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A generalized asymmetry model for square contingency tables with ordered categories
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For square contingency tables with ordered categories, the present paper proposes an asymmetry model with
m-additional parameters, which indicates (1) the generalized marginal homogeneity and (2) the structure of
quasi-symmetry for cumulative probabilities. The proposed model includes a modified palindromic symmetry
model by ki, Oda and Tomizawa [7]. Also the present paper gives the decomposition of the symmetry model
using the proposed model. Examples are given.
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1. Introduction

Consider the square contingency tables with same row and column classifications. For example,
consider the data in Table 1. The data in Table 1, taken from Goodman [5], are constructed from
occupational status of 2391 farther-son pairs in Denmark. The row is the father’s status category
and column is the son’s status category. The categories are ordered from (1) to (5) (high to low).

In Table 1, many observations concentrate on the main diagonal cells. Therefore for these data, the

model of independence does not hold. Namely, the father’'s status is strongly associated with the
son’s status. Instead, we are interested in whether or not a father’s status is symmetric to his son’s
status.
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Table 1. Occupational status for Danish father-son pairs; from Goodman [5].
(Upper and lower parenthesized values are the maximum likelihood estimates
of expected frequencies under the PS(3) and AS(3) models, respectively.)

Father's Son’s status
status 1) 2) 3) (4) (5) Total
(1) 18 17 16 4 2 57
(18.00) (18.48) (14.60) (4.41) (3.57)
(18.00) (18.21) (14.07) (4.09) (4.05)
2 24 105 109 59 21 318
(22.75) (105.00) (105.59) (59.24) (17.29)
(22.98) (105.00) (104.83) (56.46) (18.62)
3) 23 84 289 217 95 708
(24.69) (87.14) (289.00) (220.85) (98.02)
(25.44) (87.79) (289.00) (221.45) (95.50)
(4) 8 49 175 348 198 778
(7.44) (48.56) (171.11) (348.00) (195.96)
(7.90) (51.37) (170.60) (348.00) (196.33)
(5) 6 8 69 201 246 530
(5.01) (10.98) (65.98) (203.34) (246.00)
(4.20) (9.70) (68.51) (202.91) (246.00)
Total 79 263 658 829 562 2391

Note Status (1) is High professionals, (2) White-collar employees of higher edu-
cation, (3) White-collar employees of less high education, (4) Upper working
class, and (5) Unskilled workers.

For anr x r square contingency table with the same row and column ordinal classifications, let
pij denote the probability that an observation will fall in title row andjth column of the table
(i=1,....r;j=1,...,r). The symmetry (S) model is defined by

pij =pji (i<i)

see Bowker [3], Bishop, Fienberg and Holland [2, p. 282] and Agresti [1, Chap. 11]. For the data
in Table 1, the S model indicates that the probability that a father’s stait@mshis son’s status is

j, is equal to the probability that the father’s statug &nd his son’s status isNamely, this model
describes a structure of symmetry of the probabilifip$} with respect to the main diagonal of the
table. LetX; andX, denote the row and column variables, respectively, and let

ior

Gj=3y Y pt=PXa<i,Xe>j) (i<j),
s=1t=]
and
roi
Gji=3) > Ppst=PX =], X<i) (i<]).

SSt=
The S model may be expressed as
Gij = G;ji (i<j).
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For the data in Table 1, this indicates that the cumulative probability that a father’s statois is
below and his son’s status jor above, is equal to the cumulative probability that the father’s status
is j or above and his son’s status isr below. The marginal homogeneity (MH) model (Stuart [12])
is defined by
p.=pi (i=1,...,r),
wherep;. = ¥{_; pir andp.i = S¢_; psi. The MH model may be expressed as
Giit1=Giyi (i=1,...,r=1).

Tahata and Tomizawa [13] considered thedditional parameters marginal homogeneity (Mi)(
model which is a generalization of the MH model. For a givetm=1,...,r — 1), the MH(m)
model is defined by

Giini=A"Gi1; (i=1,...,r—1),

where

(m) m-1 ik
1

A special case of the Mhif) model obtained by puttingA, = 1} is the MH model. Whem =1, 2

andr — 1, the MH{M) models are the extended marginal homogeneity model in Tomizawa [16], the

generalized marginal homogeneity model in Tomizawa [17] and saturated model, respectively.
Caussinus [4] proposed the quasi-symmetry (QS) model for cell probabilities, defined by

Pij :aiBijij (i:l,...,r;j =1,...,r),

whereyi; = ;i (see also Goodman [6]; Kateri and Agresti [8]). Denote the odds ratio for rows
ands (> i), and columng andt (> j) by 8sjt. Thus@s ;i = (pij Pst)/(Pit Psj)- For the data in Table

1, theBsjt (= (Pij/Psj)/(Pit/Pst)) indicates that the ratio of the odds that the father’s status is
instead ofs when the son’s status isto the odds that the father’s status isstead ofs when the
son’s status is. Using odds ratios, the QS model is also expressed as

Bsjt = Ojis (I <sj<t).

