intuitionistic fuzzy information
hasn’t been found yet. Due to the fact hesitation is
common existing in actual decision making process,
it is necessary to develop some cross entropy mea-
sures for linguistic hesitant intuitionistic fuzzy infor-
mation. The aim of this paper is to propose several
linguistic hesitant intuitionistic fuzzy cross-entropy
measures by extending intuitionistic fuzzy cross-
entropy measures and hesitant fuzzy cross-entropy
measures to linguistic hesitant intuitionistic fuzzy
environment, which can comprehensively accom-
modate membership, nonmembership and hesitation
degree in linguistic evaluation process. Based on the
new cross-entropy measures, a programming model
is set up to derive unknown attribute weights by con-
sidering deviation between attribute assessment val-
ues and a formula is given to derive attribute weights
if they are completely unknown. Then we develop
two algorithms based on the new cross-entropy mea-
sures integrating the afore presented methods con-
sidering different situations of attribute weights. A
numerical example of supplier selection problem is
presented to illustrate the new algorithms. Addition-
ally, it is important to note that the decision making
methods proposed in this paper can also be used to
solve other decision making problems with high un-
certainty and hesitation degrees.

In order to do so, the rest of the paper is orga-
nized as follows. In section 2, we first review some
basic concepts on linguistic hesitant intuitionistic
fuzzy set. Then we define several linguistic hesitant
intuitionistic fuzzy aggregation operators. In sec-
tion 3, several cross-entropy measures for linguistic
hesitant intuitionistic fuzzy information have been
developed and some desirable properties have been
studied. In section 4, we propose two new multiple
attribute decision making methods based on the new
cross-entropy measures. In section 5, an example
of supplier selection is given to illustrate feasibility
and practical advantages of new methods. The con-
clusions are given in the last section.

2. Linguistic hesitant intuitionistic fuzzy term
set

An HFS is defined in terms of a function that returns
a set of membership values of each element in the
domain.

Definition 2.12. Let X be a reference set, an HFS
A on X is a function h that returns a subset of values
in [0,1] when it is applied to X :

A = {< x,hA(x)>| x ∈ X},

where hA(x) is a set of some different values in
[0,1], representing the possible membership degrees
of x ∈ X to A. hA(x) is called a hesitant fuzzy ele-
ment (HFE)14.

Suppose that S = {si| i = 1, ...,g} is a finite and
totally ordered discrete term set, where si represents
a possible value for a linguistic variable. A set of
nine terms S50 can be expressed as follows S= {s1 =
extremely poor,s2 = very poor,s3 = poor,s4 =
slightly poor,s5 = fair,s6 = slightly good,s7 =
good,s8 = very good,s9 = extremely good}. In or-
der to preserve all information, the discrete linguis-
tic term set S can be extended to a continuous one
S = {sα | s0 6 sα 6 sg,α ∈ [0,g]}.

By extending hesitant fuzzy set, Zhang and Wu31

develop hesitant fuzzy linguistic term set (HFLS),
in which a linguistic variable has several linguistic
terms.

Definition 2.2. Let X be a reference set and
S = {sα | s0 6 sα 6 sg} be a linguistic term set. A
hesitant fuzzy linguistic term set A on X is an or-
dered finite subset of the consecutive linguistic term
set S

A = {< xi,hA(xi)>| xi ∈ X , i = 1,2, ...,n},

where hA(xi) : X → S denotes all the possible lin-
guistic evaluation values of element xi ∈ X . For con-
venience, we call hA(xi) a hesitant fuzzy linguistic
element (HFLE), which can be represented as

hA(xi) = {si | si ∈ hA(xi)},

here si is a linguistic argument.
Since experts would express some hesitation in

evaluation using linguistic terms, we use intuitionis-
tic fuzzy value to model hesitation. If multiple ex-
perts evaluate alternatives with respect to attributes
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using different linguistic terms and different intu-
itionistic fuzzy values, we get linguistic hesitant in-
tuitionistic fuzzy set, which can be defined as fol-
lows.

Definition 2.336. Let X = {x1,x2, ...,xn} be a ref-
erence set and S = {sα | s0 6 sα 6 sg} be a linguistic
term set. A linguistic hesitant intuitionistic fuzzy set
(LHIFS) Ǎ on X is defined as

Ǎ = {< xi, ȟǍ(xi)>| xi ∈ X , i = 1,2, ...,n},

where ȟǍ(xi) : X → H denotes all possible linguis-
tic intuitionistic fuzzy evaluation values of element
xi ∈ X . For convenience, we call ȟǍ(xi) a linguistic
hesitant intuitionistic fuzzy element (LHIFE), which
can be represented as

ȟǍ(xi) =
{(

sθi , lh(sθi)
)
| xi ∈ X

}
,

sθi is a linguistic argument and lh(sθi) =

{(µ(k)
i ,ν(k)

i )} is the set of intuitionistic fuzzy mem-
bership values that sθi satisfies xi.

(
sθi , lh(sθi)

)
is the

linguistic intuitionistic fuzzy element (LIFE). Let H
be the set of all LHIFEs.

Definition 2.436. Let ȟ, ȟ1 and ȟ2 be LHIFEs,
λ > 0. ak = (sθk , lh(sθk))∈ ȟ, ai = (sθi , lh(sθi))∈ ȟ1,
a j = (sθ j , lh(sθ j)) ∈ ȟ2. Some operations on these
LHIFEs can be defined as follows

(1) ȟ1 ⊕ ȟ2 =
∪

ai∈ȟ1,a j∈ȟ2

{(
sθi+θ j ,∪

(µ(l)
i ,ν(l)

i )∈lh(sθi ),(µ
(m)
j ,ν(m)

j )∈lh(sθ j )
{(µ(l)

i + µ(m)
j −

µ(l)
i µ(m)

j , ν(l)
i ν(m)

j )}
)}

,
(2) ȟ1 ⊗ ȟ2 =

∪
ai∈ȟ1,a j∈ȟ2

{(
sθiθ j ,∪

(µ(l)
i ,ν(l)

i )∈lh(sθi ),(µ
(m)
j ,ν(m)

j )∈lh(sθ j )
{(µ(l)

i µ(m)
j ,ν(l)

i +

ν(m)
j −ν(l)

i ν(m)
j )}

)}
,

(3) λ ȟ =
∪

ak∈ȟ

{(
sλθk ,

∪
(µ(n)

k ,ν(n)
k )∈lh(sθk )

{(1 −

(1−µ(n)
k )λ ,(ν(n)

k )λ )}
)}

,

(4) (ȟ)λ =
∪

ak∈ȟ

{(
sθ λ

k
,
∪

(µ(n)
k ,ν(n)

k )∈lh(sθk )
{((µ(n)

k )λ ,

1− (1−ν(n)
k )λ )}

)}
.

Theorem 136. Let ȟ, ȟ1 and ȟ2 be LHIFEs and
λ ,λ1,λ2 > 0, then

(1) ȟ1 ⊕ ȟ2 = ȟ2 ⊕ ȟ1,
(2) ȟ1 ⊗ ȟ2 = ȟ2 ⊗ ȟ1,
(3) λ (ȟ1 ⊕ ȟ2) = λ ȟ1 ⊕λ ȟ2,

(4) (ȟ1 ⊗ ȟ2)
λ = (ȟ1)

λ ⊗ (ȟ2)
λ ,

(5) (λ1 +λ2)ȟ = λ1ȟ⊕λ2ȟ,
(6) ȟλ1+λ2 = ȟλ1 ⊗ ȟλ2 .
Definition 2.536. Let ai = (sθi , lh(sθi)) be a

LIFE, then the score function s(ai) of ai can be de-
fined as

s(ai) =
θi

g | lh(sθi) |
∑

(µ(k)
i ,ν(k)

i )∈lh(sθi )

(µ(k)
i −ν(k)

i ),

and the accuracy function h(ai) of ai can be defined
as

h(ai) =
θi

g | lh(sθi) |
∑

(µ(k)
i ,ν(k)

i )∈lh(sθi )

(µ(k)
i +ν(k)

i ),

where g is the number of linguistic arguments in lin-
guistic term set S and | lh(sθi) | is the number of in-
tuitionistic fuzzy memberships in lh(sθi).

Based on the score function s(ai) and the accu-
racy function h(ai), we can rank LIFEs as follows.
Let ai = (sθi , lh(sθi)) and a j = (sθ j , lh(sθ j)) be two
LIFEs, then

(1) If s(ai)< s(a j), then ai < a j,
(2) If s(ai) = s(a j) and h(ai) < h(a j), then ai <

a j, else if s(ai) = s(a j) and h(ai) = h(a j), then
ai ∼ a j.

Definition 2.636. Let ȟ =
{(

sθi , lh(sθi)
)}

be a
LHIFE, the score function S(ȟ) can be defined as

S(ȟ)=
1
| ȟ |

(
∑ θi

g | lh(sθi) |
∑

(µ(k)
i ,ν(k)

i )∈lh(sθi )

(µ(k)
i −ν(k)

i )
)
,

and the accuracy function A(ȟ) can be defined as

A(ȟ)=
1
| ȟ |

(
∑ θi

g | lh(sθi) |
∑

(µ(k)
i ,ν(k)

i )∈lh(sθi )

(µ(k)
i +ν(k)

i )
)
,

where | ȟ | is the number of LIFEs in ȟ and g is the
number of linguistic terms in linguistic term set S,
| lh(sθi) | is the number of intuitionistic fuzzy mem-
berships in lh(sθi).

