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Abstract—The large interest in analyzing one’s own fitness led
to the development of more and more powerful smartphone appli-
cations. Most are capable of tracking a user’s position and mode
of locomotion, data that do not only reflect personal health, but
also mobility choices. A large field of research is concerned with
mobility analysis and planning for a variety of reasons, including
sustainable transport. Collecting data on mobility behavior using
fitness tracker apps is a tempting choice, because they include
many of the desired functions, most people own a smartphone
and installing a fitness tracker is quick and convenient. However,
as their original focus is on measuring fitness behavior, there are a
number of difficulties in their usage for mobility tracking. In this
paper we denote the various challenges we faced when deploying
GoEco! Tracker (an app using the Moves R© fitness tracker to
collect mobility measurements), and provide an analysis on how
to best overcome them. Finally, we summarize findings after one
month of large scale testing with a few hundred users within the
GoEco! living lab performed in Switzerland.

Index Terms—Mobility tracking; Fitness App; Transport mode

I. INTRODUCTION

Mobility data are used in several fields of research, most
notably transport analysis and planning, e.g., to plan transport
infrastructures of cities. They are also required to analyze
energy consumption caused by mobility needs and to find ways
to foster more sustainable mobility behavior. To collect the
required data, a variety of options are available.

On a large scale, mobility data are usually recorded on a
rather inaccurate level using very time consuming methods.
A prominent example is micro census collection, where home
and work addresses of users and their most frequently taken
routes are collected by means of in-person or phone interviews
(e.g., the Swiss micro census on mobility and transport [1]).

On a smaller scale, a widely chosen approach is to ask users
to write travel diaries, i.e., logs containing the routes travelled
and transport modes chosen. These daily updated logs are
very detailed, but the process places large burdens on the
participants and makes it prone to errors [2]: people skip filling
in the diary, forget about their routes, the exact paths taken, or
the modes of transport used. With the increased availability of
smartphones (e.g., in Switzerland, in 2014, there were approx.
140 mobile telephone subscriptions per 100 citizens [3]), a
new, unobtrusive way of collecting mobility data has emerged:
as mobile phones feature more and more powerful hardware
and a broad range of sensors, they have become an easy means
for mobility data collection.

Availability of new possibilities for automatic mobility
tracking inspired our GoEco! project1, which aims at investi-
gating if eco-feedback and social interactions (social compari-
son and peer pressure), automatically provided via information
and communication technologies (ICT), can be effective in
fostering long term changes in personal mobility behavior and
reducing car use.

In this paper we present the approach for mobility data
tracking we adopted within the GoEco! project, when devel-
oping the GoECo! Tracker app. Even though a large body
of literature concerns systems and algorithms to accurately
identify mobility patterns using smartphone sensors, only a
few prototypical apps for automatic mobility tracking are
available (e.g., PEACOX [4], Mobidot [5], Studio mobilità [6],
or Modalyzer2) and it remains challenging for a small team of

1http://www.goeco-project.ch
2https://www.modalyzer.com
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researchers to develop a tracking app for a large-scale study.
The work required to support the variety of devices, the fine-
tuning to keep energy consumption within acceptable ranges
and the selection of appropriate activity and route recognition
algorithms make it difficult to build such an app. A viable
alternative is the use of already existing applications, such as
location-enabled fitness trackers. The benefit is clear: there
is no need to spend resources on the development of the
tracking part, but instead researchers can focus on the analysis
of data or on other aspects, such as using information and
communication technology to support behavior change [7].

Following these considerations, in order to have a base for
setting up the automatic mobility tracking, in GoEco! we opted
for exploiting the fitness tracker app Moves R©. Here we discuss
challenges we faced when setting up the GoEco! Tracker
application, strategies on how to refine collected data, what
accuracy can be expected and what kind of analyses can be
performed with it.

II. MOBILITY MONITORING FOR SUSTAINABILITY

Recently, a few research projects explored possibilities to
exploit eco-feedback information to foster sustainable be-
haviour. Studies from other domains (such as household elec-
tricity consumption, cf. [8]) reported energy saving effects in
the range of 5-12%, by using ICT to collect data and provide
feedback [9]. A few smartphone-based mobility tracking expe-
riences aimed at promoting sustainable mobility choices were
already performed in the last years (e.g., [10],[11],[12], [13]).
Many papers however only report qualitative findings and lack
long study periods and a sufficiently large sample of partici-
pants [14]. UbiGreen, for example, looked at a sample of 14
participants over the course of a month, partially caused by the
fact, that participants had to be given specialized hardware for
the experiment [10]. With GoEco!, we look at a large sample
of a few hundred participants over the course of approximately
a year. Participants are recruited on a voluntary basis and
live in the Swiss cantons of Zurich and Ticino. We involve
them in three mobility tracking periods: in a first one-month
monitoring period (Spring 2016) we track their movements to
identify baseline mobility patterns; in a second three-months
period (Autumn 2016) we continue tracking movements and
also use “gamification” [15] elements to challenge them to
modify their mobility patterns; the final period (Spring 2017)
is used to study long-term effects. Comparing the individual
mobility patterns of the three periods allows us to assess
the overall effectiveness of the GoEco! approach. The first
challenge we face in GoEco!, therefore, is to find a way
to automatically and efficiently identify the baseline mobility
patterns of a large scale of users. It needs to be noted, that
surveillance and behavior change are heavily debated topics
(cf. [16], [17]), which we will only touch upon in the context
of this paper.

