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1. Introduction

Consider the square contingency tables with same row and column classifications. For example,
consider the data in Table 1. The data in Table 1, taken from Goodman [5], are constructed from
occupational status of 2391 farther-son pairs in Denmark. The row is the father’s status category
and column is the son’s status category. The categories are ordered from (1) to (5) (high to low).
In Table 1, many observations concentrate on the main diagonal cells. Therefore for these data, the
model of independence does not hold. Namely, the father’s status is strongly associated with the
son’s status. Instead, we are interested in whether or not a father’s status is symmetric to his son’s
status.
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Table 1. Occupational status for Danish father-son pairs; from Goodman [5].
(Upper and lower parenthesized values are the maximum likelihood estimates
of expected frequencies under the PS(3) and AS(3) models, respectively.)

Father’s Son’s status
status (1) (2) (3) (4) (5) Total
(1) 18 17 16 4 2 57

(18.00) (18.48) (14.60) (4.41) (3.57)
(18.00) (18.21) (14.07) (4.09) (4.05)

(2) 24 105 109 59 21 318
(22.75) (105.00) (105.59) (59.24) (17.29)
(22.98) (105.00) (104.83) (56.46) (18.62)

(3) 23 84 289 217 95 708
(24.69) (87.14) (289.00) (220.85) (98.02)
(25.44) (87.79) (289.00) (221.45) (95.50)

(4) 8 49 175 348 198 778
(7.44) (48.56) (171.11) (348.00) (195.96)
(7.90) (51.37) (170.60) (348.00) (196.33)

(5) 6 8 69 201 246 530
(5.01) (10.98) (65.98) (203.34) (246.00)
(4.20) (9.70) (68.51) (202.91) (246.00)

Total 79 263 658 829 562 2391

Note: Status (1) is High professionals, (2) White-collar employees of higher edu-
cation, (3) White-collar employees of less high education, (4) Upper working
class, and (5) Unskilled workers.

For anr × r square contingency table with the same row and column ordinal classifications, let
pi j denote the probability that an observation will fall in theith row and jth column of the table
(i = 1, . . . , r; j = 1, . . . , r). The symmetry (S) model is defined by

pi j = p ji (i < j);

see Bowker [3], Bishop, Fienberg and Holland [2, p. 282] and Agresti [1, Chap. 11]. For the data
in Table 1, the S model indicates that the probability that a father’s status isi and his son’s status is
j, is equal to the probability that the father’s status isj and his son’s status isi. Namely, this model
describes a structure of symmetry of the probabilities{pi j} with respect to the main diagonal of the
table. LetX1 andX2 denote the row and column variables, respectively, and let

Gi j =
i

∑
s=1

r

∑
t= j

pst = P(X1 ≤ i,X2 ≥ j) (i < j),

and

G ji =
r

∑
s= j

i

∑
t=1

pst = P(X1 ≥ j,X2 ≤ i) (i < j).

The S model may be expressed as

Gi j = G ji (i < j).
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For the data in Table 1, this indicates that the cumulative probability that a father’s status isi or
below and his son’s status isj or above, is equal to the cumulative probability that the father’s status
is j or above and his son’s status isi or below. The marginal homogeneity (MH) model (Stuart [12])
is defined by

pi· = p·i (i = 1, . . . , r),

wherepi· = ∑r
t=1 pit andp·i = ∑r

s=1 psi. The MH model may be expressed as

Gi,i+1 = Gi+1,i (i = 1, . . . , r −1).

Tahata and Tomizawa [13] considered them-additional parameters marginal homogeneity (MH(m))
model which is a generalization of the MH model. For a givenm (m= 1, . . . , r − 1), the MH(m)
model is defined by

Gi,i+1 = ∆(m)
i Gi+1,i (i = 1, . . . , r −1),

where

∆(m)
i =

m−1

∏
k=0

∆ik
k .

A special case of the MH(m) model obtained by putting{∆k = 1} is the MH model. Whenm= 1, 2
andr −1, the MH(m) models are the extended marginal homogeneity model in Tomizawa [16], the
generalized marginal homogeneity model in Tomizawa [17] and saturated model, respectively.