Based on the score function and accuracy func-
tion, we present the following method to compare
LHIFEs. Let ȟ1 and ȟ2 be two LHIFEs,

(1) If S(ȟ1)< S(ȟ2), then ȟ1 < ȟ2;
(2) If S(ȟ1) = S(ȟ2) and

(I) A(ȟ1)< A(ȟ2), then ȟ1 < ȟ2,
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(II) A(ȟ1) = A(ȟ2), then ȟ1 ∼ ȟ2.
Definition 2.7. Let ȟ j ( j = 1,2, ...,n) be a

collection of LHIFEs, w = (w1,w2, ...,wn) be the
weight vector of ȟ j ( j = 1,2, ...,n) with w j > 0 ( j =
1,2, ...,n) and ∑n

j=1 w j = 1. The linguistic hesitant
intuitionistic fuzzy weighted averaging (LHIFWA)
operator is a mapping LHIFWA: Hn →H, which can
be defined as follows:

LHIFWAw
(
ȟ1, ȟ2, ..., ȟn

)
= w1ȟ1 ⊕w2ȟ2 ⊕ ...⊕wnȟn.

(1)

Theorem 2. Let ȟ j ( j = 1,2, ...,n) be a collec-
tion of LHIFEs, w = (w1,w2, ...,wn) be the weight
vector of ȟ j ( j = 1,2, ...,n) with w j > 0 ( j =
1,2, ...,n) and ∑n

j=1 w j = 1. The aggregated result
of the LHIFWA operator is also a LHIFE, and

LHIFWAw
(
ȟ1, ȟ2, ..., ȟn

)
=

∪
ai∈ȟi

{(
s(∑n

j=1 w jθ j),
∪

(µ(k)
j ,ν(k)

j )∈lh(sθ j )

{(
1−

∏n
j=1(1−µ(k)

j )w j ,∏n
j=1(ν

(k)
j )w j

)})}
,

(2)
where ai = {(sθi , lh(sθi))}, (µ(k)

j ,ν(k)
j )∈ lh(sθ j), k =

1,2, ..., l j, l j is the number of intuitionistic fuzzy
memberships in lh(sθ j).

Definition 2.8. Let ȟ j ( j = 1,2, ...,n) be a
collection of LHIFEs, w = (w1,w2, ...,wn) be the
weight vector of ȟ j ( j = 1,2, ...,n) with w j > 0 ( j =
1,2, ...,n) and ∑n

j=1 w j = 1. The linguistic hesitant
intuitionistic fuzzy weighted geometric (LHIFWG)
operator is a mapping LHIFWG: Hn → H, which
can be defined as follows:

LHIFWGw
(
ȟ1, ȟ2, ..., ȟn

)
= ȟw1

1 ⊗ ȟw2
2 ⊗ ...⊗ ȟwn

n .
(3)

Theorem 3. Let ȟ j ( j = 1,2, ...,n) be a collec-
tion of LHIFEs, w = (w1,w2, ...,wn) be the weight
vector of ȟ j ( j = 1,2, ...,n) with w j > 0 ( j =
1,2, ...,n) and ∑n

j=1 w j = 1. The aggregated result
of the LHIFWG operator is also a LHIFE, and

LHIFWGw
(
ȟ1, ȟ2, ..., ȟn

)
=

∪
ai∈ȟi

{(
s(∏n

j=1(θ j)
w j ),

∪
(µ(k)

j ,ν(k)
j )∈lh(sθ j ){(

∏n
j=1(µ

(k)
j )w j ,1−∏n

j=1(1−ν(k)
j )w j

)})}
,

(4)

where ai = {(sθi , lh(sθi))}, (µ(k)
j ,ν(k)

j )∈ lh(sθ j), k =
1,2, ..., l j, l j is the number of intuitionistic fuzzy
memberships in lh(sθ j).

Definition 2.9. Let ȟ j ( j = 1,2, ...,n) be a
collection of LHIFEs, w = (w1,w2, ...,wn) be the
weight vector of ȟ j ( j = 1,2, ...,n) with w j > 0 ( j =
1,2, ...,n) and ∑n

j=1 w j = 1, λ > 0. The general-
ized linguistic hesitant intuitionistic fuzzy weighted
averaging (GLHIFWA) operator is a mapping GL-
HIFWA: Hn → H, which can be defined as follows:

GLHIFWAw,λ
(
ȟ1, ȟ2, ..., ȟn

)
= (w1ȟλ

1 ⊕w2ȟλ
2 ⊕ ...⊕wnȟλ

n )
1/λ .

(5)

Theorem 4. Let ȟ j ( j = 1,2, ...,n) be a collec-
tion of LHIFEs, w = (w1,w2, ...,wn) be the weight
vector of ȟ j ( j = 1,2, ...,n) with w j > 0 ( j =
1,2, ...,n) and ∑n

j=1 w j = 1. The aggregated result
of the GLHIFWA operator is also a LHIFE, and

GLHIFWAw,λ
(
ȟ1, ȟ2, ..., ȟn

)
=

∪
ai∈ȟi

{(
s(∑n

j=1 w j(θ j)λ )1/λ ,
∪

(µ(k)
j ,ν(k)

j )∈lh(sθ j )

{(
(1−

∏n
j=1(1− (µ(k)

j )λ )w j)1/λ ,1− (1−∏n
j=1(1−

(1−ν(k)
j )λ )w j)1/λ)})}.

(6)
where ai = {(sθi , lh(sθi)) ∈ ȟi}, (µ(k)

j ,ν(k)
j ) ∈

lh(sθ j), k = 1,2, ..., l j and l j is the number of intu-
itionistic fuzzy memberships in lh(sθ j), λ > 0.

3. Cross-entropy measures for LHIFSs

Let P = {p1, p2, ..., pn} and Q = {q1,q2, ...,qn} be
two probability distribution. In order to measure
the divergence between P and Q, Kullback and
Leibler39 defined the cross-entropy measure as

CE1(P,Q) =
n

∑
i=1

pi ln
pi

qi
. (7)

If n = 2, P = {p,1 − p},Q = {q,1 − q}, then
CE1(P,Q) = p ln p

q +(1− p) ln 1−p
1−q .

Bhandari and Pal40 generalized the cross-entropy
measure based on probability distribution to accom-
modate fuzzy information. Let A and B be two fuzzy
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sets in the finite universe X = {x1,x2, ...,xn}, then
the cross-entropy measure for fuzzy values can be
defined as

CE2(A,B) = ∑n
i=1

(
µA(xi) ln µA(xi)

µB(xi)
+

(1−µA(xi)) ln 1−µA(xi)
1−µB(xi)

)
.

(8)

Vlachos and Sergiadis49 developed a cross-
entropy measure for intuitionistic fuzzy informa-
tion by extending fuzzy cross-entropy measure to
intuitionistic fuzzy environment. Let A′ and B′ be
two intuitionistic fuzzy sets in the finite universe
X = {x1,x2, ...,xn}, then the cross-entropy measure
for intuitionsitic fuzzy values can be defined as

CE3(A′,B′)=
n

∑
i=1

(
µA(xi) ln

µA(xi)

µB(xi)
+νA(xi) ln

νA(xi)

νB(xi)

)
.

(9)
If µB(xi) = 0, µA(xi) ̸= 0 or νB(xi) = 0,νA(xi) ̸= 0,
CE3(A′,B′) is undefined. Vlachos and Sergiadis fur-
ther gave the following cross-entropy

CE4(A′,B′) = ∑n
i=1

(
µA(xi) ln µA(xi)

1
2 (µA(xi)+µB(xi))

+

νA(xi) ln νA(xi)
1
2 (νA(xi)+νB(xi))

)
.

(10)

Uncertainty of intuitionistic fuzzy values is de-
composed into intuitionism and fuzziness. Intu-
itionism is determined by hesitancy degree πA(xi) =
1 − µA(xi) − νA(xi) and fuzziness is determined
by the closeness of membership µA(xi) and non-
membership νA(xi) as △A (xi) = |µA(xi)− νA(xi)|.
Mao et al.43 presented the cross-entropy measure for
intuitionistic fuzzy information by considering intu-
itionism and fuzziness simultaneously as follows

CE5(A′,B′) = ∑n
i=1

(
πA(xi) ln πA(xi)

1
2 (πA(xi)+πB(xi))

+

△A (xi) ln △A(xi)
1
2 (△A(xi)+△B(xi))

)
.

(11)
.
Xu and Xia48 proposed some cross-entropy for-

mulas for hesitant fuzzy information by using two
concave-up functions f (x) = (1 + qx)ln(1 + qx)
and g(x) = xp. Let Ã = {α̃1, α̃2, ..., α̃n} and B̃ =

{β̃1, β̃2, ..., β̃n} be two hesitant fuzzy sets in the fi-
nite universe X = {x1,x2, ...,xn}. The number of el-
ements in all α̃i (i = 1,2, ...,n) and β̃i (i = 1,2, ...,n)
is the same. |α̃i| is the number of elements in α̃i.
α̃σ(i) is the ith largest values in α̃i. Then the cross-
entropy measures can be defined as follows in Eq.
(12) and Eq.(13). Here l = |α̃i|, T = (1+ q) ln(1+
q)− (2+q)(ln(2+q)− ln2), q > 0.

CE5(Ã, B̃) = 1
lT ∑n

i=1 ∑l
j=1

( (1+qα̃σ( j)(xi)) ln(1+qα̃σ( j)(xi))+(1+qβ̃σ( j)(xi)) ln(1+qβ̃σ( j)(xi))

2 −
(2+qα̃σ( j)(xi)+qβ̃σ( j)(xi))

2 ln
(2+qα̃σ( j)(xi)+qβ̃σ( j)(xi))

2 +
(1+q(1−α̃σ(l−i+1)(xi)) ln(1+q(1−α̃σ(l− j+1)(xi))+(1+q(1−β̃2σ(l− j+1)(xi)) ln(1+q(1−β̃σ(l− j+1)(xi))

2

−2+q(1−α̃σ(l−i+1)(xi))+1−β̃σ(l−i+1)(xi))

2 ln
2+q(1−α̃σ(l−i+1)(xi))+1−β̃σ(l−i+1)(xi))

2

)
.