III. LARGE SCALE AUTOMATIC MOBILITY MONITORING

During our assessment of viable tracking options for
GoEco!, we performed an overview of the most effective

approaches for large scale and automatic mobility monitoring.
A large number of studies has focused on the recording

and analysis of mobility and activity data using smartphones,
usually by utilizing location (GPS) and accelerometer data
([18], [19], [20], [21], [22], [23], [24], [25], [26]). Issues
such as suitability of sensors for activity recognition [27],
accuracy of transport mode classification [28], [29] and energy
consumption of the app [30] are well researched areas. Many
of these implementations promise high recognition accuracy,
up to approximately 95% (cf. [21], [31], [27]). In modern
smartphones, various algorithms have already been directly
implemented in hardware and run on dedicated processors in
order to save energy (cf. the M7/8/9 coprocessors in Apple
devices). Nonetheless, the implementation of such algorithms
across a wide range of devices remains challenging. While
many studies collect data using diaries and surveys [32], there
are a few which build their own mobility trackers [12], or do
a mixture of both, where users can refine certain activities
[10]. Another commonly found approach is to use built-in
sensors of modern cars, or deploying sensors to taxi and other
commercial fleets (e.g., [33]). However, there is always a large
effort in developing, testing and supporting applications, which
often leads to small sample sizes. In the case of GoEco!, we
try to capture a large and diverse sample of the population,
testing our hypotheses in a so-called “living lab” [34], a data
collection method related to citizen science [35]. A reason for
using a living lab is the diversity of people, which facilitates
generalization [36]. Overall, in fact, approximately 400 people
are actively participating in the living lab. However, high
diversity of users also means a large diversity of smartphones
and operating systems, which further challenges us.

To face the complexity of the tracking problem, we opted for
the following approach: using an existing fitness tracker app,
we build an addition on top, which refines data and allows
users to interact with them. A few apps are suited for such an
approach (for instance, the ultimately used tracker app Moves
lists around one hundred officially approved applications that
build upon its tracking system3), however they are not aimed
at tracking mobility patterns but are instead focusing on the
fitness performances of the users.

IV. CHOICE OF THE TRACKER APP

Since there is a broad range of trackers available (mostly
from the fitness domain), a careful evaluation with respect
to mobility tracking is necessary. Bauer [37] notes aspects
that have to be considered when using a fitness app for
route tracking: accuracy of positioning, rate of GPS points
recording, inclusion of map matching algorithms, user inter-
face and experience and data export facilities. Other consid-
erable aspects include user ratings, reliability, quality, scope
of information, aesthetics, recommendations and professional
expertise [38]. Millington [39] performs an in-depth study of
health and fitness apps, considering not only tracking, but

3https://apps.moves-app.com
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overall interaction with the application and possibilities to
share and link performance to “like-minded” consumers.

In our case, the choice between available tracking apps is
not influenced by app usability from the user perspective: users
would in fact only be requested to interact with our additional
app, provided that the fitness tracker app is running in the
background and it is recording the routes traveled. According
to our previous experience in building mobility tracking apps
[40], essential requirements for mobility tracking are:

1) reasonable accuracy of recorded GPS points (it should be
possible to reconstruct a close approximation to the actual
route taken by applying map matching algorithms);

2) capability to automatically identify that transport activi-
ties are taking place, without any indication by the user
(no need to activate and deactivate the GPS tracking
functionality);

3) availability of pre-processing algorithms able to organize
GPS data into routes and activities (sections of a route,
covered with a single means of transport), in case differ-
ent means of transport are used in the same route;

4) effectiveness in identifying the means of transport;
5) low battery power consumption, allowing usual phone

usage during the day, recharging the phone over the night;
6) near real-time, automated accessibility to the collected

location data (via an application programming interface,
i.e., an API).