Therefore this model has characterization in terms of symmetry of odds ratios (though the S model
has characterization in terms of symmetry of cell probabilities). The QS model may be expressed as

pj=¢&q@; (i=1..rnj=1...7r),

whereq@; = ¢;i. Caussinus [4] also gave the theorem that the S model holds if and only if the QS and
MH models hold. Miyamoto, Ohtsuka and Tomizawa [10] proposed the cumulative quasi-symmetry
(CQS) model for cumulative probabiliti§ss;; }, defined by

Gj=w¥; (1), pi="%Wi,
whereW;; = W;;. This model may be expressed as

Si_ %o,

see also Tahata and Tomizawa [14].
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McCullagh [9] considered the palindromic symmetry (PS) model, defined by

whereW;; = W anda; = 1 without loss of generality. A special case of the PS model obtained

by puttingA = 1 and{a; = 1} is the S model. Note that the PS model witheplaced by, is the

generalized palindromic symmetry model (McCullagh [9]). The PS model is also expressed as
Si_pa % (i),

Gji CXJ',;L

Saigusa, Tahata and Tomizawa [11] consideredrdaelditional parameters palindromic symmetry
(PS()) model. For a givemn (m=1,...,r — 1), the PSn) model is defined by

Gij _ ™ a
Gji aj_1

(i <),

where

(m) m-1 ik
A- — Ak .
!

Whenm = 1 (with Ai(l) = /\p), the PS(1) model is identical to the PS model, and winear — 1,
the PS( — 1) model is the generalized palindromic symmetry model. Iki, Oda and Tomizawa [7]
considered the modified palindromic symmetry (MPS) model. The MPS model is defined by

BWi (i<ijij#i+1),

Gij=4q MY (i<rj=i+1), pi="Wi,
Bi-1¥ij (i>]),

whereW;; = W; andf; = 1 without loss of generality. A special case of this model obtained by

puttingl” = 1 and{ = 1} is the S model. The MPS model is also expressed as

Giit1 ,
—— = (i=1,....,r=1),
Gitui ( )
and
Gij Gi S
— = i< i+1).
Gy B (<HIAIHD

The PSin) model is the PS model with thre-additional parametelﬁi(m) instead of one param-
eterA. So, we are interested in a model which is the MPS model withrHaelditional parameters
instead of one parametEr

In the present paper, Section 2 proposes a new model which is the MPS model with the
additional parameters. Section 3 gives the decomposition of the S model using the proposed model.
Section 4 describes the goodness-of-fit test and Section 5 gives examples. Section 6 provides some
concluding remarks.
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2. An asymmetry model withm-additional parameters

Consider a model defined by, for a givenm=1,...,r — 1),

Wi (i<jj#i+1),
Gij = ri(m)BiLPij (i<rj=i+1), pi="W¥i,
B-aWi (i>]),

whereW;; = Wi , 1 = 1 without loss of generality and

(m) m-1 ik
ol

We shall refer to this model as tineadditional parameters asymmetry (A3) model. Especially,
the AS(1) model is identical to the MPS model. The AfB(nodel is also expressed as

Giit1 _ ri(m) (i=1,...r—1), (2.1)
Git1,

and
Gij Gi L
— = i< j; i+1). 2.2
G~ B U<BiFiHD (2.2)

From the equation (2.1), the paramelfé’f‘) indicates that the ratio of the cumulative probability
that an observation will fall in row categoiyor below and column categoiy+ 1 or above (i.e.,
Gii+1) to the cumulative probability that the observation falls in row categeryl or above and
column category or below (i.e.,Gi;1). In addition, the equation (2.1) is identical to the Mij(
model. Namely, the log-odds of cumulative probabilities are expressed as the polynomial function
of category indicator (i =1,...,r — 1), i.e.,