(12)

CE6(Ã, B̃) = 1
l(1−21−p) ∑n

i=1 ∑l
j=1

( α̃ p
σ( j)(xi)+β̃ p

σ( j)(xi)

2 +
(1−α̃σ(l− j+1)(xi))

p+(1−β̃σ(l− j+1)(xi))
p

2 −( α̃σ( j)(xi)+β̃σ( j)(xi)

2

)p
+

(1−α̃σ(l− j+1)(xi)+1−β̃σ(l− j+1)(xi))
p

2

)
, l = |α̃i|.

(13)

Peng et al.26 developed several cross-entropy
measures for intuitionistic hesitant fuzzy numbers
(IHFNs) by extending cross-entropy measures for
hesitant fuzzy elements introduced by Xu and Xia48.
Let α̃ j =< Γα̃ j

,Ψα̃ j
> ( j = 1,2) be IHFNs, Γα̃ j

and Ψα̃ j
denote the possible degrees of member-

ship and non-membership, respectively. Πα̃ j
de-

notes the possible degrees of hesitation. Here T =
(1+q) ln(1+q)− (2+q)(ln(2+q)− ln2), q > 0.
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CE7(α̃1, α̃2) = 1
T

(
maxµα̃1

∈Γα̃1

{
minµα̃2

∈Γα̃2

{
(1+qµα̃1

) ln(1+qµα̃1
)+(1+qµα̃2

) ln(1+qµα̃2
)

2 −
2+qµα̃1

+qµα̃2
2 ln

(
2+qµα̃1

+qµα̃2
2

)}}
+

maxνα̃1
∈Ψα̃1

{
minνα̃2

∈Ψα̃2

{
(1+qνα̃1

) ln(1+qνα̃1
)+(1+qνα̃2

) ln(1+qνα̃2
)

2 −
2+qνα̃1

+qνα̃2
2 ln

(
2+qνα̃1

+qνα̃2
2

)}}
+

maxπα̃1
∈Πα̃1

{
minπα̃2

∈Πα̃2

{
(1+qπα̃1

) ln(1+qπα̃1
)+(1+qπα̃2

) ln(1+qπα̃2
)

2 −
2+qπα̃1

+qπα̃2
2 ln

(
2+qπα̃1

+qπα̃2
2

)}})
, p > 1.

(14)

CE8(α̃1, α̃2) =
(

1
|Γα̃1

| ∑µα̃1
∈Γα̃1

1
T

({
minµα̃2

∈Γα̃2

{
(1+qµα̃1

) ln(1+qµα̃1
)+(1+qµα̃2

) ln(1+qµα̃2
)

2 −
2+qµα̃1

+qµα̃2
2 ln

(
2+qµα̃1

+qµα̃2
2

)})p)1/p
+(

1
|Ψα̃1

| ∑να̃1
∈Ψα̃1

1
T

({
minνα̃2

∈Ψα̃2

{
(1+qνα̃1

) ln(1+qνα̃1
)+(1+qνα̃2

) ln(1+qνα̃2
)

2 −
2+qνα̃1

+qνα̃2
2 ln

(
2+qνα̃1

+qνα̃2
2

)})p)1/p(
1

|Πα̃1
| ∑πα̃1

∈Πα̃1

1
T

({
minπα̃2

∈Πα̃2

{
(1+qπα̃1

) ln(1+qπα̃1
)+(1+qπα̃2

) ln(1+qπα̃2
)

2 −
2+qπα̃1

+qπα̃2
2 ln

(
2+qπα̃1

+qπα̃2
2

)})p)1/p
, p > 1.

(15)

In the following, we propose the axiomatic def-
inition of cross-entropy measure for linguistic hesi-
tant intuitionistic fuzzy information as follows, mo-
tivated by Xu and Xia 48, Peng et al. 26, etc.

Definition 3.1. Let ȟ1, ȟ2 ∈ H, CE ′ : H ×H →
R+, then cross-entropy CE ′(ȟ1, ȟ2) of ȟ1 and ȟ2
should satisfy the following conditions:

(1) CE ′(ȟ1, ȟ2)> 0,∀ ȟ1, ȟ2 ∈ H,
(2) CE ′(ȟ1, ȟ2) = 0, if ȟ1 = ȟ2,
(3) CE ′(ȟc

1, ȟ
c
2) =CE ′(ȟ1, ȟ2),∀ ȟ1, ȟ2 ∈ H.

Here ȟc
i =

{(
s(g−θi), lh(sθi)

c
)}

, lh(sθi)
c =

{(ν(k)
i ,µ(k)

i )},(µ(k)
i ,ν(k)

i ) ∈ lh(sθi), i = 1,2.
We develop several cross-entropy measures for

linguistic hesitant intuitionistic fuzzy information,
motivated by Vlachos and Sergiadis49, Mao et al.43,
Xu and Xia48, Peng et al.26, etc.

Let ȟ1 = {a1i} = {(sθ1i , lh(sθ1i))},(µ
(k)
1i ,ν

(k)
1i ) ∈

lh(sθ1i), ȟ2 = {a2 j} = {(sθ2 j , lh(sθ2 j))},
(µ(k)

2 j ,ν
(k)
2 j ) ∈ lh(sθ2 j). Then two cross entropy mea-

sures can be defined as follows by considering lin-
guistic variables, intuitionistic fuzzy memberships.
Since each LHIFE has several linguistic terms and
intuitionistic fuzzy memberships, we can define
cross-entropy measures by considering the maxi-

mum value and the average value.

CE ′
1(ȟ1, ȟ2)

= max
aki∈ȟk

{
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ2σ(i)
+

(1− θ1σ(i)
g ) log2

2(g−θ1σ(i))

2g−θ1σ(i)−θ2σ(i)

}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{
µ(k)

1σ( j) log2
2µ(k)

1σ( j)

µ(k)
1σ( j)+µ(k)

2σ( j)

+

ν(k)
1σ( j) log2

2ν(k)
1σ( j)

ν(k)
1σ( j)+ν(k)

2σ( j)

}
.

(16)

CE ′
2(ȟ1, ȟ2)

= 1
|a1i| ∑aki∈ȟk

((
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ2σ(i)
+

(1− θ1σ(i)
g ) log2

2(g−θ1σ(i))

2g−θ1σ(i)−θ2σ(i)

)
1

|lh(s(θki)
)| ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

(
µ(k)

1σ( j) log2
2µ(k)

1σ( j)

µ(k)
1σ( j)+µ(k)

2σ( j)

+ν(k)
1σ( j) log2

2ν(k)
1σ( j)

ν(k)
1σ( j)+ν(k)

2σ( j)

))
.

(17)
Similarly, other cross-entropy measures for lin-

guistic hesitant intuitionistic fuzzy elements can be
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defined as follows. By using the generalized mean
operator, we can get the cross-entropy measures
CE ′

3(ȟ1, ȟ2) and CE ′
4(ȟ1, ȟ2).

CE ′
3(ȟ1, ȟ2)

=
(

1
|a1i| ∑aki∈ȟk

((
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ2σ(i)

)p
+(

(1− θ1σ(i)
g ) log2

2(g−θ1σ(i))

2g−θ1σ(i)−θ2σ(i)

)p

+ 1
|lh(sθki )|

∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

((
µ(k)

1σ( j) log2
2µ(k)

1σ( j)

µ(k)
1σ( j)+µ(k)

2σ( j)

)p

+
(

ν(k)
1σ( j) log2

2ν(k)
1σ( j)

ν(k)
1σ( j)+ν(k)

2σ( j)

)p))1/p
, p > 1.

(18)

CE ′
4(ȟ1, ȟ2)

=
(

1
|a1i| ∑aki∈ȟk

(
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ2σ(i)

)p)1/p
+(

1
|a1i| ∑aki∈ȟk

(
(1− θ1σ(i)

g ) log2
2(g−θ1σ(i))

2g−θ1σ(i)−θ2σ(i)

)p)1/p

+
(

1
|a1i||lh(s(θki)

)| ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

(
µ(k)

iσ( j)∗

log2
2µ(k)

1σ( j)

µ(k)
1σ( j)+µ(k)

2σ( j)

)p)1/p
+
(

1
|a1i||lh(sθki)

| ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )(

ν(k)
iσ( j) log2

2ν(k)
1σ( j)

ν(k)
1σ( j)+ν(k)

2σ( j)

)p)1/p
, p > 1.

(19)

Ye38 developed the cross-entropy measure for in-
tuitionistic fuzzy value by considering the comple-
mentary set of the intuitionistic fuzzy set to get

CE(A′,B′)

= ∑n
i=1

(
µA(xi)+1−νA(xi)

2 ∗
log2

µA(xi)+1−νA(xi)
1
2 [(µA(xi)+1−νA(xi))+µB(xi)+1−νB(xi)]

+

1−µA(xi)+νA(xi)
2 ∗

log2
1−µA(xi)+νA(xi)

1
2 [(1−µA(xi)+νA(xi))+1−µB(xi)+νB(xi)]

)
.

We extend the cross-entropy measure CE(A′,B′)
in Ye38 to accommodate linguistic hesitant intu-
itionitic fuzzy values to get cross-entropy measures
CE ′

5(ȟ1, ȟ2) and CE ′
6(ȟ1, ȟ2)

CE ′
5(ȟ1, ȟ2)

= max
aki∈ȟk

{
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ2σ(i)
+

(1− θ1σ(i)
g ) log2

2(g−θ1σ(i))

2g−θ1σ(i)−θ2σ(i)

}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{1+µ(k)
1σ( j)−ν(k)

1σ( j)
2 ∗

log2
2(1+µ(k)

1σ( j)−ν(k)
1σ( j))

2+µ(k)
1σ( j)−ν(k)

1σ( j)+µ(k)
2σ( j)−ν(k)

2σ( j)

+

1−µ(k)
1σ( j)+ν(k)

1σ( j)
2 log2

2(1−µ(k)
1σ( j)+ν(k)

1σ( j))

2−µ(k)
1σ( j)+ν(k)

1σ( j)−µ(k)
2σ( j)+ν(k)

2σ( j)

}
.