Several fitness tracker apps (e.g., Moves, Nike Fuel or Run-
keeper4) fulfill most of the above requirements and provide an
API to retrieve location-tagged routes and activities performed
by users. An internal testing of these apps showed promising
results by Moves: it can identify three fitness activities with
high accuracy (walking, running and cycling), which corre-
spond to two means of transport (foot and bicycle; detected
with an accuracy between 0.9 − 0.98). More importantly,
it also recognizes generic “transport” routes and activities
performed during the day. Finally, battery power consumption
is optimized, especially for iOS operating systems. However,
during internal testing we also discovered several weaknesses:

• Moves’ performances in tracking GPS activities are quite
different depending on the smartphone operating sys-
tem and device model: the best tracking performances
are produced with recent iOS versions (from iPhone 5
onwards), followed by Android phones endowed with
Internet mobile data connection; poorer performances are
obtained with Android phones without data connection.
Also, the accelerometer sensor offered by some phones
is not compatible with Moves, which even happens with
recent phone models;

• since Moves runs on a regular smartphone and tries
to consume as little battery power as possible, it only
records locations at irregular intervals. This implies that
most activities are only mapped as beelines between the
starting and the arrival point and are not map-matched
in order to follow roads and railways. This can confuse

4www.moves-app.com, www.nikeplus.com, runkeeper.com

users, especially when parts of routes go across lakes
or mountains, and estimates incorrect values for the
distances travelled;

• inter-modal routes are sometimes not correctly detected,
being instead classified as a single-mode route. Surpris-
ingly, this even takes place with the same smartphone on
the same route, though on different days. The most likely
reason is that Moves does not record a tracking point at
the moment of mode change (due to a low GPS points
tracking frequency) and thus can not split up the route in
different modes. Alternatively, this might be a weakness
of the algorithms used by Moves to detect modal changes;

• the precision of visited places is sometimes inaccurate,
which makes it difficult to infer the reason for a trip,
such as going shopping, or going to the gym.

Despite these limitations, we opted for Moves since it ful-
filled the majority of requirements indicated above, especially
points 2), 3) and 4) (although limited to walking, cycling
and motorized transport), which the other apps we examined
could not guarantee. A big challenge in using Moves to
identify mobility patterns remains the correct identification of
the means of transport associated with activities classified by
Moves as “transport” (i.e., distinguishing between taking the
bus, the train, subway or cars). And, of course, accuracy of the
data gathered by Moves is affected by limitations in the overall
quality of the GPS network signals or by wrong settings in the
users’ smartphones, such as disabling location services. This,
however, would have happened with any other app and it is
not dependent on Moves.

V. CHALLENGES

Opting for exploiting Moves data via its API leads to one
big issue: it is not possible to modify the tracker app nor
the related data tracking processes and algorithms. The main
consequences are the following ones:

1) To allow users to easily interact with the collected data,
they should be able to access data directly via the
smartphone, instead of for example via a reserved area
on the project website. Users therefore need to install two
apps (in our case, the fitness app Moves and the GoEco!
Tracker app) and to connect them.

2) Tracking accuracy, retrieved information, battery con-
sumption and availability on different operating systems
are out of direct control.

3) The retrieval and updating of tracking data leads to in-
creased complexity and causes a delay in data processing,
because data must be fetched via the API.

4) Data are inevitably stored also on third-party servers,
which might be in another country and subject to different
data protection laws.

The first item can build an initial barrier for people to
participate, not only because it increases the complexity of
installing the mobility tracking app, but also because it forces
users to create multiple accounts. This requires detailed doc-
umentation of the setup process and communication of the
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reason for using a multi-application setup. However, of all the
130 support requests we received by email during the first
four weeks of the GoEco! monitoring periods, only 3 were
directly concerned with the multi-app setup. As such, users
do not seem to be restricted by the multi-app setup.

Of the 638 people who originally signed up for the GoEco!
living lab experiment, 41 had operating systems which were
not compatible with the tracker app (mostly Windows Phone
and older versions of iOS). We tried to keep this number
low by communicating that the study participants must either
own an iPhone or Android smartphone. It is interesting to
note that only 19 out of these 41 (approx. 50%) actually
informed us that they could not participate in the project due
to incompatibilities. The others either did not try, or gave up
without giving notice. While remarks on battery issues can
be found in several support requests, only one participant
explicitly left the project because of it. Finally, 31 support
requests (approx. 25%) concerned bad tracking quality and
missing activities. Though only two users left the study for this
reason, it shows that refinement of tracked data is necessary.

The communication via the tracker API leads to additional
technical difficulties. First of all, the tracker app credentials
have to be stored centrally, and mechanisms have to be in
place to ensure that accounts are always correctly linked, even
if someone re-installs an app, switches a phone or loses login
information. Second, the communication causes a delay in
processing the activities. While some APIs provide a push
notification when new activities are available, fetching and
processing them still causes a considerable delay. This forced
us to promote that users should interact with the app on a daily
basis, instead of after every activity they completed. While this
is acceptable for mere data collection, many user interactions
rely on well-timed feedback, and are thus out of reach for such
an application setup [15].