Caussinus [4] proposed the quasi-symmetry (QS) model for cell probabilities, defined by

pi j = αiβ jψi j (i = 1, . . . , r; j = 1, . . . , r),

whereψi j = ψ ji (see also Goodman [6]; Kateri and Agresti [8]). Denote the odds ratio for rowsi
ands (> i), and columnsj andt (> j) by θis; jt . Thusθis; jt = (pi j pst)/(pit ps j). For the data in Table
1, theθis; jt (= (pi j/ps j)/(pit/pst)) indicates that the ratio of the odds that the father’s status isi
instead ofs when the son’s status isj to the odds that the father’s status isi instead ofs when the
son’s status ist. Using odds ratios, the QS model is also expressed as

θis; jt = θ jt ;is (i < s; j < t).

Therefore this model has characterization in terms of symmetry of odds ratios (though the S model
has characterization in terms of symmetry of cell probabilities). The QS model may be expressed as

pi j = ξiφi j (i = 1, . . . , r; j = 1, . . . , r),

whereφi j = φ ji . Caussinus [4] also gave the theorem that the S model holds if and only if the QS and
MH models hold. Miyamoto, Ohtsuka and Tomizawa [10] proposed the cumulative quasi-symmetry
(CQS) model for cumulative probabilities{Gi j}, defined by

Gi j = γiΨi j (i ̸= j), pii = Ψii ,

whereΨi j = Ψ ji . This model may be expressed as

Gi j

G ji
=

γi

γ j
(i < j);

see also Tahata and Tomizawa [14].
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McCullagh [9] considered the palindromic symmetry (PS) model, defined by

Gi j =

{
∆αiΨi j (i < j),

αi−1Ψi j (i > j),
pii = Ψii ,

whereΨi j = Ψ ji andα1 = 1 without loss of generality. A special case of the PS model obtained
by putting∆ = 1 and{αi = 1} is the S model. Note that the PS model with∆ replaced by∆i is the
generalized palindromic symmetry model (McCullagh [9]). The PS model is also expressed as

Gi j

G ji
= ∆

αi

α j−1
(i < j).

Saigusa, Tahata and Tomizawa [11] considered them-additional parameters palindromic symmetry
(PS(m)) model. For a givenm (m= 1, . . . , r −1), the PS(m) model is defined by

Gi j

G ji
= ∆(m)

i
αi

α j−1
(i < j),

where

∆(m)
i =

m−1

∏
k=0

∆ik
k .

Whenm = 1 (with ∆(1)
i = ∆0), the PS(1) model is identical to the PS model, and whenm= r −1,

the PS(r −1) model is the generalized palindromic symmetry model. Iki, Oda and Tomizawa [7]
considered the modified palindromic symmetry (MPS) model. The MPS model is defined by

Gi j =


βiΨi j (i < j; j ̸= i +1),

ΓβiΨi j (i < r; j = i +1),
βi−1Ψi j (i > j),

pii = Ψii ,

whereΨi j = Ψ ji andβ1 = 1 without loss of generality. A special case of this model obtained by
puttingΓ = 1 and{βi = 1} is the S model. The MPS model is also expressed as

Gi,i+1

Gi+1,i
= Γ (i = 1, . . . , r −1),

and

Gi j

G ji
=

βi

β j−1
(i < j; j ̸= i +1).

The PS(m) model is the PS model with them-additional parameters∆(m)
i instead of one param-

eter∆. So, we are interested in a model which is the MPS model with them-additional parameters
instead of one parameterΓ.

In the present paper, Section 2 proposes a new model which is the MPS model with them-
additional parameters. Section 3 gives the decomposition of the S model using the proposed model.
Section 4 describes the goodness-of-fit test and Section 5 gives examples. Section 6 provides some
concluding remarks.
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2. An asymmetry model withm-additional parameters

Consider a model defined by, for a givenm (m= 1, . . . , r −1),

Gi j =


βiΨi j (i < j; j ̸= i +1),

Γ(m)
i βiΨi j (i < r; j = i +1),
βi−1Ψi j (i > j),

pii = Ψii ,

whereΨi j = Ψ ji , β1 = 1 without loss of generality and

Γ(m)
i =

m−1

∏
k=0

Γik
k .