Gij . .
Iog<ﬁ> —=loglg+iloghi+---+i™tlogMm 1.
Git1,i

The equation (2.2) states that the cumulative probability that an observation will fall in row category
i or below and column category (i < j;j # i+ 1) or above, isf;/Bj—1 times higher than the
cumulative probability that the observation falls in row categpor above and column category
i or below. FromB; = 1, the parametergj_; indicates the ratio 0Gj; to Gy (j =3,...,r). The
AS(m) model is expressed as the equations (2.1) and (2.2), the interpretation of the parameters
{Wij } is not essential.
Define the odds ratio based ¢ }, i # |, by Ois;jt = (GijGst)/(GitGsj) for 1 <i<s< j <
t <r. For the data in Table 1, ti@;j: (= (Gij/Gsj)/(Git/Gst)) indicates that the ratio of the odds
that the father’s status isor below instead o$ or below when the son’s status jior above to the
odds that the father’s statusiisr below instead o$ or below when the son’s statustisr above.
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The PSin) model implies
Oisjt =Ojis (1<i<s<j<t<r).
The AS(M) model also implies
Oisjt =0Ojtis (1<i<s<j<t<r;j#s+1),
and
Mo =0jis (1<i<s<j<t<rj=s+1).

Therefore, PS6) model implies the symmetry of odds ratios based{G¥ }, i # j; however, the
AS(m) model implies the symmetry of odds ratios with the asymmetry partially. Note that tihe PS(
and AS(m) models have the structure of constant of of8g;1/Gi;1i},i=1,...,r — 1.

3. Decomposition of symmetry model
Tomizawa, Miyamoto and Ouchi [18] proposed the cumulative subsymmetry (CS) model, defined
by
Giit2=Gir2i (i=1,...,r-2).
For a given positive integex we consider theth moment equality (ME)) model defined by
E(XD) = E(X3),

where
r r

E(X}) = ;ispi.7 E(XS) = iZlisp,i.

We obtain the decomposition of the S model as follows:

Theorem 3.1. For a given m(m=1,...,r — 1), the S model holds if and only if all the AS(m), CS
and ME(s)(s=1,...,m) models hold.

Proof. If the S model holds, then for a givem (m=1,...,r — 1), the ASfn), CS and ME$)
(s=1,...,m) models hold. Assuming that all the A8}, CS and{ME(s)} models hold, then we
shall show that the S model holds. From the Asénd CS models, we see

G2 B :
2 P (=1,...r-2)
Gir2i B+ ( )

Sincef; = 1, thus we se¢f; = 1}. From the AS) model holds, we see

Gijt1 _ ri(m) (i=1,....,r—1).

A structure of{G; j+1/Gi;1i} in the ASfn) model is identical to that of the Midf) model. Tahata
and Tomizawa [13] showed that, for a givenlm=1,...,r — 1), the MH model holds if and only
if all the MH(m) and ME§) (s= 1,...,m) models hold. Therefore, the model which satisfies all
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constraints ofG; j11/Gi;1i} in the ASfn) model and ME$) (s=1,...,m) model is identical to
the MH model. Namely,

Giit1 _
Giyai
Thus, we obtaiffy =1 fork=0,1,...,m—1. Therefore, the S model holds. The proof is completed.
O

1 (i=1,...r—1).

4. Goodness-of-fit test

Let nj; denote the observed frequency in tite row and jth column of ther x r table (i =
1,...,rj=1,...,r) withn= 3 ¥ njj. Assume that a multinomial distribution applies to ther

table. The maximum likelihood estimates of expected frequencies under models could be obtained
by using the Newton-Raphson method in the log-likelihood equation. We can test each model for
goodness-of-fit by the likelihood ratio chi-squared statistic (denote@yvith the corresponding
degrees of freedom. The test statigditis defined by

G*=2 r in Iog(n”>
- Ij =~ |
i;j:l mj

wherem; is the maximum likelihood estimate of expected frequemgyunder the model.

For nested models, the conditional test statistic would b&thealue for the model with fewer
free parameters minus tk&# value for the model with more free parameters, which has a chi-square
distribution with degrees of freedom equal to the distance between numbers of parameters in the
two models.

The number of degrees of freedom for the A(model is %(r2 —3r+4)—mfor m=
1,2,...,r—1. This number is identical to that of the P$(model.