(20)

CE ′
6(ȟ1, ȟ2) =

(
1

|a1i| ∑aki∈ȟk

(
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ2σ(i)

)p)1/p
+
(

1
|a1i| ∑a1i∈ȟ1

(
(1− θ1σ(i)

g ) log2
2(g−θ1σ(i))

2g−θ1σ(i)−θ2σ(i)

)p)1/p

(
1

|a1i||lh(s(θki)
)| ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

( µ(k)
1σ( j)+1−ν(k)

1σ( j)
2 log2

2(µ(k)
1σ( j)+1−ν(k)

1σ( j))

2+µ(k)
1σ( j)−ν(k)

1σ( j)+µ(k)
2σ( j)−ν(k)

2σ( j)

)p)1/p
+

(
1

|a1i||lh(sθki)
| ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

(1−µ(k)
1σ( j)+ν(k)

1σ( j)
2 log2

2(1−µ(k)
1σ( j)+ν(k)

1σ( j))

2−µ(k)
1σ( j)+ν(k)

1σ( j)−µ(k)
2σ( j)+ν(k)

2σ( j)

)p)1/p
, p > 1

(21)

By using the concave-up function f (x) = xp,
we extend the cross-entropy CE6(Ã, B̃) developed
by Xu and Xia48 to linguistic hesitant intuitionis-

tic fuzzy environment to get CE ′
7(ȟ1, ȟ2). By using

the concave-up function f (x) = xp and the general-
ized mean operator, we can further get cross-entropy
measure CE ′

8(ȟ1, ȟ2).
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CE ′
7(ȟ1, ȟ2) = 1

1−21−p

(
max
aki∈ȟk

{
(θ1σ(i)/g)p+(θ2σ(i)/g)p

2 −
(

θ1σ(i)/g+θ2σ(i)/g
2

)p}
+

max
aki∈ȟk

{
(1−θ1σ(i)/g)p+(1−θ2σ(i)/g)p

2 −
(

1− θ1σ(i)/g+θ2σ(i)/g
2

)p}
+ max

(µ(k)
i j ,ν(k)

i j )∈lh(sθi j )

{
(µ(k)

1σ( j))
p+(µ(k)

2σ( j))
p

2 −
( µ(k)

1σ( j)+µ(k)
2σ( j)

2

)p}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{
(ν(k)

1σ( j))
p+(ν(k)

2σ( j))
p

2 −
(ν(k)

1σ( j)+ν(k)
2σ( j)

2

)p})
, 2 > p > 1;

(22)

CE ′
8(ȟ1, ȟ2)

=
(

1
|a1i| ∑

aki∈ȟk

1
1−21−q

(
(θ1σ( j)/g)q+(θ2σ( j)/g)q

2 −
(

θ1σ( j)/g+θ2σ( j)/g
2

)q)p)1/p
+(

1
|a1i| ∑

aki∈ȟk

1
1−21−q

(
(1−θ1σ( j)/g)q+(1−θ2σ( j)/g)q

2 −
(

1− θ1σ( j)/g+θ2σ( j)/g
2

)q)p)1/p

+
(

1
|a1i||lh(s(θki)

)| ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

1
1−21−q

(
(µ(k)

1σ( j))
q+(µ(k)

2σ( j))
q

2 −
( µ(k)

1σ( j)+µ(k)
2σ( j)

2

)q)p)1/p

+
(

1
|a1i||lh(s(θki)

)| ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

1
1−21−q

(
(ν(k)

1σ( j))
q+(ν(k)

2σ( j))
q

2 −
(ν(k)

1σ( j)+ν(k)
2σ( j)

2

)q)p)1/p
,

2 > q > 1, p > 1.

(23)

By using the concave-up function f (x) = (1 +
qx)ln(1+qx), we can extend the cross-entropy mea-
sures CE7(α̃1, α̃2) and CE8(α̃1, α̃2) for intuitionistic

hesitant fuzzy values to linguistic hesitant intuition-
istic fuzzy environment to get cross-entropy mea-
sures CE ′

9(ȟ1, ȟ2) and CE ′
10(ȟ1, ȟ2).

CE ′
9(ȟ1, ȟ2)

= 1
T

(
max
aki∈ȟk

{
(1+q(θ1σ(i)/g)) ln(1+q(θ1σ(i)/g))+(1+q(θ2σ(i)/g)) ln(1+q(θ2σ(i)/g))

2 −
2+q(θ1σ(i)/g)+q(θ2σ(i)/g)

2 ln
2+q(θ1σ(i)/g)+q(θ2σ(i)/g)

2

}
+

max
aki∈ȟk

{
(1+q(1−θ1σ(i)/g)) ln(1+q(1−θ1σ(i)/g))+(1+q(1−θ2σ(i)/g)) ln(1+q(1−θ2σ(i)/g))

2 −
2+q(1−θ1σ(i)/g)+q(1−θ2σ(i)/g)

2 ln
2+q(1−θ1σ(i)/g)+q(1−θ2σ(i)/g)

2

}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{
(1+qµ(k)

1σ( j)) ln(1+qµ(k)
1σ( j))+(1+qµ(k)

2σ( j)) ln(1+qµ(k)
2σ( j))

2 −

2+qµ(k)
1σ( j)+qµ(k)

2σ( j)
2 ln

2+qµ(k)
1σ( j)+qµ(k)

2σ( j)
2

}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{
(1+qν(k)

1σ( j)) ln(1+qν(k)
1σ( j))+(1+qν(k)

2σ( j)) ln(1+qν(k)
2σ( j))

2 −

2+qν(k)
1σ( j)+qν(k)

2σ( j)
2 ln

2+qν(k)
1σ( j)+qν(k)

2σ( j)
2

})
, q > 0.

(24)
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CE ′
10(ȟ1, ȟ2)

=
(

1
|a1i|T ∑

aki∈ȟk

(
(1+q(θ1σ(i)/g)) ln(1+q(θ1σ(i)/g))+(1+q(θ2σ(i)/g)) ln(1+q(θ2σ(i)/g))

2

−2+q(θ1σ(i)/g)+q(θ2σ(i)/g)
2 ln

2+q(θ1σ(i)/g)+q(θ2σ(i)/g)
2

)p)1/p
+(

1
|a1i|T ∑

aki∈ȟk

(
(1+q(1−θ1σ(i)/g)) ln(1+q(1−θ1σ(i)/g))+(1+q(1−θ2σ(i)/g)) ln(1+q(1−θ2σ(i)/g))

2

−2+q(θ1σ(i)/g)+q(1−θ2σ(i)/g)
2 ln

2+q(1−θ1σ(i)/g)+q(1−θ2σ(i)/g)
2

)p)1/p
+(

1
|a1i||lh(sθki)

|T ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

(
(1+qµ(k)

1σ( j)) ln(1+qµ(k)
1σ( j))+(1+qµ(k)

2σ( j)) ln(1+qµ(k)
2σ( j))

2 −

2+qµ(k)
1σ( j)+qµ(k)

2σ( j)
2 ln

2+qµ(k)
1σ( j)+qµ(k)

2σ( j)
2

)p)1/p
+(

1
|a1i||lh(s(θki)

)|T ∑
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

(
(1+qν(k)

1σ( j)) ln(1+qν(k)
1σ( j))+(1+qν(k)

2σ( j)) ln(1+qν(k)
2σ( j))

2 −

2+qν(k)
1σ( j)+qν(k)

2σ( j)
2 ln

2+qν(k)
1σ( j)+qν(k)

2σ( j)
2

)p)1/p
.

(25)

Here q > 0, p > 1 and T = (1+q) ln(1+q)− (2+q)(ln(2+q)− ln2).

Theorem 5. The measures defined in Eqs.(16)-
(25) are linguistic hesitant intuitionisic fuzzy cross-
entropy measures, which satisfy the conditions
given in Definition 3.1.

Proof. We prove the Eq.(16) and other equations

can be proved similarly.
According to Shannon’s inequality, it is clear

that CE ′
1(ȟ1, ȟ2) > 0. If ȟ1 = ȟ2, then ∀ x ∈ X ,

ã1σ( j) = ã2σ( j), sθ1σ(i) = sθ2σ(i) , (µ(k)
1σ( j),ν

(k)
1σ( j)) =

(µ(k)
2σ( j),ν

(k)
2σ( j)).

CE ′
1(ȟ1, ȟ2) = max

aki∈ȟk

{
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ2σ(i)
+(1− θ1σ(i)

g ) log2
2(g−θ1σ(i))

2g−θ1σ(i)−θ2σ(i)

}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{
µ(k)

1σ( j) log2
2µ(k)

1σ( j)

µ(k)
1σ( j)+µ(k)

2σ( j)

+ν(k)
1σ( j) log2

2ν(k)
1σ( j)

ν(k)
1σ( j)+ν(k)

2σ( j)

}
= max

aki∈ȟk

{
θ1σ(i)

g log2
2θ1σ(i)

θ1σ(i)+θ1σ(i)
+(1− θ1σ(i)

g ) log2
2(g−θ1σ(i))

2g−θ1σ(i)−θ1σ(i)

}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{
µ(k)

1σ( j) log2
2µ(k)

1σ( j)

µ(k)
1σ( j)+µ(k)

1σ( j)

+ν(k)
1σ( j) log2

2ν(k)
1σ( j)

ν(k)
1σ( j)+ν(k)

1σ( j)

}
= max

aki∈ȟk

{0}+ max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{0}= 0.