While we only received two support requests concerning
privacy, both participants stating that they leave the experi-
ment, it was one of the most discussed points during prepara-
tion of the project. Because all the data is stored in at least two
places now, one of which is owned by the commercial com-
pany owning Moves, and because location traces are generally
considered sensitive data [41], [42], proper communication is
necessary: we explicitly dealt with privacy protection issues
both on the project website and during recruitment meetings.
We suspect, however, that most people, who worried about
privacy, did not sign up for the experiment in the first place.
Figure 1 shows the most mentioned reasons for leaving the
project. The most prevalent was an unsupported operating
system by Moves on older iPhones. Even though privacy
questions cover a significant part of all support requests, not
many people left the experiment because of it.

The considerations above led us to design the general archi-
tecture of the GoEco! mobility tracking system as represented
in Figure 2: a user installs the Moves app and keeps it
active in background on her phone, without interacting with
it. She also installs the GoEco! Tracker app, with which she
interacts on a daily basis. As soon as GoEco! Tracker sets up

Fig. 1. Reasons for Leaving the GoEco! experiment.

communication with Moves, all the travelled routes recognized
by Moves are also recorded and stored on the GoEco! server.
In particular, the server receives a notification from Moves
when new routes are available, fetches them via the API,
calculates route refinements and stores them in a database.
GoEco! Tracker displays these routes to the user upon the next
interaction, and offers the possibility to check and validate
them. Finally, the updated routes are again stored on the
GoEco! server.

routes with confirmed 
means of transport

Moves 
Connector

GoEco 
Datastore

GoEco  
Tracker 

Algorithm

routes with
proposed 
means of 
transport

raw routes

user validation

learning loop

Moves App GoEco Tracker App

Fig. 2. Architecture of the GoEco! Tracker system.

As already indicated, the locomotion tracking in Moves
only covers fitness-related activities, i.e., there is no distinction
between transport modes such as the car or the train. Because
it is not possible to influence the received information, we have
to introduce an additional step that infers the transport mode
from the information given by Moves (a detailed description is
given in section VI). To check the accuracy of this additional
step, and to ensure valid data, users have to validate every
activity they perform: the GoEco! Tracker app asks them to
check the path they traveled, verifying the start and destination
point of each activity, the time of the day and the related means
of transport. In the case of wrong data, users can either specify
the correct means of transport, or, if they do not acknowledge
having traveled such a route, they can remove the route from
the dataset. While this provided us with corrected data, it was
also the source of most support requests and uncertainty: often,
recorded activities are not perfectly accurate, which makes
users wonder when they should validate an activity, or when
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to discard it. Of all the 52’985 activities collected by GoEco!
during the study period from March 7 to April 4 2016, a total
of 37’510 were validated by the study participants (70.8%).

VI. IDENTIFICATION OF THE TRANSPORT MODE

As already explained, Moves classifies the recorded activi-
ties into walking, running, cycling and motorized transport.
In order to correctly identify the users’ mobility patterns,
GoEco! Tracker has to consider a more refined list of means of
transports (MoT): foot (including both walking and running),
bike, electric bike, kick scooter, car, electric car, motorbike,
scooter, bus, train, tram, plane, and ship. To prevent users from
having to manually enter transport modes, GoEco! Tracker
suggests a MoT for every activity, inferring it from activity
data (such as time, start and end point, etc.) and from the
history of user activities. Because a user only has to manually
correct the MoT when the app suggestion is incorrect (Figure
3 shows the validation screenshots), achieving a high accuracy
in the identification of the MoT is essential.

Fig. 3. The screenshots for the MoT validation in GoEco! Tracker.

The data recorded by Moves for each activity and available
to GoEco! Tracker include the traveled distance, the duration
of the activity, the start and arrival times and GPS coordinates,
and the time and coordinates of an arbitrary number of
intermediate track-points (arbitrary in the sense that Moves
does not provide information about the criteria based on which
a position along an itinerary is recorded as a track-point).

