
Sustainability Knowledge about Software Parts
in Software Engineering Processes

Discussion of an “Information Leaflet” Approach

Benno Schmidt
Bochum University of Applied Sciences

Bochum, Germany
benno.schmidt@hs-bochum.de

Abstract—The ecological and sustainable design, implementa-
tion and configuration of software is a rather difficult task these
days. Practical guidelines and helpful hints to assist software
architects, programmers, and operators in their daily business
are still rare. This paper discusses a basic strategy for tackling
this problem. It pays special attention to the aspect that modern
software applications usually intensively make use of third-party
components. Though the relations between these so-called
"parts" are manifold, the proposed "software information leaf-
let" approach might give an idea on how operational support
tools could be designed strategically. Finally, the paper lists open
research questions addressing the aforementioned issues. Aspects
that still have to be examined relate to knowledge modeling, the
development of appropriate information encodings, as well as
pragmatic utilization aspects.

Index Terms—Sustainable software, sustainable development,
software parts, software information leaflets.

I. INTRODUCTION

Computers offer us many things we do not want to miss.
Often, they support human activities that have positive effects
on our environment and society (“software engineering for the
planet” [22]). Nonetheless, in many aspects information and
communication technology (ICT) affects the environment and
society in a negative way, e.g. by consuming energy and natu-
ral resources, generating electronic waste, or causing social
inequality.

Usually, computers need software in order to operate (see
fig. 1). Thus software has an impact on aspects that are relevant
with regard to sustainability issues. Consequently, for software
producers a sustainable product design should be a basic re-
quirement [17]. But these days, for software developers the
design and implementation of green and sustainable software is
a rather difficult task.

Practical guidelines and hints to assist software architects
and programmers in their daily business to set up more sustain-
able systems unfortunately are still rare today. One reason
might be that knowledge about the used software artifacts and
design patterns and their impact on sustainability-relevant as-
pects such as energy consumption, hardware requirements
(which might drive functional obsolescence effects with respect
to the hardware), or social factors often is not available. More-
over, since sustainability information about software seems to

be hard to find, platforms to gather and discuss this knowledge
as well as mechanisms that make this information accessible
inside the software engineering process are desirable.

Fig. 1. Relation of user, software, and hardware

In this contribution a basic strategy for tackling these prob-
lems will be sketched. Special attention will be paid to the as-
pect that modern software applications usually intensively
make use of external components. The rudimentary approach
presented in the present paper illustrates how operational sup-
port tools could be designed strategically. Nonetheless, the list
of open research issues concerning this topic still comprises
many bullets, as we will see.

The paper is organized as follows. At the beginning, a defi-
nition of sustainable software is given (section 2). Then the
notion of part relations is introduced (section 3). Based on the
idea of patient information leaflets, the “software information
leaflet” approach to provide information about software parts is
described (section 4). Subsequently, general problems of this
approach are discussed (section 5) and open research questions
are listed (section 6). Finally, first ideas for a concrete imple-
mentation are given (section 7).

4th International Conference on ICT for Sustainability (ICT4S 2016)

© 2016. The authors - Published by Atlantis Press 177

II. SUSTAINABLE SOFTWARE ENGINEERING

A. Sustainable Development

Sustainable development has been defined in many ways.
One of the most frequently quoted definitions is from the
Brundtland Commission's report: “[Sustainable development]
meets the needs of the present without compromising the abili-
ty of future generations to meet their own needs” [24].

In the context of the research projects which are currently
carried out at the Laboratory for Sustainable Development
(LaNE) at Bochum University of Applied Sciences, we use the
definition of Integrative Sustainability. Consequently, we in-
tend to overcome the classical concept of three pillars of sus-
tainability, where economy seems to have the same value as
ecology and society. The qualities listed below characterize the
concept of Integrative Sustainability [18, 19]:

• Consistency, efficiency, and sufficiency strategy should
all be included.