5. Examples

Example 1.Consider the data in Table 1 again. Table 2 gives the values of likelihood ratio statistic
G? for testing the goodness-of-fit of some models. The S model fits these data poorly. Also, each
of the PS(1), PS(2), AS(1), AS(2), CS and MEG = 1,2, 3,4 models fits poorly, but each of the
PS(3), PS(4), AS(3) and AS(4) models fits the data well.
According to the test based on the difference between the likelihood ratio chi-squared values
G? for the AS(3) and AS(4) models at the 0.05 significance level, we obtain the AS(3) model is
preferable to the AS(4) model. In the similar way, the PS(3) model is preferable to the PS(4) model.
Under the AS(3) model, the maximum likelihood estimates of param€tgrs, and M, are
o =0.299,T1 = 2.614 andl, = 0.853, respectively. The cumulative probability that the father’s
status isi or below and the son’s statusiig- 1 or above, is estimated to gl ;[ times higher
than the cumulative probability that the father’s status+isl or above and the son’s status isr
below. When = 1, the cumulative probability that the father’s status is ‘(1)’ and his son’s status is
‘() to (5)’, is estimated to be o 1T » = 0.668 times higher than the cumulative probability that
the father’s status is ‘(2)’ to ‘(5)’ and his son’s status is ‘(1)". Besides, the maximum likelihood
estimates of 5} aref, = 1.690, 33 = 1.486 andB, = 1.036, with3; = 1. Fori < j with j—i > 2,
the probability that the father’s statusiier below and the son’s statusji®r above is estimated to
be i /B;—1 times higher than the probability that the father’s statysisabove and the son’s status
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Table 2. Likelihood ratio chi-squared valués$
for models applied to the data in Table 1.

Models Degree of freedom G?

S 10 24.80*
PS(1) 6 15.07*
PS(2) 5 14.42*
PS(3) 4 3.82
PS(4) 3 2.60
AS(1) 6 15.40*
AS(2) 5 14.35*
AS(3) 4 3.99
AS(4) 3 3.21
Cs 3 12.07*
ME(1) 1 5.73*
ME(2) 1 6.86*
ME(3) 1 6.58*
ME(4) 1 5.80*

*means significant at the 0.05 level.

Table 3. Values o{éij/éji}, i # j, under the AS(3)
and PS(3) models applied to Table 1.

(a) Under the AS(3) model

i=1 2 3 4 5

i=1 - 0668 0592 0.673 0.965
2 - 1.084 1.138 1.631
3 1.281 1.434
4 1.102
5 -

(b) Under the PS(3) model

i=1 2 3 4 5

i=1 - 0686 0608 0641 0.712
2 - 1.114 1174 1.305
3 1.305 1.450
4 1.103
5 -

isi or below. Wheri =1 andj = 3, the cumulative probability that the father’s status is (1)’ and
his son’s status is ‘(3)’ to ‘(5)’, is estimated to i¢/3, = 0.592 times higher than the cumulative
probability that the father’s status is ‘(3)’ to ‘(5)" and his son’s status is ‘(1)’. Under the PS(3)
model, the maximum likelihood estimates of paramefgrg); andA, areEo = 0.305,31 = 2.651
andﬁz = 0.849, respectively. Besides, the maximum likelihood estimatgsxgf area, = 1.127,

03 = 1.070 andds = 0.963, withd; = 1. From Table 3, we see that the value{&f; /Gji}, i # |,
under the AS(3) model are close to those under the PS(3) model.

Furthermore, under the AS(3) model, the odds réig;» is estimated to bgf) = 1.084 times
greater than the odds ratf2.34 Hence the ratio of the odds that the son’s status is (1)’ instead of
‘(1) or (2) when the father’s status is ‘(3)’ or ‘(4)’ to the odds when the father’s status is ‘(4)’, is
estimated to b& (23) = 1.084 times greater than the ratio of the odds that the father’s status is ‘(1)’
instead of ‘(1)’ or ‘(2)’ when the son’s status is ‘(3)’ or ‘(4)’ to the odds when the son’s status is
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‘(4)". Also, the odds ratiofys:»3 is estimated to b@f’) = 1.281 times greater than the odds ratio
623.45 and interpreted similarly.

Example 2. The data in Table 4, taken from Stuart [12], are constructed from unaided distance
vision of 7477 women aged 30-39 employed in Royal Ordnance factories in Britain from 1943 to
1946.