As stated in Section III, a large body of research is de-
voted to the identification of the MoT based on data from
smartphones. However, most of it relies on a richer set of
data than the one that can be extracted from Moves records.
In [43], a very large accuracy of .985 is obtained using
GPS data and accelerometer measurements which are not
available from Moves (notice moreover that in [43] only
foot, bike and motorized transport are discriminated). Other
work, such as [21], [44], [45], [46], considers more MoTs,
reaching accuracies ranging from .771 up to .937, however,
they only consider a maximum of 5 MoTs. Moreover, all use
high frequency GPS data from which motion features such as

acceleration and instantaneous heading change can be derived.
The extraction of such features is made difficult in our case
by the lack of a continuous collection of GPS data imposed
either by battery saving requirements or by limitations in the
quantity of the stored information on Moves servers. Note that
the high accuracy of .937 obtained in [21] is reached using,
besides motion features, the matching of GPS data with the
transportation network and with the real time bus location, the
latter being hardly available in most applications. However,
also other works, e.g., [46], [45], show that map matching has
the potential for improved classification accuracy.

To tackle the challenging classification task posed by the
GoEco! setup, we build upon results from above research,
but also consider information that can be drawn from the
transportation network. In particular, we use the Open Trip
Planner (OTP) system [47] (an open source and open data
transport routing system, supporting a variety of modes, such
as walking, taking public transport, driving, or biking5) to
identify possible connections from the start to the destination
point of each activity using public transportation (PT). More
precisely, for each activity we query the OTP to obtain the
best transfer solution by bus only, train only and tram only
(this includes walking to the respective PT stop). This allows
us to see if it is actually possible to perform the activity using
public transport, and, if possible, which was the most likely
used mode. Ultimately, the features considered are:

• f1 = average speed (km/min). It mainly discriminates
plane, other motorized transport modes, bike and foot.

• f2 = total traveled distance (km). Discriminates approx.
the same as f1.

• f3 = maximum distance between track-points over the
traveled distance. It is included because track points of
activities such as plane and train are often very sparse in
some sections along the itinerary.

• f4 = average heading change between track-points. The
heading change is computed as the change of heading
direction between two consecutive track-points. The use
of this feature is motivated by the fact that, being con-
strained by a road, people driving a motorized MoT can-
not change their heading direction as flexibly as people
walking or cycling [44]. Unfortunately, this feature is less
informative in our setting, because Moves does not record
track-points at a very high frequency.

• f5, f6, f7 = difference between the actual duration of the
travel and the duration (waiting time excluded) of the
solutions suggested by the OTP by, respectively, train,
bus and tram.

• f8, . . . , f13 = distance of the start and arrival points of
the recorded itinerary from the departure and arrival stops
of the OTP suggested solutions by train, bus and tram.

• f14, f15, f16 = number of stops of the OTP solution (by
train, bus and tram) which are closer than 50 meters
to one of the itinerary track-points, divided by the total
traveled distance.

5http://www.opentripplanner.org
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We can formalize this problem as a classification problem
where each activity is an instance described by the vector
features f = [f1, . . . , f16] and belonging to the unknown class
ca among the set of classes cj , j = 1, . . . , 13 representing
all possible MoTs, that is, cj = {foot, bike,. . . , ship}. In
order to improve the classification accuracy, we account for
the different mobility patterns of individual users at two levels:

• we account for the different distribution of the mobility
patterns of different users. For instance, the distribution of
distances traveled by “car” activities can differ between
users in large cities and users in small towns.

• we account for the routines of the different users by
considering the specific means of transports historically
used by the user for the same itinerary.

The different distribution of mobility patterns is accounted
for by training a different classifier for each user. As there are
no training data available for the users involved in GoEco!
prior to the beginning of the mobility tracking activities, the
different classifiers must be learned online. With this in mind,
we adopted a naive Bayes (NB) classifier, since its parameters
can be sequentially updated as new validated data become
available from the tracking activity. The NB classifier assigns
to each class cj the probability P (cj |f) based on the Bayes rule
and the assumption of independence of the different features:

P (cj |f) =
P (f1|cj)P (f2|cj) · · ·P (fm|cj)P (cj)

p(f)
.

where the probabilities P (cj), j = 1, . . . , 13 represent
the prior opinion about which means of transport is more
likely to be used, whereas the probabilities P (fi|cj), i =
1, . . . , 16, j = 1, . . . , 13 represent the conditional probability
of observing the value fi for the i-th feature given that the
instance belongs to the j-th class. As a result of this inference
process, we obtain an estimate of the probability of each MoT
for the activity to be classified. Finally, to account for the user
routines, we consider all the previous activities where the user
has traveled the same itinerary. Two activities are assumed
to correspond to the same itinerary whenever the distances
between their start and destination positions are both smaller
than 150 meters. Let n be the number of historical segments
of a user which correspond to the same itinerary of the activity
to be classified, and nj the number of activities among them
belonging to class cj . The probability

P (cj |itinerary) =
nj + α

n+ 13α
,

where α is a smoothing parameter, provides an estimate of
the probability that the j-th mean of transport is used by the
current user on the current itinerary. Then, to account for the
user routines, we re-calculate the probability estimates P (cj |f)
of each class cj , issued by the NB classifier, as follows:

P̂ (cj |f) =
1

K
P (cj |f)P (cj |itinerary)

where K is a normalizing constant. The activity is then as-
signed the MoT with the maximum post-processing probability
P̂ (cj |f).