• Unity of mankind, society, and nature and the idea of a
fully functioning society will be assumed.

• The creation and conservation of social fairness (con-
centrating on the needs-centered approach) will be re-
garded as crucial aspects of sustainable development.

Notably, the term “sustainable” is not a synonym for “long-
lasting” or “efficient” here.

B. Definition of Sustainable Software

Often, sustainable software is defined as follows [7, 12]:
“Sustainable Software is software, whose direct and indirect
negative impacts on economy, society, human beings, and en-
vironment that result from development, deployment, and
usage of the software are minimal and/or which has a positive
effect on sustainable development.”

With the aforementioned idea of Integrative Sustainability
in mind, the conservation of nature and social fairness has to be
emphasized in this definition. Thus, amongst others, important
characteristics of software products should be:

• Minimization of irreversible and irretrievable commit-
ment of energy and material resources (efficiency as-
pect);

• Positive effects due to its power to decrease material
impacts of production, transport and consumption
processes (dematerialization, demobilization, virtuali-
zation);

• Ensuring access to the software artifacts and corres-
ponding knowledge for broad target groups (accessibil-
ity, social fairness);

• Avoidance of hardware obsolescence.
The first aspect refers to a so-called first order or “primary”

effect as defined by Berkhout and Hertin [1]. The following
two aspects relate to second and third order effects of ICT, i.e.
indirect and “systemic” effects [9]. The classification of the last
aspect is difficult since the reasons for obsolescence might be
different in nature (technological or functional reasons, style
obsolescence/desirability etc.).

In an alternative, naive view, the process of software pro-
duction and consumption can be understood as a transforma-

tion of (individual) human knowledge and data (which, accord-
ing to Von-Neumann's concept, include software-artifacts) into
new “knowledge goods” and further data (including software)
[18]. This view can be constituted by the models which have
been developed in the context of semiotic research, where
software is understood as a sign transformation process that
operates on semiotic entities, as well as the assignment of
meaning and knowledge [14]. This socio-technical transforma-
tion process is associated with an interchange of human beings,
society, and natural environment. It requires the supply of ma-
terial (including energetic) resources which also will be trans-
formed during software development and operation [10].

Noteworthy, the regenerative character of the immaterial
resource “software” which is highlighted by supporters of the
“digital sustainability” approach [3], may not conceal the ne-
cessity to dematerialize and decarbonize software engineering
processes.

However, both the transformational and the digital sustai-
nability view augment the definition of sustainable software
above [18].

III. SOFTWARE APPLICATIONS AND SOFTWARE PARTS

A. Parts-and-Assemblies Approach

Presently, for economic reasons software development fol-
lows the “parts-and-assemblies” approach which means that
software applications are built from pre-built standard parts
[15]. Examples for such software parts are class and method
libraries, operation system specific functions, database access
components, or external Web services, just to mention a few.
Often such artifacts are provided as third party software, i.e.
software that is not associated with the software manufacturer
or user (respectively customer).

Fig. 2. Examples for different views on part relationships

Subsequently, independently from the underlying technolo-
gical concept or functional granularity, we will denote such
software artifacts which are seen as autonomous units as parts.

Note that for software engineers, whole-part or composition
relationships often have a different meaning than for software

178

operators or end users who might have a system construction
from smaller units in mind; see figure 2.

In the first two UML diagrams [2], a, b, c are separate inte-
racting units. In the third diagram a hierarchical whole-part
relation is modeled, while the packaging aspect is made expli-
cit.

However, in the scope of this paper the term “software
part” primarily is used with respect to issues that are relevant to
sustainability. Remarkably, the installation of some software a
implies that the “parts” b and c will be used, too, and that the
impacts of b and c also have to be considered.

It may be noted that in the system design phase software
engineers usually put a strong focus on structural system views,
particularly the so-called “software architecture” or “applica-
tion architecture” [21]. This view seems to be quite compatible
with the view presented here.