We shall refer to this model as them-additional parameters asymmetry (AS(m)) model. Especially,
the AS(1) model is identical to the MPS model. The AS(m) model is also expressed as

Gi,i+1

Gi+1,i
= Γ(m)

i (i = 1, . . . , r −1), (2.1)

and

Gi j

G ji
=

βi

β j−1
(i < j; j ̸= i +1). (2.2)

From the equation (2.1), the parameterΓ(m)
i indicates that the ratio of the cumulative probability

that an observation will fall in row categoryi or below and column categoryi +1 or above (i.e.,
Gi,i+1) to the cumulative probability that the observation falls in row categoryi +1 or above and
column categoryi or below (i.e.,Gi+1,i). In addition, the equation (2.1) is identical to the MH(m)
model. Namely, the log-odds of cumulative probabilities are expressed as the polynomial function
of category indicatori (i = 1, . . . , r −1), i.e.,

log
(Gi,i+1

Gi+1,i

)
= logΓ0+ i logΓ1+ · · ·+ im−1 logΓm−1.

The equation (2.2) states that the cumulative probability that an observation will fall in row category
i or below and column categoryj (i < j; j ̸= i + 1) or above, isβi/β j−1 times higher than the
cumulative probability that the observation falls in row categoryj or above and column category
i or below. Fromβ1 = 1, the parametersβ j−1 indicates the ratio ofG j1 to G1 j ( j = 3, . . . , r). The
AS(m) model is expressed as the equations (2.1) and (2.2), the interpretation of the parameters
{Ψi j} is not essential.

Define the odds ratio based on{Gi j}, i ̸= j, by Θis; jt = (Gi j Gst)/(Git Gs j) for 1≤ i < s< j <
t ≤ r. For the data in Table 1, theΘis; jt (= (Gi j/Gs j)/(Git/Gst)) indicates that the ratio of the odds
that the father’s status isi or below instead ofs or below when the son’s status isj or above to the
odds that the father’s status isi or below instead ofs or below when the son’s status ist or above.
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The PS(m) model implies

Θis; jt = Θ jt ;is (1≤ i < s< j < t ≤ r).

The AS(m) model also implies

Θis; jt = Θ jt ;is (1≤ i < s< j < t ≤ r; j ̸= s+1),

and

Γ(m)
s Θis; jt = Θ jt ;is (1≤ i < s< j < t ≤ r; j = s+1).

Therefore, PS(m) model implies the symmetry of odds ratios based on{Gi j}, i ̸= j; however, the
AS(m) model implies the symmetry of odds ratios with the asymmetry partially. Note that the PS(m)
and AS(m) models have the structure of constant of odds{Gi,i+1/Gi+1,i}, i = 1, . . . , r −1.

3. Decomposition of symmetry model

Tomizawa, Miyamoto and Ouchi [18] proposed the cumulative subsymmetry (CS) model, defined
by

Gi,i+2 = Gi+2,i (i = 1, . . . , r −2).

For a given positive integers, we consider thesth moment equality (ME(s)) model defined by

E(Xs
1) = E(Xs

2),

where

E(Xs
1) =

r

∑
i=1

ispi., E(Xs
2) =

r

∑
i=1

isp.i .

We obtain the decomposition of the S model as follows:

Theorem 3.1. For a given m(m= 1, . . . , r −1), the S model holds if and only if all the AS(m), CS
and ME(s)(s= 1, . . . ,m) models hold.

Proof. If the S model holds, then for a givenm (m= 1, . . . , r − 1), the AS(m), CS and ME(s)
(s= 1, . . . ,m) models hold. Assuming that all the AS(m), CS and{ME(s)} models hold, then we
shall show that the S model holds. From the AS(m) and CS models, we see

Gi,i+2

Gi+2,i
=

βi

βi+1
= 1 (i = 1, . . . , r −2).