Concerning the parameters of the NB classifier, features
i = 1, . . . , 4 are assumed to have a Gaussian probability dis-
tribution P (fi|cj). For all other features, we have to consider
also the case of missing data, which happens when the OTP
is not able to suggest any solution. Missing data can be very
informative about the MoT used; for instance, if a solution by
train cannot be found by the OTP for given start and desti-
nation positions, then, most likely, the corresponding itinerary
has not been travelled by train. Therefore, we consider the
boolean variable OTP (=true if an OTP solution was found,
=false otherwise) as a further feature and model the conditional
probability P (f5, . . . , f16, OTP |cj) as follows

P (f5:16, OTP = 0|cj) = P (OTP = 0|cj)
P (f5:16, OTP = 1|cj) = P (OTP = 1|cj)P (f5:16|cj , OTP = 1)

where P (f5:16|cj , OTP = 1) =
∏16

i=5 P (fi|cj , OTP = 1) is
the conditional distribution of features fi, i = 5, . . . , 16 given
that an OTP solution has been found, and P (OTP = 1|cj)
(resp. P (OTP = 0|cj)) is the probability of finding (resp. not
finding) an OTP solution when the mean of transport is cj .
The conditional distribution P (fi|cj , OTP = 1) of features
i = 5, . . . , 16 is assumed to be Gaussian.

Within a Bayesian framework, a prior for the parameters
of P (fi|cj , OTP = 1), i = 1, . . . , 16 is assumed for each
feature and class based on set of historical data collected from
a small set of users involved in the project. Then, as a new set
of validated mobility records Xu is collected for the u-th user,
the prior is updated, by the Bayes rule, obtaining the posterior
predictive distribution P (fi|cj ,Xu), i = 1, . . . , 16. Note that
this updating procedure can be performed sequentially, that is,
when a new record x is collected, the posterior obtained in the
previous step P (fi|cj ,Xu) is assumed as the new prior and
updated with the new record x. Moreover, by exploiting the
properties of conjugate priors the online updating procedure
is fast and simple. Therefore, we have assumed the normal-
Gamma prior on the parameters of P (fi|cj), i = 1, . . . , 4,
and P (fi|cj , OTP ), i = 5, . . . , 16 and the Beta prior for
P (OTP |cj).

By learning the users’ mobility patterns, we have been able
to improve the performance of the classification algorithm
during the tracking period, thus requiring the users to interact
with the app less and less, as time goes by.

Preliminary assessments of the overall performances of the
algorithm are related to one month of use of the GoEco!
Tracker app by 359 study participants (from March 7 to April
4, 2016): we compare the MoT proposed by the app and the
MoT recorded after validation by the user. Figure 4 shows
the evolution of the classification accuracy for each MoT m
(defined as the number of activities correctly classified as m
divided by the total number of activities collected for m) as
a function of the number of training activities nu,m (that is,
activities previously collected and validated) available for user
u and MoT m. Only the 7 MoTs used by at least 5 users for
more than 15 times are shown in the Figure. The accuracy is
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averaged over all users and over a window of 15 values of
nu,m, that is from nu,m to nu,m + 14.

Fig. 4. Evolution of the classifier accuracy as more data are collected for
each user.

We can notice that the classification accuracy of ”foot” is
very large. This is mostly due to the low speed and small
distances typically travelled by foot, which make this MoT
easy to classify. Notice that as nu,m (the x-coordinate in
Figure 4) increases, the number of users included in the
analysis reduces. Therefore, the weight of a single user on the
overall performance increases towards the end of the curves
in figure 4, causing the oscillation in the performance that can
be observe, e.g., for bike and car. Indeed, the classification
performance varies among users, and thus a single user for
which the performances are particularly poor or particularly
good can significantly affect the average performance when
only few users are considered.

Table I shows the accuracy achieved from the beginning
of the study and that obtained when classifying only those
activities corresponding to a user and a MoT for which at
least nu,m = 25 training activities were collected. The overall
classification accuracy is satisfactory in both cases (.829 in
the former case and .891 in the latter), also because of the
weight of walking activities which can be classified with high
accuracy (and are, in most cases, already correctly classified
by Moves). On the other side, when considering only the
classifications for which sufficient training data were available,
an acceptable accuracy of more than .750 is obtained for
all MoTs except for the electric bike (which can be hardly
distinguished from a traditional bike) and the bus (which is
hard to discriminate from the car).