CE ′
1(ȟ

c
1, ȟ

c
2) = max

ac
ki∈ȟc

k

{
g−θ1σ(i)

g log2
2(g−θ1σ(i))

(g−θ1σ(i))+(g−θ2σ(i))
+(1− g−θ1σ(i)

g ) log2
2(g−(g−θ1σ(i)))

2g−(g−θ1σ(i))−(g−θ2σ(i))

}
+ max

(ν(k)
i j ,µ(k)

i j )∈lh(sθi j )
c

{
ν(k)

1σ( j) log2
2ν(k)

1σ( j)

ν(k)
1σ( j)+ν(k)

2σ( j)

+µ(k)
1σ( j) log2

2µ(k)
1σ( j)

µ(k)
1σ( j)+µ(k)

2σ( j)

}
,
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CE ′
1(ȟ

c
1, ȟ

c
2) = max

aki∈ȟk

{
(1− θ1σ(i)

g ) log2
2(g−θ1σ(i))

2g−θ1σ(i)−θ1σ(i)
+

θ1σ(i)
g log2

2θ1σ(i)
θ1σ(i)+θ1σ(i)

}
+

max
(µ(k)

i j ,ν(k)
i j )∈lh(sθi j )

{
µ(k)

1σ( j) log2
2µ(k)

1σ( j)

µ(k)
1σ( j)+µ(k)

1σ( j)

+ν(k)
1σ( j) log2

2ν(k)
1σ( j)

ν(k)
1σ( j)+ν(k)

1σ( j)

}
= CE ′

1(ȟ1, ȟ2).

The proof is thus complete.

Several linguistic hesitant intuitionisic fuzzy
cross-entropy measures have been introduced in this
paper, each cross-entropy measure has its own char-
acteristics and emphasis. Decision makers can se-
lect the cross-entropy measure according to the real
needs and his preference.

The proposed cross-entropy measures are the de-
grees of discrimination of ȟ1 from ȟ2. However,
CE ′

i (ȟ1, ȟ2) (i = 1,2, ...,10) are not symmetric with
respect to their arguments. Symmetric form of
cross-entropy measures for LHIFEs can be got by
modifying the Eqs. (16)-(25) as follows:

CE∗
i (ȟ1, ȟ2) =CE ′

i (ȟ1, ȟ2)+CE ′
i(ȟ2, ȟ1). (26)

Example: Let ȟ1 = {(s5,(0.7,0.2),(0.6,0.3)),
(s6,(0.6,0.2),(0.5,0.4)),(s7,(0.5,0.3),(0.6,0.4))},
ȟ2 = {(s6,(0.8,0.1),(0.7,0.3)),(s7,(0.6,0.2),(0.5,
0.3)),(s8,(0.5,0.2),(0.5,0.3))} be two patterns
and ȟ = {(s4, (0.7,0.1), (0.6,0.2)),(s5,(0.7,0.2),
(0.6,0.3)),(s6,(0.6,0.2), (0.6, 0.3))} be a sample.
p = q = 2, then the following results can be got:

CE∗
1 (ȟ1, ȟ) = 0.2636, CE∗

1 (ȟ2, ȟ) = 0.3359,
CE∗

2 (ȟ1, ȟ) = 0.0480, CE∗
2 (ȟ2, ȟ) = 0.0978,

CE∗
3 (ȟ1, ȟ) = 0.3152, CE∗

3 (ȟ2, ȟ) = 0.4811,
CE∗

4 (ȟ1, ȟ) = 0.0571, CE∗
4 (ȟ2, ȟ) = 0.1227,

CE∗
5 (ȟ1, ȟ) = 0.6137, CE∗

5 (ȟ2, ȟ) = 0.8592,
CE∗

6 (ȟ1, ȟ) = 0.5824, CE∗
6 (ȟ2, ȟ) = 0.7987,

CE∗
7 (ȟ1, ȟ) = 0.1867, CE∗

7 (ȟ2, ȟ) = 0.2969,
CE∗

8 (ȟ1, ȟ) = 0.0394, CE∗
8 (ȟ2, ȟ) = 0.0810,

CE∗
9 (ȟ1, ȟ) = 0.0840, CE∗

9 (ȟ2, ȟ) = 0.1322,
CE∗

10(ȟ1, ȟ) = 0.0432, CE∗
10(ȟ2, ȟ) = 0.0830.

From the above results we can see that the sam-
ple ȟ belongs to the pattern ȟ1 by using all the above
cross-entropy measures.

4. New MADM methods based on the
cross-entropy measures of LHIFEs

Considering a multiple attribute decision making
problem, let A = {A1,A2, ...,Am} be a finite alterna-
tive set and C = {C1,C2, ...,Cn} be a finite attribute
set. The decision makers evaluate alternatives with
respect to attributes with linguistic terms and intu-
itionisic fuzzy memberships. If two or more deci-
sion makers gave the same LIFE in evaluating the
same alternative with respect to some attribute, it
is counted only once. The linguistic hesitant intu-
itionistic fuzzy decision matrix can be got as D̃ =

(ȟi j)m×n, where ȟi j = {(sθi j , lh(sθi j)|(µ
(t)
i j ,ν

(t)
i j ) ∈

lh(sθi j), t = 1,2, ..., li j} is LHIFE. {sθi j} is the lin-
guistic terms given by experts to evaluate alterna-
tive Ai with respect to the attribute C j, µ(t)

i j indicates
the degree of linguistic term sθi j satisfying the at-

tribute C j and ν(t)
i j indicates the degree of linguis-

tic term sθi j dissatisfying the attribute C j, such that

µ(t)
i j ,ν

(t)
i j ∈ [0,1] and µ(t)

i j +ν(t)
i j 6 1.

Different LHIFEs may have different number of
LIFEs and different LIFEs may have different num-
ber of intuitionistic fuzzy memberships. In order to
define cross-entropy measures more accurately, we
extend LHIFEs according to the risk attitudes of de-
cision makers until all LHIFEs have the same num-
ber of LIFEs and all LIFEs have the same number
of intuitionistic fuzzy memberships. If the decision
maker is risk-seeking, the largest LIFE and largest
intuitionistic fuzzy membership can be added; if
the decision maker is risk-averse, the smallest LIFE
and smallest intuitionistic fuzzy membership can be
added; if the decision maker is risk-neutral, the aver-
age LIFE and average intuitionistic fuzzy member-
ship can be added.

In some decision making process, information
for attribute weight is partly known or unknown
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completely due to decision time pressure, decision
makers’ lack of knowledge and expertise, compli-
cated decision problems, etc. Generally, partly
known attribute information can be expressed as
a subset of the following relations: a weak rank-
ing: {wi > w j}, i ̸= j; a strict ranking: {wi −w j >
εi(> 0)}, i ̸= j; a ranking with multiples: {wi >
αiw j},0 6 αi 6 1, i ̸= j; an interval form: {β j 6
w j 6 β j + ε j},0 6 β j < β j + ε j 6 1; a ranking of
differences: {wi −w j > wk −wl}, for i ̸= j ̸= k ̸= l.
For a specific decision problem, attribute weight in-
formation can be described as a subset of the above
relationships. The corresponding attribute weight
information set can be denoted as H. According to
information theory, an attribute should be assigned
a larger weight if its evaluation values have obvi-
ous differences since it plays an important role in
the priority procedure. Otherwise, it should be as-
signed a smaller weight51. Since several linguistic
hesitant intuitionistic fuzzy cross-entropy measures
have been developed, we only choose one cross-
entropy measure for the convenience of calculation
and analysis and we can calculate similarly if other
cross-entropy measures are chosen. Then the devia-
tion value d j of attribute C j can be calculated as

d j =
m

∑
i=1

m

∑
k=1

CE∗(ȟi j, ȟk j). (27)

The weighted deviation value can be calculated
as

d = ∑n
j=1 w jd j

= ∑n
j=1 w j(∑m

i=1 ∑m
k=1CE∗(ȟi j, ȟk j))

= ∑n
j=1 ∑m

i=1 ∑m
k=1 w jCE∗(ȟi j, ȟk j).

(28)

A reasonable weight vector w = (w1,w2, ...,wn)
should make the weighted deviation value as large
as possible to differentiate the problem characteris-
tics more effectively51. Thus we set up the following
programming model to determine optimal attribute
weights if attribute weights are partly known.

(M-1) ∑n
j=1 ∑m

i=1 ∑m
k=1 w jCE∗(ȟi j, ȟk j)

s.t. w ∈ H,
w j > 0, j = 1,2, ...,n,
w1 +w2 + ...+wn = 1.

The model (M-1) is a linear programming model,
which can be solved easily by using many existing
methods.

If information for attribute weights is unknown
completely, we set up the following model

(M-2) ∑n
j=1 ∑m

i=1 ∑m
k=1 w jCE∗(ȟi j, ȟk j)

s.t. ∑n
j=1 w2

j = 1,
w j > 0, j = 1,2, ...,n.

In order to solve model (M-2), we construct the fol-
lowing Lagrange function:

L(W,λ )=
n

∑
j=1

m

∑
i=1

m

∑
k=1

w jCE∗(ȟi j, ȟk j)+
λ
2

( n

∑
j=1

w2
j −1

)
,

(29)
where λ is the Lagrange multiplier. Calculate the
differentiation of Eq. (29) with respect to w j ( j =
1,2, ...,n) and λ , and set these partial derivatives
equal to zeros to get{

∂L
∂w j

= ∑m
i=1 ∑m

k=1CE∗(ȟi j, ȟk j)+λw j = 0,
∂L
∂λ = ∑n

j=1 w2
j −1 = 0.

(30)
By solving Eq.(30), we can get the formula for cal-
culating attribute weights as

w j =
∑m

i=1 ∑m
k=1CE∗(ȟi j, ȟk j)√

∑n
j=1

(
∑m

i=1 ∑m
k=1CE∗(ȟi j, ȟk j)

)2
, j = 1,2, ...,n.