Anyway, regardless whether such standard parts are availa-
ble as open or closed source, deeper application knowledge as
well as information about sustainability-relevant characteristics
is required. This topic will be picked up again later.

B. Formal Description of Part Relations

Using the language of mathematics, part relations can be
described more concisely. Let S be the set of software artifacts,
i.e. components, libraries consisting of classes and methods,
Web services or other artifacts used to build and/or run soft-
ware. Then, we can define →, spoken “directly uses”, as a rela-
tion on S which is neither transitive nor reflexive. For a, b ∈ S,
a → b means that b is a part of a.

Moreover, we can introduce the dependency relation →→
by defining a →→ b if 1. a → b, or 2. there exists a chain of n
elements ci, 0 < i ≤ n, with a → c1, c1 → c2, ..., cn–1 → cn, cn →
b. One can easily show that →→ is a transitive relation, i.e. (a
→→ b) ∧ (b →→ c) implies a →→ c.

This leads to a directed graph structure that is not necessari-
ly acyclic. E.g., for a peer-to-peer communication between p1
and p2, both p1 → p2 and p2 → p1 will hold. Nonetheless, in
practice often cycle-free tree-like structures will be given.
(Note that for acyclic structures the corresponding undirected
graph might contain cycles, e.g. if a → b → d and a → c → d.)

C. Unneeded Parts

In practice, arbitrary utilization of application development
environments, frameworks, or external libraries which add
code to applications without need, often seems to be adverse
with respect to energy efficiency and processor load [4, 13].
Consequentially, unneeded parts should be eliminated from the
software.

It should be noted that after software removals often soft-
ware parts which are no longer needed remain on the computer.
This should also be avoided.

D. Design Alternatives

Concerning the part dependencies, it will be useful to expli-
citly describe situations where the software developer has the
freedom to choose between parts. Simply spoken, if no alterna-
tives are available, the developer cannot choose the better one.

For example, ways to select an implementation from a va-
riety of alternatives could be modifications of the application's
source code or configuration file edits. Often it is advantageous
to offer external configuration options to the user, whereat hints
to support configuration decisions should be given.

If either a → b or a → c holds (“exclusive or”), an operator
| might be defined by introducing a → (b | c) as equivalent no-
tation. Hereby, another node type would be introduced into the
graph structure described above.

Example: Figure 3 shows the dependency graph for the set
of relations {a → (b | c), b → d, c → d, c → (e | f), e → g}.
The graphic representation resembles those feature diagrams
which are used in the context of generative software develop-
ment approaches or domain engineering [5].

Fig. 3. Dependency graph example

In this context, usually the tree structure's root node corres-
ponds to the software application which is the object of investi-
gation. Pursuing the dependencies until their end, the most far
flung leaf nodes would refer to the underlying computer hard-
ware. In other words, with a view to figure 1, the hardware
layer would terminate the directed graph structure.

Now a fundamental question is where the graph structure
and thus the sustainability study should end (scoping problem
as described in section 5). Another key issue is the identifica-
tion of significant sustainability-relevant graph nodes that lie in
the path from the root node to the leave nodes.

E. Design for Replaceability

Software artifacts which are “designed for replaceability”
could be valuable with regard to sustainability. Thus the soft-
ware should continuously be checked for replaceability to
avoid subsequent migration and modernization efforts [16].

Another considerable aspect is that interfaces should not be
designed in such a complex manner that it will be laborious to
make use of them or that broad user groups are segregated (see
[11] for an example).

Noteworthy, interfaces are an efficient mechanism to intro-
duce part replaceability into software designs and implementa-

179

tions. Here, long life cycles, versioning, openness, and partici-
pation options seem to be good practice [18].

Mahmoud and Ahmad [13] propose a four-step design
process that takes the mentioned considerations into account,
see figure 4. After candidate parts have been found and the
most appropriate parts have been selected, the selected parts are
customized to meet the application requirements (including
aspects relevant to sustainability) with a preferably high de-
gree. The validation stage finishes the process.