These results could be further improved by considering a
hierarchical model for deriving the classifier parameters, that
is, a model that assumes a common distribution over the
parameters of the different user classifiers. Such hierarchical
approach has the capability of recognizing clusters of similar
users in an unsupervised way, and learn their common features
from their joint datasets. Therefore, it is expected to allow
exploiting similarities between user to improve estimates of

MoT Accuracy
All activities Activities with nu,m ≥ 25

Foot .9530 .9579
Bike .7037 .8386

Electric bike .4715 .6071
Kick scooter .4508 -

Car .7252 .7633
Electric car .7362 .8162
Motorbike .5867 .8750

Scooter .3765 .9500
Bus .7288 .7120

Train .7459 .8155
Tram .6464 .7778
Plane .6531 -
Ship 0 -

Overall .8294 .8909
TABLE I

CLASSIFICATION ACCURACY OVER ALL ACTIVITIES AND OVER THE
ACTIVITIES CORRESPONDING TO A USER AND A MOT FOR WHICH

nu,m ≥ 25.

the classifier parameters, while still tailoring each classifier
to the individual user. Also, a more intense exploitation of
map matching methods, besides those within the OTP routing
system, could result in an increased classification accuracy.

VII. ANALYZING TRACKED DATA

In this section we perform an analysis of activity data
collected by one month of large scale testing of the GoEco!
Tracker app. We look at a set of key measures, concerning
distances covered, and transport modes involved. From the
461 users who registered in the app, a total of 359 collected
more than one activity during the GoEco! experiment period
from March 7 to April 4 2016. Of them, 292 users started
data collection within the first five days of the study period.
This means, they set up the connection between the Moves and
GoEco! Tracker apps, and left it active for at least one route.
Figure 5 shows the distribution of days on which users tracked
activities. There is a considerable number of users who only
provided activities (i.e., collected them by activating Moves
and submitted them to the system by connecting Moves to
GoEco! Tracker) on a small number of days.

Those participants either left the project early or down-
loaded the app very late in the study period. Because they do
not provide enough data, we will from now on only consider
the 199 participants who collected and submitted activities on
21 or more days over the four weeks monitoring period (cf.
the red dotted line in Fig. 5). We could also consider only
the 142 users who validated activities on 21 or more days
(which would give us the most accurate dataset), however, in
a first step, it is interesting to also look at the amount of users
who did not perform the validation step, and how we might
still extrapolate their tracked activities. We will lead an in-
depth investigation on why participants were not as active as
expected in GoEco! mobility tracking activities later during
the project, by means of interviews and focus groups with a
selection of users.

On average, we collected 7.4 activities per user per day, of
which 77.1% were actively validated (31’782 out of 41’199).
Figure 6 shows the total number of activities, with their
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Fig. 5. Number of days on which users collected at least one activity.

respective mode of transport, collected in the four weeks
period. A large number of activities is of type walking (38.4%),
which results from the fact that the Moves fitness tracker even
records very short walking routes (around hundred meters),
because it is not primarily interested in mobility behavior, but
in everything that contributes to health. However, due to the
fact that these routes are very short, they do not contribute
much to overall mobility and could easily be filtered out if
desired, for example when determining the modal share of the
GoEco! participants. Another large part is made up of unknown
routes (22.9%). In our setting, those are routes which have not
been validated by users. Using the method described in section
VI, we could also assign a mode of transport to all of them.

Fig. 6. Activities Collected by GoEco! Tracker During Four Weeks.

The primary reason for the increase of unknown routes is
the declining novelty of the app: users start neglecting the
manual validation in GoEco! Tracker, while they still keep
Moves tracking in the background. We found that most users
either only validated their routes a couple of days, or the whole
period. As such, we can also filter out people who do not
validate, but just let themselves be passively tracked.

Looking at the graph of activities in 6, two further charac-
teristics stand out: the weekly periodicity, which can be seen
by comparing at the average number of activities performed on
weekdays with those on Sundays, and the weekend of the 25th
to the 27th of March. While we collected an average of 1’532
activities per day on weekdays, this number drops to 1’092
on Sundays (-28.7%). This looks reasonable, considering that
most of the regular trips (such as going to work) are not

performed on Sundays. However, it is interesting to note that
there is no big difference between weekdays and Saturdays,
even though most people have this day off as well. This
is most likely due to the fact that shops are open (as in
contrast to Sundays), which allows people to perform a wider
range of activities. The weekend around 27th was Easter
holiday, when Friday and Monday are days off (and shops
are closed) in Switzerland. As such, the number of activities
drops to comparable levels to those of Sundays. Note that in
the analysis so far, we did not look at distances covered, but
only at the number of activities.