Table 4. Unaided distance vision of 7477 women aged 30-39 employed in
Royal Ordnance factories in Britain from 1943 to 1946; from Stuart ([12]. (The

upper, middle and lower parenthesized values are the maximum likelihood
estimates of expected frequencies under the AS(1), AS(2) and AS(3) models,

respectively.)
Right eye Left eye grade
grade Best(1) Second(2) Third(3) Worst(4) Total
Best (1) 1520 266 124 66 1976
(1520.00)  (266.46) (129.43) (64.22)
(1520.00)  (266.55) (129.47) (64.21)
(1520.00)  (266.00) (129.49) (64.10)
Second (2) 234 1512 432 78 2256
(233.52)  (1512.00) (430.86) (82.71)
(233.42)  (1512.00)  (430.84) (82.68)
(234.00)  (1512.00) (432.00) (82.62)
Third (3) 117 362 1772 205 2456
(110.99) (363.15)  (1772.00) (205.63)
(110.94) (363.17)  (1772.00) (205.55)
(110.94) (362.00) (1772.00) (205.00)
Worst (4) 36 82 179 492 789
(39.22) (76.47) (178.34)  (492.00)
(39.22) (76.51) (178.42)  (492.00)
(39.28) (76.58) (179.00)  (492.00)
Total 1907 2222 2507 841 7477

Table 5 gives the values of likelihood ratio statigBié for testing the goodness-of-fit of some
models. The S, PS(2), PS(3) and ME 6= 1,2, 3 models fit poorly, but each of the PS(1), A$(
m=1,2,3 and CS models fits the data well. Using Theorem 3.1, itis inferred that, e.g. e
the poor fit of S model is caused by the influence of the lack of structure of the)MEf 1,2, 3
models rather than those of the CS and AS(3) models.

From Table 5, we can see the likelihood ratio chi-squared v&@de$ AS(m), m= 1,2, 3 models
are almost the same. Under the AS(1) model, the maximum likelihood estimate of parBgister
o = 1.199. Under the AS(2) model, the maximum likelihood estimates of paranfejeasd s
arelo = 1.201 andl'; = 0.999, respectively. BesideBol 1 = 1.200, ol 2 = 1.199 andl ol 3 =
1.198. Under the AS(3) model, the maximum likelihood estimates of paraniejeirs andl, are
Fo=1173,T1 = 1.027 and» = 0.993, respectively. BesideBol ;[ > = 1.196, oM 4 = 1.203
andl ol 379 = 1.193.

According to the test based on the difference between the likelihood ratio chi-squared@alues
for AS(1) and AS(2) models (also for AS(2) and AS(3) models), the AS(1) model is preferable to
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Table 5. Likelihood ratio chi-squared valués$
for models applied to the data in Table 4.

Models Degree of freedom G?

S 6 19.25*
PS(1) 3 6.24
PS(2) 2 6.24*
PS(3) 1 6.18*
AS(1) 3 1.55
AS(2) 2 1.55
AS(3) 1 1.54
Cs 2 5.00
ME(1) 1 11.98*
ME(2) 1 11.30*
ME(3) 1 10.00*

*means significant at the 0.05 level.

the AS(2) and AS(3) models. Under the AS(1) model, for example, the cumulative probability that
awoman’s right eye grade is Best (1) and her left eye grade is Second (2) to Worst (4), is estimated
to belo = 1.199 times higher than the cumulative probability that the woman'’s right eye grade is
Second (2) to Worst (4) and her left eye grade is Best (1).

6. Concluding remarks

We have proposed the A8 model form=1,2,...,r — 1. Especially whem =1, the AS(1) model
is identical to the MPS model. Compare the Afpénd the PSt) models. Both of the AS() and
PS{m) models have the structure of M| model. The ASHh) model has the structure of CQS
model for {G;; } with |j —i| > 2, although the P&f) model does not have the such structure. As
seen in Example 1, when we analyze the data using the MPS model (i.e., AS(1) model), the structure
of asymmetry in MPS model witk; j;1/Gi;1; = o may be strong restriction. The addition of
parameters in the A8{ model relative to the S model improves the fit. However, the more we use
the parameters in the ABf model, the more complicated the interpretation for themStodel
becomes. The A&f) model implies the structure of symmetry of odds rafi6s.s;} based o{ G;jj },
i # j, with the structure of asymmetry partially (beiﬁéfn)e.j;st =0 forl<i<j<s<t<r
ands= j + 1). However, PS() model has the structure of symmetry of odds ratio. Therefore the
AS(m) model would be useful for seeing the mixed structure of symmetry plus asymmetry of odds
ratios for cumulative probabilitie§G;; }, i # j.

The decomposition of the S model into the A$(CS and MES$) (s= 1,2, ..., m) models, given
by Theorem 3.1, would be useful for seeing the reason for its poor fit when the S model fits the data
poorly (see Example 2).
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