Fig. 4. Part-based software design process

IV. THE PIL IDEA

To describe software parts and their characteristics with re-
spect to sustainability issues, one idea might be to provide ad-
ditional information as it is done for pharmaceuticals.

Usually, medicinal products for human use come to the cus-
tomer with a Patient Information Leaflet, in the following
“PIL” for short (on German colloquially: Beipackzettel), also
known as Package Leaflet. Directive 2001/83/EC requires that
the PIL reflects “the results of consultations with target patient
groups ['user consultation'] to ensure that it is legible, clear and
easy to use” and that “the results of assessments carried out in
cooperation with target patient groups shall also be provided to
the competent authority.” The PIL “must be written and de-
signed to be clear and understandable, enabling the users to act
appropriately [...]” [8].

These ideas apply not only to medical products and human
users, but to software parts and our world as well. A “software
information leaflet”, hereafter referred to as SIL, could enable
software developers to act appropriately when choosing soft-
ware design alternatives or configuration parameters. SILs po-
tentially could support software developers to design better,
sustainable (or at least less unsustainable) systems.

A common problem with PILs is that many people just ig-
nore them and do not make use of the given information. It
requires further research, how people can be motivated to con-
sult SILs.

However, machine processable SILs and suitable engineer-
ing tools could be a promising option to assist software devel-
opers and users; see section 6.C.

V. PROBLEMS WITH PART DESCRIPTIONS

Some simple examples give an impression about obvious
methodical problems that will take place when describing parts.
(Depending on individual working experience, other examples
will come to one's mind.)

Example 1: Assume a mapping application a which uses a
Web service s1, e.g. a standardized Web Map Service [6], to
access up-to-date map images. Will this service (which is “just”
delivering PNG or JPEG images on request) be part of the
mapping application? I.e., is s1 considered inside the software
system model or will the relation a → s1 be neglected?

Example 2: To sort a rather huge array of strings which is
partially sorted, you have to choose between two algorithms.
Implementation a1 requires O(n log n) operations, both for the
best and the worst-case. Implementation a2 runs with O(n2) at
worst-case and O(n) at best-case. Which implementation
should be taken (a1 | a2)? And how can I decide for an imple-
mentation when I do not entirely know the operation condi-
tions?

Example 3: A Web application with high request rate is
programmed against the Servlet interface. Thus, this applica-
tion could be installed in different Servlet containers (e.g., the
Apache Tomcat or other engines), while the classes implement-
ing the Servlet interface will be bound at run-time. How can I
evaluate the application's characteristics when the underlying
implementation might vary or is even unknown? (And again
we've got the choosing problem here.)

Example 4: The Web Map Service in example 1 is given as
an HTTP URL that now can be replaced by giving another
URL for a service s2 at run-time (a → s2 instead of a → s1).
Does the operator of the application a have the expertise to
change the service URL? Noteworthy, the service might be
replaced dynamically (i.e. during system operation) here, so in
addition we've got the dynamic binding problem again.

Example 5: In example 3, the servlet could return an HTML
page (possibly with JavaScript code embedded) to the client.
Has HTML to be considered as a part of the application? (And
what is about the JavaScript portions that are steadily increas-
ing these days?) Here we've got the scoping problem again.

Hence, some typical problems have to be expected when
describing parts:

• Scoping problem: How can the boundaries of software
parts be determined? (Cf. discussion at the end of sec-
tion 3.D.)

• Comparability of descriptions: How to ensure that de-
scriptions of different parts are comparable? This
might refer to structural elements, nomenclatures for
properties, reference systems chosen for qualitative or
quantitative values etc.

• Selection criteria determination: If parts can be used
alternatively, how can we give criteria to decide which
part to take (“choosing problem”)?

• Consideration of dynamic bindings: How can I analyze
an application's behavior when the used part imple-
mentations might change at run-time?