Sinceβ1 = 1, thus we see{βi = 1}. From the AS(m) model holds, we see

Gi,i+1

Gi+1,i
= Γ(m)

i (i = 1, . . . , r −1).

A structure of{Gi,i+1/Gi+1,i} in the AS(m) model is identical to that of the MH(m) model. Tahata
and Tomizawa [13] showed that, for a givenm (m= 1, . . . , r −1), the MH model holds if and only
if all the MH(m) and ME(s) (s= 1, . . . ,m) models hold. Therefore, the model which satisfies all
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constraints of{Gi,i+1/Gi+1,i} in the AS(m) model and ME(s) (s= 1, . . . ,m) model is identical to
the MH model. Namely,

Gi,i+1

Gi+1,i
= 1 (i = 1, . . . , r −1).

Thus, we obtainΓk = 1 for k= 0,1, . . . ,m−1. Therefore, the S model holds. The proof is completed.

4. Goodness-of-fit test

Let ni j denote the observed frequency in theith row and jth column of ther × r table (i =
1, . . . , r; j = 1, . . . , r) with n = ∑∑ni j . Assume that a multinomial distribution applies to ther × r
table. The maximum likelihood estimates of expected frequencies under models could be obtained
by using the Newton-Raphson method in the log-likelihood equation. We can test each model for
goodness-of-fit by the likelihood ratio chi-squared statistic (denoted byG2) with the corresponding
degrees of freedom. The test statisticG2 is defined by

G2 = 2
r

∑
i=1

r

∑
j=1

ni j log

(
ni j

m̂i j

)
,

wherem̂i j is the maximum likelihood estimate of expected frequencymi j under the model.
For nested models, the conditional test statistic would be theG2 value for the model with fewer

free parameters minus theG2 value for the model with more free parameters, which has a chi-square
distribution with degrees of freedom equal to the distance between numbers of parameters in the
two models.

The number of degrees of freedom for the AS(m) model is 1
2(r

2 − 3r + 4)− m for m =

1,2, . . . , r −1. This number is identical to that of the PS(m) model.

5. Examples

Example 1.Consider the data in Table 1 again. Table 2 gives the values of likelihood ratio statistic
G2 for testing the goodness-of-fit of some models. The S model fits these data poorly. Also, each
of the PS(1), PS(2), AS(1), AS(2), CS and ME(s), s= 1,2,3,4 models fits poorly, but each of the
PS(3), PS(4), AS(3) and AS(4) models fits the data well.

According to the test based on the difference between the likelihood ratio chi-squared values
G2 for the AS(3) and AS(4) models at the 0.05 significance level, we obtain the AS(3) model is
preferable to the AS(4) model. In the similar way, the PS(3) model is preferable to the PS(4) model.

Under the AS(3) model, the maximum likelihood estimates of parametersΓ0, Γ1 andΓ2 are
Γ̂0 = 0.299, Γ̂1 = 2.614 andΓ̂2 = 0.853, respectively. The cumulative probability that the father’s
status isi or below and the son’s status isi +1 or above, is estimated to bêΓ0Γ̂i

1Γ̂i2
2 times higher

than the cumulative probability that the father’s status isi +1 or above and the son’s status isi or
below. Wheni = 1, the cumulative probability that the father’s status is ‘(1)’ and his son’s status is
‘(2)’ to ‘(5)’, is estimated to bêΓ0Γ̂1Γ̂2 = 0.668 times higher than the cumulative probability that
the father’s status is ‘(2)’ to ‘(5)’ and his son’s status is ‘(1)’. Besides, the maximum likelihood
estimates of{βi} areβ̂2 = 1.690,β̂3 = 1.486 andβ̂4 = 1.036, withβ̂1 = 1. Fori < j with j − i ≥ 2,
the probability that the father’s status isi or below and the son’s status isj or above is estimated to
beβ̂i/β̂ j−1 times higher than the probability that the father’s status isj or above and the son’s status
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Table 2. Likelihood ratio chi-squared valuesG2

for models applied to the data in Table 1.