To get an idea of the accuracy of using the Moves fitness
tracker app to measure mobility behavior, we perform a
comparison with data from the Swiss Mobility and Transport
census [1]. A first measure to consider are the totally traveled
kilometers. Figure 7 shows the average distance covered by
study participants on every day. We manually removed 43
plane trips, as they led to large outliers on single days. The
overall average (56.2 km; the red dotted line) is about 15
km higher than the one indicated by the mobility census (a
yearly total of 15’246 km, or 41.8 km per day, also excluding
plane journeys; the black dotted line). While this does not
exactly match, it does not necessarily reflect errors in tracking
accuracy, but it is most likely induced by our sample, which
consists of people interested in optimizing travel behavior,
probably because they travel a lot.

Fig. 7. Kilometers Traveled by Users, by day.

The second key measure concerns the average distance
covered by each mode of transport. This is a bit more difficult,
considering our dataset contains a number of unknown activ-
ities. For this analysis, we replaced unknown activities with
the one discovered using the method described in Section VI.
Figure 8 shows the resulting distribution of modes, and the
number of kilometers traveled with each. Again, we manually
removed the plane journeys, and also summed trams and
buses (category “tram” in the figure), cars and e-cars, and
bicycles and e-bicycles (because the respective categories were
summed in the Swiss mobility census as well). Finally, we are
not showing the other MoT categories because the distances
covered are negligible. As can be seen, the largest difference
respect to the Census is due to an higher use of trains, trams
and buses. This might be explained by the fact that a large part
of our sample is commuting to the city of Zurich, a journey
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usually covered by train.

Fig. 8. Modes Used for Kilometers Traveled

Summarizing, while the data tracked by Moves and inferred
by our algorithm from Section VI are not perfectly accurate,
they are in acceptable ranges. Problems like beeline routes,
or non-validated (i.e., unknown) routes can be handled using
map-matching and our own classifier. It remains to be seen
if the data is accurate enough to provide users with viable
alternative routes (or even to match their needs [48]), which
Gamification elements can be employed, and whether modal
shifts are large enough to be detectable. The next study period
of GoEco! should be able to give an answer to these questions.

VIII. CONCLUSIONS AND DISCUSSION

We presented our experiences using the Moves fitness
tracker app for mobility tracking. The reasons to use an
existing app are obvious: a widely available, tested application
that already provides first data analysis. Among the risks and
challenges we faced were the need to install two applications,
with included technical overhead, privacy issues, the risk that
the tracker application would have been disabled during the
study and that we completely had to rely on the location
and activity data provided by the Moves tracking application,
without direct control over them. However, we showed that
most issues proved to be minor problems and the collected
data are of high accuracy and can be analysed with respect
to different aspects. Most people who left the GoEco! living
lab did it due to unsupported operating systems and devices
or generally because they lost interest in the project.

Two key issues are to be considered to further improve data
quality and face the lack of precision we registered on some
devices. First: Moves can miss all intermediate points of a
route and simply store the start and arrival points. In those
cases, computation of the distance travelled is based on a
beeline. This may result in a very rough estimate affecting
all subsequent calculations about mobility patterns and re-
lated energy consumptions and CO2 emissions. Therefore, we
suggest to correct this information by searching for the best
map matching between the road and public transport networks
and the activity defined by its start and arrival positions and
by the (known) mean of transport used. This would allow a
better match between activities and routes actually taken, also
favouring perceptions of accuracy in the eyes of the users.

Second: sometimes Moves fails to recognize modal changes
and incorrectly splits multimodal routes. Thus, the same
activity includes parts of a route travelled with two different
means of transport. For example, it may miss a change from
tram to bus and show the whole route as a single activity by
motorized transport. This is an error that cannot be corrected
by the user in the validation activities performed in GoEco!
Tracker, since we opted for keeping the user interface as
simple as possible and for limiting interactions with the users.
However, by learning users routines, in future versions of
GoEco! Tracker it could be possible to correct at least the
activities that match users’ systematic multimodal routes. Also,
map matching strategies, such as those used in [21], could
be used to learn reference places where a mode change is
particularly likely. Having recorded their position, the modal
change points missed by Moves inside a route could be
identified by comparing its trackpoints with those of the
reference places.

Among the improvements we will introduce in the future
is the identification of car-pooling and car-sharing means of
transport. Correctly tracking their use will allow us to estimate
even more realistic consumption and emission patterns and
also to monitor the ongoing societal transition from owning
private means of transport to using transport services. Finally,
in parallel to improving the overall performances of the
GoEco! Tracker app, we are now entering the second phase
of the GoEco! project, when the experience will be gamified
in order to nudge people to change their mobility patterns,
towards an overall reduction in the use of the car and the
related energy consumptions and CO2 emissions.
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