(31)
Normalize the attribute weights to get

w j =
∑m

i=1 ∑m
k=1CE∗(ȟi j, ȟk j)

∑n
j=1 ∑m

i=1 ∑m
k=1CE∗(ȟi j, ȟk j)

, j = 1,2, ...,n.

(32)
Based on the above analysis, we can present an

effective approach to solve the multiple attribute de-
cision making problem with linguistic hesitant intu-
itionistic fuzzy information.

Algorithm I
Step 1. Construct the decision matrix D̃ =

(ȟi j)m×n. Multiple decision makers evaluate the al-
ternatives with respect to attributes with linguistic
terms and intuitionistic fuzzy memberships. Then
linguistic hesitant intuitionistic fuzzy elements are
formed as ȟi j.

Step 2. If attribute weights are known com-
pletely, go to Step 3 directly. In order to calculate
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the cross-entropy measure more accurately, we ex-
tend the decision matrix according to the risk at-
titude of decision makers and the decision matrix
D̃′ = (ȟ′i j)m×n can be got. If attribute weights are
known partly, we can solve model (M-1) to obtain
them; if attribute weights are completely unknown,
we can calculate them by using Eq.(32).

Step 3. Calculate the collective evaluation val-
ues of alternatives by using the decision matrix D̃ =
(ȟi j)m×n. We can calculate by using the LHIFWA
operator, the LHIFWG operator or the GLHIFWA
operator.

Step 4. Calculate the scores S(ȟi) (i =
1,2, ...,m) and the accuracy degrees A(ȟi) (i =
1,2, ...,m) of alternatives’ collective evaluation val-
ues ȟi (i = 1,2, ...,m) by using the score function
and accuracy function.

S(ȟi)

= 1
|ȟi|

(
∑ θi

g|lh(sθi )|
∑
(α(k)

i ,β (k)
i )∈lh(sθi )

(µ(k)
i −ν(k)

i )
)
,

(33)
A(ȟi)

= 1
|ȟi|

(
∑ θi

g|lh(sθi )|
∑
(α(k)

i ,β (k)
i )∈lh(sθi )

(µ(k)
i +ν(k)

i )
)
,

(34)
where | ȟi | and | lh(sθ(i)) | are the cardinalities of
ȟi and lh(sθi), respectively. ȟi =

{
(sθi , lh(sθi))},

lh(sθi) =
{
(µ(k)

i ,ν(k)
i )

}
.

Step 5. Rank ȟi according the method given in
Definition 2.6 and rank alternatives accordingly.

In LHIFEs, intuitionistic fuzzy memberships and
nonmemberships have been considered besides lin-
guistic evaluation values. Hence, aggregation of
linguistic hesitant intuitionistic fuzzy information is
more complex than linguistic hesitant fuzzy sets. By
calculating the number of basic operations at each
step, we can get the worst-case time complexity of
our algorithm is O(m2nlt), where m is the num-
ber of alternatives, n is the number of attributes,
l is the largest number of LIFEs in LHIFEs, t is
the largest number of intuitionistic fuzzy values in
LIFEs. Then the complexity of algorithm can tell
us the new algorithm is an efficient and practical
polynomial-time algorithm for solving multiple at-
tribute decision making problems.

TOPSIS method was developed by Hwang and

Yong52, which is based on the principle that the op-
timal alternative should have the shortest distance
from the positive ideal solution and at the same time
have the farthest distance from the negative ideal so-
lution. From the risk viewpoint, decision makers are
risk-averse since they choose the alternative which
is not only making as much profit as possible, but
also avoiding as much risk as possible. In the fol-
lowing, we present a new ranking method based on
the cross-entropy measures and the idea of TOPSIS.

Algorithm II
Step 1. As for Algorithm I.
Step 2. As for Algorithm I.
Step 3. Determine the linguistic hesitant intu-

itionistic fuzzy positive-ideal solution (LHIFPIS) as

ȟ+ =
{
(sg,{(1,0), ...,(1,0)})

}
,

and linguistic hesitant intuitionistic fuzzy negative-
ideal solution (LHIFNIS) as

ȟ− =
{
(s1,{(0,1), ...,(1,0)})

}
.

Each ȟ+ and ȟ− have the same number of LHIFEs
and LIFEs as ȟ′i j.

Step 4. Calculate the symmetric cross-entropy
of ȟ′i j from ȟ+ and ȟ− as G+

i j , G−
i j , respectively.

G+
i j =C∗

2(ȟ
′
i j, ȟ

+) =C2(ȟ′i j, ȟ
+)+C2(ȟ+, ȟ′i j), (35)

G−
i j =C∗

2(ȟ
′
i j, ȟ

−) =C2(ȟ′i j, ȟ
−)+C2(ȟ−, ȟ′i j). (36)

Step 4. Determine the relative closeness by us-
ing the following equation

Gi j =
G−

i j

G+
i j +G−

i j
, i = 1,2, ...,m, j = 1,2, ...,n. (37)

Then the weighted relative closeness coefficients of
alternatives can be calculated as follows

Gi =
n

∑
j=1

w jGi j, i = 1,2, ...,m. (38)

Step 5. Rank alternatives according to the rank-
ing of Gi (i = 1,2, ...,m). The larger the Gi, the bet-
ter the alternative Ai.
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5. Numerical example

A numerical example adapted from Chen and
Yang53 is presented to illustrate efficiency and prac-
tical advantages of the proposed procedure.

Suppose that there is an architecture company
wanting to select a company to supply an impor-
tant material, such as cement. Experts from differ-
ent departments have been invited and they mainly
consider the following four attributes: C1− the price
of product, C2−the quality of product, C3−delivery
time, C4−risk. After pre-evaluation, there are still
five alternatives Ai (i = 1,2, ...,5) left for further
evaluation. We use the new algorithms to rank al-
ternatives.

Step 1. The experts evaluate alternatives
Ai (i = 1,2, ...,5) with respect to attributes C j ( j =
1,2, ...,4) with linguistic terms and intuitionistic
fuzzy memberships. The decision matrix is formed
as D̃ = (ȟi j)4×5 in Table 1.

Step 2. Assume attribute weights are known
completely as w1 = (0.15,0.20,0.30,0.35).

Step 3. Calculate alternatives’ collective evalu-
ation values. For example, we calculate ȟ1 by using
the LHIFWA operator as follows

ȟ1 =
{(

s5.15,{(0.6206,0.1803),(0.6418,

0.1803)}
)
,
(
s5.30,{(0.6331,0.1726),

(0.6536,0.1726)}
)
,
(
s5.45,{(0.5864,

0.2219),(0.6095,0.2219)}
)
,
(
s5.60,

{(0.6000,0.2125),(0.6224,0.2125)}
)}

.

Similarly, we can calculate other ȟi(i = 2,3, ...,5).
Step 4. Calculate scores of collective eval-

uation values ȟi (i = 1,2, ...,5) to get S(ȟ1) =
0.2527,S(ȟ2) = 0.2493,S(ȟ3) = 0.2193,S(ȟ4) =
0.2505,S(ȟ5) = 0.2601. Rank S(ȟi) (i = 1,2, ...,5)
to get

S(ȟ5)> S(ȟ1)> S(ȟ4)> S(ȟ2)> S(ȟ3).

Step 5. Rank ȟi according to the ranking of S(ȟi) to
get

ȟ5 > ȟ1 > ȟ4 > ȟ2 > ȟ3.

Then alternatives can be ranked accordingly as

A5 ≻ A1 ≻ A4 ≻ A2 ≻ A3.

The optimal alternative is A5.

We can use the LHIFWG operator or the
GLHIFWAλ operator in Step 3 and other steps
are the same as above. Then results can be ob-
tained as shown in Table 3. If attribute weights
are partly known or completely unknown, we need
to calculate them first. Assume decision makers
are risk-averse, then the smallest intuitionistic fuzzy
value and LIFE can be added to extend the de-
cision matrix as D̃′, which is shown in Table 2.
Though several cross-entropy measures have been
introduced in this paper, we only choose one to
calculate attribute weights for space limit. Here
we use cross-entropy measures CE∗

2 and similar re-
sults can be got if other cross-entropy measures are
used. If attribute weights are known partly, we
can set up the following Model (M-3) to determine
them as w2 = (0.2782,0.3062,0.2279,0.1877). If
attribute weights are unknown completely, we
determine them by using Eq.(33) to get w3 =
(0.30,0.15,0.35,0.20). Other steps can be calcu-
lated similarly as that of completely known attribute
weights method above and results are shown in Ta-
ble 3. If attribute weight vector w2 is used, A2 be-
comes the optimal alternative and A5 becomes the
sub-optimal alternative in most case. For w3, A1 be-
comes the optimal alternative and A5 becomes the
sub-optimal alternative.

(M-3) 1.9957w1 +2.1970w2 +1.6348w3
+1.3467w4

s.t. 0.15 6 w1 6 0.30,0.10 6 w2 6 0.25,
0.20 6 w3 6 0.35,0.10 6 w4 6 020,
2w2 6 w3,w1 +w2 + ...+w4 = 1.