• Description of situation dependencies: How can I de-
scribe the operation conditions of software parts which
might depend on concrete use cases, other active
processes etc. and which influence a part's behavior?
(It is as with the 10 mm dowel pin that might be suita-
ble for a certain situation and improper for another
one.)

• Granularity problem: Parts might refer to different ab-
straction levels, e.g. varying from complex frame-
works, services, or components to class libraries,
classes, and single methods.

Another methodical problem springs from the fact that most
recommendations given by SILs will not be absolute and rather

180

deserve discussion. For example, probably the description of
situation dependencies or the assessment of social segregation
aspects could be better discussed by an open Web community
than by a closed institution.

VI. OPEN RESEARCH QUESTIONS

Taking the problems listed in the previous section into ac-
count, for SIL-like approaches there are various open research
questions that have to be answered:

A. Semantic Level (Content Model)

• Which content has to be provided for the parts with re-
spect to sustainability-relevant issues?

• How is this content structured? (One could pick up the
simple graph structure presented in section 3, where
various structural concepts would superimpose the
graph, e.g. to describe operation conditions, different
dependency types, to address granularity issues, etc.)

• How can we keep the content given in different SILs
comparable?

• Which kinds of part dependencies have to be modeled?

B. Syntactic Level (Code Level)

• How to encode the content model in machine process-
able form?

• Since part dependencies might be hidden and difficult
to detect, how can we set up tools for automatic depen-
dency detection (“dependency mining”)?

C. Pragmatic Level (Application and Action)

• How can the encoded knowledge support the work of
software developers and administrators?

• How can we motivate people to contribute content to
the knowledge repositories (which would evolve dy-
namically over time)? How can a broad participation
be achieved?

• How could specific software engineering tools encour-
age software developers to act? (Or more general [20]:
How can we turn technical construction knowledge in-
to development action?)

• How could SILs be integrated into operational software
engineering tools such as integrated development envi-
ronments (IDEs), profiling tools, loggers, build tools
etc.?

• How could SIL-based software metrics to characterize
the degree of sustainability of software artifacts be de-
signed?

• What could a concept for a (Web based) community
that collects and discusses SIL knowledge look like?
Which tools should such a platform offer?

• How can we involve people in knowledge discovery
processes in the context of green and sustainable soft-
ware? How could concepts from the field of “Citizen
Science” be introduced into such a community?

VII. FIRST IMPLEMENTATION CONSIDERATIONS

A. External SIL Provision

As noted earlier, the question which concrete informational
details the software developer needs about the software arti-
facts he/she plans to use, cannot easily be answered. Here are
just some examples which illustrate the subject: How should
usage conditions influencing energy consumption be de-
scribed? Which software characteristics are relevant with re-
spect to social aspects such as fair software access etc.? What is
the best way to provide details about artifacts which have been
designed as replaceable parts and how to determine, when to
replace and by which artifact?

Anyway, it would be useful to give this information in a
machine processable form, e.g. a format based on the eXtensi-
ble Markup Language (XML). This way, software development
tools such as IDEs or CASE tools could import the informa-
tion. Then a fundamental task would be the development, spe-
cification, and maintainment of a suitable language, e.g. an
XML-based modeling language (usually given as an XML
schema definition). Ideally, this language would act as a “lin-
gua franca” for all stakeholders (i.e., software developers,
software administrators, chief information officers, potential
customers, end users, project managers etc.).

Since external artifacts should be used as provided, i.e. they
should be left untouched, it will be difficult to let standardized
additional information units become part of those artifacts. If,
for example, an external class library without an SIL is used,
probably the best way would be to manage the SIL externally
and add a reference to the library described by this SIL; see
figure 5 (UML diagram). Another advantage of this approach is
that the SIL could be reviewed and revised externally, e.g. by
an open, neutral and sustainability aware Web community.

Fig. 5. SIL repository

B. Dependency Detection

A basic task is the identification of dependencies between
parts. Since dependencies might be hidden, tool support would
be desirable.