Models Degree of freedom G2

S 10 24.80*
PS(1) 6 15.07*
PS(2) 5 14.42*
PS(3) 4 3.82
PS(4) 3 2.60
AS(1) 6 15.40*
AS(2) 5 14.35*
AS(3) 4 3.99
AS(4) 3 3.21
CS 3 12.07*
ME(1) 1 5.73*
ME(2) 1 6.86*
ME(3) 1 6.58*
ME(4) 1 5.80*

∗means significant at the 0.05 level.

Table 3. Values of{Ĝi j /Ĝ ji}, i ̸= j, under the AS(3)
and PS(3) models applied to Table 1.

(a) Under the AS(3) model
j = 1 2 3 4 5

i = 1 - 0.668 0.592 0.673 0.965
2 - - 1.084 1.138 1.631
3 - - - 1.281 1.434
4 - - - - 1.102
5 - - - - -

(b) Under the PS(3) model
j = 1 2 3 4 5

i = 1 - 0.686 0.608 0.641 0.712
2 - - 1.114 1.174 1.305
3 - - - 1.305 1.450
4 - - - - 1.103
5 - - - - -

is i or below. Wheni = 1 and j = 3, the cumulative probability that the father’s status is ‘(1)’ and
his son’s status is ‘(3)’ to ‘(5)’, is estimated to bêβ1/β̂2 = 0.592 times higher than the cumulative
probability that the father’s status is ‘(3)’ to ‘(5)’ and his son’s status is ‘(1)’. Under the PS(3)
model, the maximum likelihood estimates of parameters∆0, ∆1 and∆2 are∆̂0 = 0.305,∆̂1 = 2.651
and∆̂2 = 0.849, respectively. Besides, the maximum likelihood estimates of{αi} areα̂2 = 1.127,
α̂3 = 1.070 andα̂4 = 0.963, withα̂1 = 1. From Table 3, we see that the values of{Gi j/G ji}, i ̸= j,
under the AS(3) model are close to those under the PS(3) model.

Furthermore, under the AS(3) model, the odds ratioθ34;12 is estimated to bêΓ(3)
2 = 1.084 times

greater than the odds ratioθ12;34. Hence the ratio of the odds that the son’s status is ‘(1)’ instead of
‘(1)’ or ‘(2)’ when the father’s status is ‘(3)’ or ‘(4)’ to the odds when the father’s status is ‘(4)’, is
estimated to bêΓ(3)

2 = 1.084 times greater than the ratio of the odds that the father’s status is ‘(1)’
instead of ‘(1)’ or ‘(2)’ when the son’s status is ‘(3)’ or ‘(4)’ to the odds when the son’s status is
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‘(4)’. Also, the odds ratioθ45;23 is estimated to bêΓ(3)
3 = 1.281 times greater than the odds ratio

θ23;45, and interpreted similarly.

Example 2. The data in Table 4, taken from Stuart [12], are constructed from unaided distance
vision of 7477 women aged 30-39 employed in Royal Ordnance factories in Britain from 1943 to
1946.

Table 4. Unaided distance vision of 7477 women aged 30-39 employed in
Royal Ordnance factories in Britain from 1943 to 1946; from Stuart ([12]. (The
upper, middle and lower parenthesized values are the maximum likelihood
estimates of expected frequencies under the AS(1), AS(2) and AS(3) models,
respectively.)

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 1520 266 124 66 1976
(1520.00) (266.46) (129.43) (64.22)
(1520.00) (266.55) (129.47) (64.21)
(1520.00) (266.00) (129.49) (64.10)

Second (2) 234 1512 432 78 2256
(233.52) (1512.00) (430.86) (82.71)
(233.42) (1512.00) (430.84) (82.68)
(234.00) (1512.00) (432.00) (82.62)

Third (3) 117 362 1772 205 2456
(110.99) (363.15) (1772.00) (205.63)
(110.94) (363.17) (1772.00) (205.55)
(110.94) (362.00) (1772.00) (205.00)

Worst (4) 36 82 179 492 789
(39.22) (76.47) (178.34) (492.00)
(39.22) (76.51) (178.42) (492.00)
(39.28) (76.58) (179.00) (492.00)

Total 1907 2222 2507 841 7477

Table 5 gives the values of likelihood ratio statisticG2 for testing the goodness-of-fit of some
models. The S, PS(2), PS(3) and ME(s), s= 1,2,3 models fit poorly, but each of the PS(1), AS(m),
m= 1,2,3 and CS models fits the data well. Using Theorem 3.1, it is inferred that, e.g., whenm= 3,
the poor fit of S model is caused by the influence of the lack of structure of the ME(s), s= 1,2,3
models rather than those of the CS and AS(3) models.