If Algorithm II is used to rank alternatives, the
first two steps are the same as that of Algorithm I. In
Step 3, we determine the LHIFPIS ȟ+ and LHIFNIS
ȟ− as ȟ+ = {ǎ+}, ǎ+ = (s9,{(1,0),(1,0)}), ȟ− =
{ǎ−}, ǎ−=(s1, {(0,1),(0,1)}). In Step 4, we calcu-
late the symmetric cross-entropy of ȟi j from ȟ+ and
ȟ−. For example, we calculate G+

i j and G−
i j by using

Eqs.(35)-(36) if CE∗
2 is chosen. The relative close-

ness coefficients can be calculated by using Eq. (37).
For completely known attribute weight vector w1 =
(0.15,0.20,0.30,0.35), the weighted relative close-
ness coefficients can be calculated by using Eq.(38)
as G1 = 0.5588,G2 = 0.5414,G3 = 0.4701,G4 =
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Table 1: Decision matrix D̃.
C1 C2

A1 {(s6,(0.5,0.4)),(s7,(0.6,0.3))} {(s2,(0.6,0.2),(0.7,0.2))}
A2 {(s3,(0.5,0.2),(0.5,0.3)) } {(s7,(0.7,0.1)),(s8,(0.8,0.2))}
A3 {(s4,(0.6,0.1))} {(s5,(0.7,0.3),(0.5,0.4))}
A4 {(s2,(0.6,0.2),(0.5,0.3))} {(s6,(0.8,0.2))}
A5 {(s5,(0.7,0.3)),(s6,(0.6,0.2))} {(s3,(0.5,0.2),(0.6,0.3))}

C3 C4
A1 {(s7,(0.7,0.1)),(s8,(0.6,0.2))} {(s5,(0.6,0.2))}
A2 {(s6,(0.6,0.3),(0.7,0.2))} {(s4,(0.7,0.2)),(s5,(0.5,0.3),(0.6,0.4))}
A3 {(s2,(0.5,0.4)),(s3,(0.5,0.2))} {(s8,(0.6,0.1),(0.7,0.2))}
A4 {(s3,(0.7,0.2),(0.6,0.3))} {(s6,(0.6,0.2)),(s7,(0.7,0.1))}
A5 {(s7,(0.8,0.2)),(s8,(0.6,0.3))} {(s4,(0.5,0.2))}

Table 2: Extended decision matrix D̃′.
C1 C2

A1 {(s6,(0.5,0.4),(0.5,0.4)),(s7,(0.6,0.3),(0.5,0.4))} {(s2,(0.6,0.2),(0.7,0.2)),(s2,(0.5,0.4),(0.5,0.4))}
A2 {(s3,(0.5,0.2),(0.5,0.3)),(s2,(0.5,0.4),(0.5,0.4))} {(s7,(0.7,0.1),(0.5,0.4)),(s8,(0.8,0.2),(0.5,0.4))}
A3 {(s4,(0.6,0.1),(0.5,0.4)),(s2,(0.5,0.4),(0.5,0.4))} {(s5,(0.7,0.3),(0.5,0.4)),(s2,(0.5,0.4),(0.5,0.4))}
A4 {(s2,(0.6,0.2),(0.5,0.3)),(s2,(0.5,0.4),(0.5,0.4))} {(s6,(0.8,0.2),(0.5,0.4)),(s2,(0.5,0.4),(0.5,0.4))}
A5 {(s5,(0.7,0.3),(0.5,0.4)),(s6,(0.6,0.2),(0.5,0.4))} {(s3,(0.5,0.2),(0.6,0.3)),(s2,(0.5,0.4),(0.5,0.4))}

C3 C4
A1 {(s7,(0.7,0.1),(0.5,0.4)),(s8,(0.6,0.2),(0.5,0.4))} {(s5,(0.6,0.2),(0.5,0.4)),(s2,(0.5,0.4),(0.5,0.4))}
A2 {(s6,(0.6,0.3),(0.7,0.2)),(s2,(0.5,0.4),(0.5,0.4))} {(s4,(0.7,0.2),(0.5,0.4)),(s5,(0.5,0.3),(0.6,0.4))}
A3 {(s2,(0.5,0.4),(0.5,0.4)),(s3,(0.5,0.2),(0.5,0.4))} {(s8,(0.6,0.1),(0.7,0.2)),(s2,(0.5,0.4),(0.5,0.4))}
A4 {(s3,(0.7,0.2),(0.6,0.3)),(s2,(0.5,0.4),(0.5,0.4))} {(s6,(0.6,0.2),(0.5,0.4)),(s7,(0.7,0.1),(0.5,0.4))}
A5 {(s7,(0.8,0.2),(0.5,0.4)),(s8,(0.6,0.3),(0.5,0.4))} {(s4,(0.5,0.2),(0.5,0.4)),(s2,(0.5,0.4),(0.5,0.4))}

0.5273,G5 = 0.5332. Then we can rank the relative
closeness coefficients as G1 > G2 > G5 > G4 > G3.
Alternatives can be ranked accordingly as A1 ≻A2 ≻
A5 ≻ A4 ≻ A3 and the optimal alternative is A1. If
other cross-entropy measures are used, we can cal-
culate similarly and results are shown in Table 4,
where p = q = 2. For attribute weights w2 and w3,
we can get results as in Table 5 and Table 6, respec-
tively.

In Table 4, it can be seen that A2 becomes the
optimal alternative if cross-entropy measures CE∗

9
and CE∗

10 are used, which is quite different from
other results. However, in most cases, the ranking
is A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 and A1 becomes the
best alternative and A3 becomes the worst alterna-
tive. The subtle ranking differences are due to the
different information fusion mechanisms. In Table
5, A1 becomes the optimal alternative if CE∗

1 , CE∗
2 ,

CE∗
4 , CE∗

7 are used and A2 becomes the best alterna-
tive for other cross-entropy measures. A3 is still the
worst alternative. In Table 6, we can get the same
ranking A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 for all the cross-
entropy measures.

Since different cross-entropy measures may pro-
duce different ranking results and each cross-
entropy has its own characteristics and emphasis,
different cross-entropy measures can provide differ-
ent views of the decision problem. Decision makers
can choose the corresponding cross-entropy mea-
sure according to real needs, decision makers’ pref-
erence and interests.

In order to illustrate practical advantages of the
new method, we compare it with the method of Peng
et al.26. In Peng et al.’s method, only hesitant intu-
itionistic fuzzy values are considered. If linguistic
terms are omitted, CE∗

i (i = 1,2, ...,10) reduce to

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 120–139
___________________________________________________________________________________________________________

134



Table 3: The results of different aggregation operators with different attribute weights.
S(ȟ1) S(ȟ2) S(ȟ3) S(ȟ4) S(ȟ5) Rankings

w1 LHIFWA 0.2527 0.2493 0.2193 0.2505 0.2126 A1 ≻ A4 ≻ A2 ≻ A3 ≻ A5
LHIFWG 0.2269 0.2285 0.1901 0.2193 0.1884 A2 ≻ A1 ≻ A4 ≻ A3 ≻ A5
GLHIFWA2 0.2709 0.2626 0.2445 0.2724 0.2283 A4 ≻ A1 ≻ A2 ≻ A3 ≻ A5

w2 LHIFWA 0.2258 0.2599 0.2018 0.2278 0.2057 A2 ≻ A4 ≻ A1 ≻ A5 ≻ A3
LHIFWG 0.1949 0.2297 0.1818 0.1922 0.1838 A2 ≻ A5 ≻ A1 ≻ A4 ≻ A3
GLHIFWA2 0.2500 0.2791 0.2212 0.2525 0.2207 A2 ≻ A5 ≻ A4 ≻ A1 ≻ A3

w3 LHIFWA 0.2630 0.2215 0.1876 0.1887 0.2442 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3
LHIFWG 0.2390 0.1987 0.1654 0.1614 0.2201 A1 ≻ A5 ≻ A2 ≻ A3 ≻ A4
GLHIFWA2 0.2787 0.2363 0.2100 0.2118 0.2582 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3

Table 4: The results with known attribute weight vector w1.
G1 G2 G3 G4 G5 Rankings Best alternative

CE∗
1 0.5588 0.5414 0.4701 0.5273 0.5332 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
2 0.6048 0.5943 0.4865 0.5395 0.5698 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
3 0.5410 0.5349 0.4696 0.5133 0.5241 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
4 0.5808 0.5670 0.4740 0.5465 0.5439 A1 ≻ A2 ≻ A4 ≻ A5 ≻ A3 A1

CE∗
5 0.5321 0.5295 0.4633 0.4990 0.5162 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
6 0.5264 0.5213 0.4515 0.4913 0.5114 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
7 0.6046 0.5895 0.4876 0.5670 0.5751 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
8 0.5512 0.5470 0.4763 0.5153 0.5341 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
9 0.4120 0.4171 0.3913 0.4009 0.3940 A2 ≻ A1 ≻ A4 ≻ A5 ≻ A3 A2

CE∗
10 0.3854 0.3874 0.3713 0.3676 0.3644 A2 ≻ A1 ≻ A3 ≻ A4 ≻ A5 A2

intuitionistic hesitant fuzzy cross-entropy measures
CE†

i (i = 1,2, ...,10). Extend hesitant intuitionis-
tic fuzzy evaluation elements according to the risk
attitude of decision makers. Assume decision mak-
ers are risk-averse and the minimum intuitionistic
fuzzy value is added until all the hesitant intuition-
isic fuzzy elements have the same number of intu-
itionisic fuzzy values and the extended decision ma-
trix D = (h′i j)5×4 is formed. Determine the hesitant
intuitionistic fuzzy positive ideal solution h+ and
the hesitant intuitionistic fuzzy negative ideal so-
lution h− as h+ = {a+},a+ = ((1,0),(1,0)),h− =
{a−},a− = ((0,1),(0,1)). Calculate the symmet-
ric cross-entropy measures of h′i j from h+ and h−

as G+
i j , G−

i j , respectively. Assume weight vector
of attributes is also w1 = (0.15,0.20,0.30,0.35) to
facilitate comparison. We can calculate weighted
relative closeness coefficients of alternatives by us-
ing Eq.(38) and results are shown in Table 7. From
the results we can see different ranking results can

be got in the proposed method and Peng et al.26

method. In the proposed method, A1 is the optimal
alternative in most case and A2 is optimal alternative
in CE∗