Both source code file analyzers and more sophisticated
tools such as loggers, code coverage analyzers, or profilers
could serve as starting points for further considerations with
respect to dynamic aspects. In this context, transitivity of the
manifold dependency relation →→ (see section 3.B) has to be
considered.

181

VIII. CONCLUSIONS AND FUTURE WORK

When realizing applications, software producers usually in-
tensively make use of external software parts.

In practice, the usage relations (→) are manifold: “Parts”,
as they have been defined in this paper, might be integral com-
ponents of software applications, or they just require other
components to be installed on the target computer. On the other
side of the spectrum, parts are loosely coupled autonomous
units, e.g. a remote service which is dynamically called by an
application. It will be necessary to distinguish between differ-
ent types of → relations.

The design and implementation of sustainable software re-
quires deeper knowledge about the used parts. One approach to
provide this knowledge would be the introduction of machine
processable “software information leaflets”, i.e. “PILs for soft-
ware parts” (German “Beipackzettel”).

Though this approach sounds simple, it leads to various
questions that have to be answered before realization activities
could start, e.g. concerning part scoping, description of dynam-
ic and usage-dependent software behavior or the description of
“soft” factors such as fair software access or social segregation
effects. Here, a suitable content model is required.

Concerning the question which content has to be provided
for the parts, research activities that are currently carried out in
the context of software product labeling [12], e.g. the creation
of a kind of “eco-label”, seem to be very useful. Currently the
German Federal Environment Agency is compiling concrete
criteria for green and sustainable software that could serve as a
starting point [23]. Amongst others, they address the energy
efficiency of applications, hardware performance requirements,
hardware obsolescence effects, or self-determined software use
(“user empowerment”).

Yet there are more challenging tasks: How can the required
sustainability knowledge be acquired? How should tools that fit
into modern software engineering processes be designed? How
can stakeholders be motivated to use this knowledge?

And finally, irrespective of whether we will have SILs or
not: How can we turn technical knowledge about sustainable
software into development action?

ACKNOWLEDGMENT

The project “Forschungsschwerpunkt Nachhaltige Entwick-
lung” which is funded by the Ministry of Innovation, Science
and Research of the state North Rhine Westphalia (MIWF
NRW) within the “FH Struktur” program gave rise to this text.

In particular, the author thanks Petra Schweizer-Ries,
Christian Danowski, and Oliver Stengel for their support dur-
ing the past years.

And finally, this paper would not have been possible with-
out Nina and Werner Windisch.

REFERENCES

[1] F. Berkhout and J. Hertin, “Impacts of information and
communication technologies on environmental sustainability:
speculations and evidence,” Report to the OECD, 2001.

[2] G. Booch, J. Rumbaugh, and I. Jacobsen, “The Unified
Modeling Language user guide,” 2nd ed., Addison Wesley,
2005.

[3] T. Busch, “Open Source und Nachhaltigkeit,” Open Source
Jahrbuch, Berlin: Technische Universität, 2008.

[4] E. Capra, C. Francalanci, and S. A. Slaughter, “Is software
"green"? Application development environments and energy
efficiency in open source applications”, Information and
Software Technology, vol. 54, no. 1, 2012, pp. 60–71.

[5] K. Czarnecki and U. Eisenecker, “Generative programming:
Methods, tools, and applications”, Boston, MA: Addison-
Wesley, 2000.

[6] J. de la Beaujardiere, Ed., “OpenGIS Web Map Service (WMS)
implementation specification”, Open Geospatial Consortium,
doc. no. 06-042, 2006, http://www.opengeospatial.org/docs/is

[7] M. Dick, J. Drangmeister, E. Kern, and S. Naumann, “Green
software engineering with agile methods,” 2nd International
Workshop on Green and Sustainable Software (GREENS 2013),
San Francisco, CA, 2013, pp. 78–85.