From Table 5, we can see the likelihood ratio chi-squared valuesG2 of AS(m), m= 1,2,3 models
are almost the same. Under the AS(1) model, the maximum likelihood estimate of parameterΓ0 is
Γ̂0 = 1.199. Under the AS(2) model, the maximum likelihood estimates of parametersΓ0 andΓ1

are Γ̂0 = 1.201 andΓ̂1 = 0.999, respectively. Besides,̂Γ0Γ̂1 = 1.200, Γ̂0Γ̂2
1 = 1.199 andΓ̂0Γ̂3

1 =

1.198. Under the AS(3) model, the maximum likelihood estimates of parametersΓ0, Γ1 andΓ2 are
Γ̂0 = 1.173, Γ̂1 = 1.027 andΓ̂2 = 0.993, respectively. Besides,Γ̂0Γ̂1Γ̂2 = 1.196, Γ̂0Γ̂2

1Γ̂4
2 = 1.203

andΓ̂0Γ̂3
1Γ̂9

2 = 1.193.
According to the test based on the difference between the likelihood ratio chi-squared valuesG2

for AS(1) and AS(2) models (also for AS(2) and AS(3) models), the AS(1) model is preferable to
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Table 5. Likelihood ratio chi-squared valuesG2

for models applied to the data in Table 4.

Models Degree of freedom G2

S 6 19.25*
PS(1) 3 6.24
PS(2) 2 6.24*
PS(3) 1 6.18*
AS(1) 3 1.55
AS(2) 2 1.55
AS(3) 1 1.54
CS 2 5.00
ME(1) 1 11.98*
ME(2) 1 11.30*
ME(3) 1 10.00*

∗means significant at the 0.05 level.

the AS(2) and AS(3) models. Under the AS(1) model, for example, the cumulative probability that
a woman’s right eye grade is Best (1) and her left eye grade is Second (2) to Worst (4), is estimated
to beΓ̂0 = 1.199 times higher than the cumulative probability that the woman’s right eye grade is
Second (2) to Worst (4) and her left eye grade is Best (1).

6. Concluding remarks

We have proposed the AS(m) model form= 1,2, . . . , r−1. Especially whenm= 1, the AS(1) model
is identical to the MPS model. Compare the AS(m) and the PS(m) models. Both of the AS(m) and
PS(m) models have the structure of MH(m) model. The AS(m) model has the structure of CQS
model for{Gi j} with | j − i| ≥ 2, although the PS(m) model does not have the such structure. As
seen in Example 1, when we analyze the data using the MPS model (i.e., AS(1) model), the structure
of asymmetry in MPS model withGi,i+1/Gi+1,i = Γ0 may be strong restriction. The addition of
parameters in the AS(m) model relative to the S model improves the fit. However, the more we use
the parameters in the AS(m) model, the more complicated the interpretation for the AS(m) model
becomes. The AS(m) model implies the structure of symmetry of odds ratios{θi j ;st} based on{Gi j},

i ̸= j, with the structure of asymmetry partially (beingΓ(m)
j θi j ;st = θst;i j for 1 ≤ i < j < s< t ≤ r

ands= j +1). However, PS(m) model has the structure of symmetry of odds ratio. Therefore the
AS(m) model would be useful for seeing the mixed structure of symmetry plus asymmetry of odds
ratios for cumulative probabilities{Gi j}, i ̸= j.

The decomposition of the S model into the AS(m), CS and ME(s) (s= 1,2, . . . ,m) models, given
by Theorem 3.1, would be useful for seeing the reason for its poor fit when the S model fits the data
poorly (see Example 2).
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