9 and CE∗
10. In Peng et al.26 method, A2, A3

and A4 become the optimal alternative for different
cross-entropy measures. Different ranking results
due to different decision information. Comparing
evaluation information in Peng el al.’s method with
that in the proposed algorithm, linguistic terms have
been omitted in Peng et al.’s method. If all decision
makers use the same linguistic term in evaluation in
the proposed method, we can got the same ranking
results in the two methods. Since different linguistic
terms can be used in the proposed method, more
information has been used and more accurate evalu-
ation values can be got. Different evaluation infor-
mation has been used in two methods and different
results are reasonable. We further compare it with
the method of Yang et al.54. In Yang et al.’s method,
each linguistic term only has one intuitionistic fuzzy
membership. Hence we first aggregate the intuition-
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Table 5: The results with completely unknown attribute weight vector w2.
G1 G2 G3 G4 G5 Rankings Best alternative

CE∗
1 0.5572 0.5480 0.4558 0.4877 0.5339 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
2 0.4756 0.4613 0.3137 0.3603 0.4364 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
3 0.5392 0.5400 0.4575 0.4828 0.5239 A2 ≻ A1 ≻ A5 ≻ A4 ≻ A3 A2

CE∗
4 0.5819 0.5689 0.4566 0.5012 0.5419 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
5 0.5267 0.5339 0.4492 0.4656 0.5149 A2 ≻ A1 ≻ A5 ≻ A4 ≻ A3 A2

CE∗
6 0.5442 0.5497 0.4629 0.4824 0.5321 A2 ≻ A1 ≻ A5 ≻ A4 ≻ A3 A2

CE∗
7 0.6078 0.5929 0.4696 0.5169 0.5798 A1 ≻ A2 ≻ A5 ≻ A4 ≻ A3 A1

CE∗
8 0.5463 0.5520 0.4615 0.4796 0.5327 A2 ≻ A1 ≻ A5 ≻ A4 ≻ A3 A2

CE∗
9 0.3955 0.4178 0.3797 0.3946 0.3889 A2 ≻ A1 ≻ A4 ≻ A5 ≻ A3 A2

CE∗
10 0.3727 0.3902 0.3531 0.3576 0.3586 A2 ≻ A1 ≻ A5 ≻ A4 ≻ A3 A2

Table 6: The results with partly known attribute weight vector w3.
G1 G2 G3 G4 G5 Rankings Best alternative

CE∗
1 0.6049 0.5051 0.4501 0.4769 0.5807 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
2 0.5457 0.3975 0.3085 0.3498 0.5026 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
3 0.5764 0.5076 0.4501 0.4742 0.5601 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
4 0.6360 0.5213 0.4482 0.4876 0.6005 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
5 0.5691 0.5010 0.4418 0.4546 0.5533 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
6 0.5843 0.5139 0.4536 0.4703 0.5686 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
7 0.6660 0.5408 0.4617 0.5033 0.6380 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
8 0.5914 0.5160 0.4536 0.4684 0.5741 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
9 0.4158 0.4029 0.3623 0.3789 0.4099 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

CE∗
10 0.3939 0.3774 0.3374 0.3425 0.3801 A1 ≻ A5 ≻ A2 ≻ A4 ≻ A3 A1

istic fuzzy memberships into a collective one by us-
ing intuitionistic fuzzy averaging operator (IFA) if a
linguistic term has several intuitionistic fuzzy mem-
berships. IFA(α1,α2, ...,αn) = ∑n

j=1
1
n α j = (1 −

∏n
j=1(1 − µ(k)

j )
1
n ,∏n

j=1(ν j)
1
n ), α j = (µ j,ν j). The

decision matrix degenerates to D̂ = (ĥi j)5×4. Then
we aggregate the evaluation values by using the hes-
itant intuitionistic fuzzy linguistic weighted averag-
ing (HIFLWA) operator, HIFLWAw(ĥ1, ĥ2, ..., ĥn) =

∑n
j=1 w jĥ j =

∪
ai∈ĥi

{(s(∑n
j=1 w jθ j),(1 − ∏n

j=1(1 −

µ(k)
j )w j ,∏n

j=1(ν
(k)
j )w j))}, the hesitant intuitionis-

tic fuzzy linguistic weighted geometric (HIFLWG)
operator HIFLWGw

(
ĥ1, ĥ2, ..., ĥn

)
= ∏n

j=1(ĥ j)
w j =∪

ai∈ĥi

{(
s(∏n

j=1(θ j)
w j ),

(
∏n

j=1(µ
(k)
j )w j ,1 − ∏n

j=1(1 −

ν(k)
j )w j

))}
, or the generalized hesitant intuition-

istic fuzzy linguistic weighted averaging (GHI-

FLWA) operator GHIFLWAw
(
ĥ1, ĥ2, ..., ĥn

)
=

(∑n
j=1 w j(ĥ j)

λ )1/λ =
∪

ai∈ĥi

{(
s(∑n

j=1 w j(θ j)λ )1/λ ,
(
(1 −

∏n
j=1(1 − (µ(k)

j )λ )w j)1/λ ,1 − (1 − ∏n
j=1(1 − (1 −

ν(k)
j )λ )w j)1/λ))}. The weight vector of attributes is

also taken as w1 = (0.15,0.20,0.30,0.35) to facili-
tate comparison. The results are shown in Table 8.
From the results we can see that we can get similar
ranking results in the proposed method and Yang et
al.’s method54. There is little difference in values
to be aggregated since different intuitionistic fuzzy
values in the proposed method are replaced by the
average one. For space limit, we only present a sim-
ple example to illustrate the new algorithm. The
results for other large-scale complex decision prob-
lems may have a greater difference. Since different
intuitionistic fuzzy values can be used to model hes-
itation and uncertainty, the proposed method is more
flexible and accurate.
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Table 7: The results of Peng et al.29 method with known attribute weights w1.
G1 G2 G3 G4 G5 Rankings Best alternative

CE†
1 0.6797 0.6785 0.6763 0.6955 0.6685 A4 ≻ A1 ≻ A2 ≻ A3 ≻ A4 A4

CE†
2 0.6654 0.6799 0.6579 0.6803 0.6496 A4 ≻ A2 ≻ A1 ≻ A3 ≻ A5 A4

CE†
3 0.6079 0.6222 0.6008 0.6196 0.6009 A2 ≻ A4 ≻ A1 ≻ A5 ≻ A3 A2

CE†
4 0.6636 0.6551 0.6660 0.6637 0.6111 A3 ≻ A4 ≻ A1 ≻ A2 ≻ A5 A3

CE†
5 0.5600 0.5732 0.5541 0.5719 0.5538 A2 ≻ A4 ≻ A1 ≻ A3 ≻ A5 A2

CE†
6 0.6068 0.6204 0.6007 0.6180 0.6000 A2 ≻ A4 ≻ A1 ≻ A3 ≻ A5 A2

CE†
7 0.7206 0.7334 0.7517 0.7276 0.7376 A3 ≻ A5 ≻ A2 ≻ A4 ≻ A1 A3

CE†
8 0.6043 0.6272 0.6196 0.6271 0.6128 A2 ≻ A4 ≻ A3 ≻ A5 ≻ A1 A2

CE†
9 0.7280 0.7380 0.7284 0.7455 0.7205 A4 ≻ A2 ≻ A3 ≻ A1 ≻ A5 A4

CE†
10 0.7046 0.7242 0.6949 0.7221 0.6922 A2 ≻ A4 ≻ A1 ≻ A3 ≻ A5 A2

Table 8: The results of Yang et al.68 with weights w1.
S(ĥ1) S(ĥ2) S(ĥ3) S(ĥ4) S(ĥ5) Rankings

HIFLWA 0.2528 0.2499 0.2208 0.2420 0.2128 A1 ≻ A2 ≻ A4 ≻ A3 ≻ A5
HIFLWG 0.2275 0.2302 0.1936 0.2021 0.1890 A2 ≻ A1 ≻ A4 ≻ A3 ≻ A5
GHIFLWA2 0.2709 0.2628 0.2454 0.2650 0.2282 A1 ≻ A4 ≻ A2 ≻ A3 ≻ A5

From the above analysis we can see the pro-
posed approaches have the following advantages.
First, LHIFEs have been used to evaluate alterna-
tives, which are more flexible since each LHIFE has
several linguistic evaluation values and each linguis-
tic evaluation value has several intuitionistic fuzzy
memberships. The inherent fuzzy thought of the de-
cision makers have been retained, which can guar-
antee accuracy of final results. Second, the cross-
entropy measures are very important in decision
making and we have found few study based on the
linguistic hesitant intuitionistic fuzzy information.
The new proposed cross-entropy measures can in-
clude the advantages of intuitionistic fuzzy cross-
entropy measures and hesitant fuzzy cross-entropy
measures. Finally, the proposed approaches can pro-
vide useful and flexible way to deal with multiple
attribute decision making problem with different at-
tribute weight situations including attribute weights
partly known, completely known and completely
unknown.

6. Conclusions

In this paper, some linguistic hesitant intuitionis-
tic fuzzy cross-entropy measures have been pro-

posed, which have the advantages of the intuitionis-
tic fuzzy cross-entropy measures and hesitant fuzzy
cross-entropy measures. We first introduce some
aggregation operators including LHIFWA opera-
tor, LHIFWG operator and the GLHIFWA opera-
tor. Then we propose several linguistic hesitant intu-
itionistic fuzzy cross-entropy measures. The proper-
ties of new cross-entropy measures have been stud-
ied. Two new multiple attribute decision making
methods have been proposed based on the proposed
cross-entropy measures, in which attribute values
are given as linguistic hesitant intuitionistic fuzzy
elements. The supplier selection problem has been
presented to illustrate feasibility and practical ad-
vantages of the new methods. The prominent fea-
ture of the new methods is that they can provide a
flexible and useful way to deal with decision mak-
ing problems within linguistic hesitant intuitionisic
fuzzy environment.

Further improvements of our algorithm might in-
clude the application of our new method to more
complex multiple attribute decision making problem
in reality, such as the personnel selection, the prod-
uct selection, and the environment evaluation, etc.
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