[8] European Commission, “Guideline on the readability of the
labelling and package leaflet of medicinal products for human
use,” directive 2001/83/EC, articles 59(3), 61(1), 63(2),
Brussels, 2009.

[9] L. Hilty, “Information and communication technologies for a
more sustainable world,” in Information Resources Management
Association, “Green technologies: Concepts, methodologies,
tools and applications,” Vol. I (chapter 1.4), Hershey, PA:
Information Science Reference, 2011, pp. 36-45.

[10] L. Hilty, W. Lohmann, S. Behrendt, M. Evers-Wölk, K. Fichter,
and R. Hintemann, “Green software : Analysis of potentials for
optimizing software development for resource conservation,”
report no. (UBA-FB) 001883/2,E, Berlin, Germany: Federal
Environment Agency, 2015.

[11] T. Johann and W. Maleej, “Position paper: The social dimension
of sustainability in requirements engineering,” 2nd International
Workshop on Requirements Engineering for Sustainable
Systems, Rio, Brasil, July 2013.

[12] E. Kern, M. Dick, S. Naumann, and A. Filler, “Labelling
sustainable software products and Websites: Ideas, approaches,
and challenges,” 29th International Conference on Informatics
for Environmental Protection (EnviroInfo 2015) and 3rd
International Conference on ICT for Sustainability (ICT4S
2015), pp. 82–91.

[13] S. S. Mahmoud and I. Ahmad, “A green model for sustainable
software engineering”, International Journal of Software
Engineering and Its Applications, vol. 7, no. 4, July 2013, pp.
55–74.

[14] M. Nadin, “Semiotic machine,” Public Journal of Semiotics,
I(1), Jan. 2007, pp.57–75.

[15] J. M. Neighbors, “Software construction using components,”
dissertation, Irvine, CA: University of California, Department of
Information and Computer Science, 1980.

[16] F. Pientka, “Gebaut für den Wandel : Nachhaltige Software-
Entwicklung,” Business Technology (Magazin für IT-
Leadership & Innovation), Heft 18, 3.2014, Frankfurt/M.,
Germany: Software & Support Media, pp. 35–38.

[17] A. Raturi, B. Penzenstadler, B. Tomlinson, and D. Richardson,
“Developing a sustainability non-functional requirements-
framework,” 3rd International Workshop on Green and
Sustainable Software (GREENS 2014), pp. 1–8.

182

[18] B. Schmidt and A. Wytzisk, “Software Engineering und
Integrative Nachhaltigkeit,” 2nd Workshop “Environmental
Informatics between Sustainability and Change” (UINW 2014),
proceedings INFORMATIK 2014, Lecture Notes in Informatics
(LNI), Vol. P-232, Stuttgart, Germany, Sept. 2014, pp. 1935–
1945.

[19] P. Schweizer-Ries, “Sustainability science and its contribution to
IAPS: Seeking for Integrated Sustainability,” IAPS Bulletin, 40,
Autumn 2013, pp. 9–12.

[20] P. Schweizer-Ries and D. P. Perkins, “Sustainability science:
Transdisciplinarity, transepistemology, and action research,”
Umweltpsychologie, 16(1), 2012, pp. 6–10.

[21] I. Sommerville, “Software Engineering,” 10th ed., Harlow, UK:
Pearson Education, 2016.

[22] J. Taina, “Good, bad, and beautiful software : In search of green
software quality factors,” CEPIS Upgrade, XIII(4), Oct. 2011,
pp. 22–27.

[23] Umweltbundesamt, “Sustainable Software Design : Entwicklung
einer Methodik zur Bewertung der Ressourcen-Effizienz von
Softwareprodukten,” information leaflet, Berlin, Germany:
Federal Environment Agency, Nov. 2015. http://www.uba.de/
publikationen/sustainable-software-design

[24] World Commission on Environment, Eds., “Report of the World
commission on environment and development: Our common
future,” Oslo: UN, 1987.

183

