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Abstract—Smart Grids are smart networks of energy trans-
mission and distribution that enable a two-way communication
between the consumer and distributor. Smart Grids are impor-
tant for energy sustainability and environmental preservation
avoiding the non-renewable energy consumption since decen-
tralized suppliers are able to supply energy demands through
renewable energy. It will be possible to encourage renewable
energy consumption using a dynamic pricing adopting different
prices to each energy source. Some network and security issues
arise with that network communication like if it will be able to
calculate the price in a suitable time interval. So a challenge is
to analyze the impact of ICT on this operation. We analyzed
the impact of a dynamic pricing on consumption changes and
energy generation, and the delay time to calculate the price in a
clustered network architecture.

Index Terms—Smart Grids, Real Time Pricing, Renewable
Energy, Network Architecture, Security, Network Performance.

I. INTRODUCTION

Smart Grid is a promising technology which will modernize
the actual electricity grid. One of its greatest advantages is
to provide renewable energy, also called green energy, in a
distributed manner. There are several renewable energy sources
such as wind, small hydro, solar, rain, tides, waves, etc. Smart
Grids will help to provide the continually increasing demand
for energy. Also Smart Grids will make possible to avoid the
non-renewable energy generation like fossil fuels, including
oil, coal, and natural gas, which may harm the environment.

The Energy Information Administration [1] estimates that
in 2012 the total energy consumption in the world was
19710 billion KiloWattHours (kWh) and the renewable energy
consumption was 4715 billion kWh. That means the total
consumption from fossil fuel energy generation was 76.08% of
the total consumption. Also the primary energy consumption
has 28.01% of coal energy generation, 23.63% of gas energy
generation and 34.63% of oil energy generation.

A two-way communication between the consumer and dis-
tributor is a powerful tool that can be used to reduce the
use of fossil fuel energy and thus the environmental damage.
Smart meters are smart devices connected to a network that
meter power consumption and generation, they may send their
information to a data concentrator (DC) in a short time to

compute the real time consumption. The DC is a network node
that stores all the information about a distribution domain. The
DC can calculate the price according to the total consumption.
This strategy of dynamic pricing, called Real Time Pricing
(RTP), can be implemented and used to reduce the peak
time consumption, and then reduce the investments on energy
generation capacity [2].

Dynamic pricing models could be used to encourage the
energy consumption in large renewable energy availability
time [3]. A sustainability index could be used to dynamically
identify the proportion of each renewable energy generation.
Each smart meter that supplies energy to the grid would have a
sustainability index associated, and then a DC would calculate
a compound sustainability index in a distribution domain
according to each energy generation. The energy footprint
framework uses the sustainability index, real time consumption
and generated renewable energy to calculate the price. The
higher is the compound index and the total renewable energy
generation the lower will be the price.

Some concerns arise from the dynamic pricing. For instance,
the distributor profit may vary on each month. Another concern
is if the consumer in a sporadic time is consuming more than
usual, and the price gets high. The client bill may be very
expensive because of additional payments. We need a strategy
to limit the distributor profit variation and the client bill.

An interesting dynamic pricing model being used is RTP
Day Ahead (RTP-DA) [2]. In RTP-DA, the costumer is pro-
vided with a forecast of hourly prices for each hour of the
subsequent day. A Schedule RTP-DA-2 tariff in Georgia state,
USA, is designed so that if the customer baseline load (CBL)
accurately reflects average usage patterns, and the customer
continues to follow these patterns, then the customers bill has
no marginal impact from RTP prices. If the customer is able to
reduce load (relative to the CBL) in periods when RTP prices
are high, the customer can receive a significant bill credit.

Our goal in this paper is to analyze the impact of the
dynamic pricing, specially RTP scheme, on Smart Grids to
avoid fossil fuel energy generation. In this scheme, we need
to grant a minimum delay to calculate the price, since the price
is updated based on the consumption and energy generation at
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the exact moment. So another goal is to analyze if the network
will be able to calculate the price in a suitable time interval
with reliability, security and efficiency.

Each distribution scenario may use different technologies in
order to perform the price calculation, and possible candidates
are Power Line Communication (PLC), a data transmission
based on the existing power line cables, wireless communica-
tion, cellular communication and internet based-virtual private
networks [4]. We used a clustered network based on a tree
topology in this work, and the technology chosen was PLC.
Simulations were performed with distinct scenarios and we
analyzed the peak time consumption decrease and fossil fuel
energy generation decrease and later, we analyzed the delay
time to calculate the price and return it to each smart meter.

The paper is organized as follows. Section II we present
some related work about Demand Response, ICT architectures
and security. Section III is shown the simulation details like
security schemes, sequence of events to calculate the price,
how to estimate consumption changes and how to calculate
the delay time. In section IV, we discuss our results about the
experiment. Section V describes our conclusions and future
work on the experiment.

II. RELATED WORK

This section presents the related work to our proposal.
The works presented in this section are separated in tree
subsections. Demand Response & Sustainability are works
related to the costumer shifting the consumption in response
to the price. Network Performance are works related to the
transmission delay and network architectures. Security provide
some security issues in Smart Grids (SG).

A. Demand Response & Sustainability

First, in [5] is presented a survey of 15 experiments of
household response to dynamic pricing of electricity. It’s
also discussed a model to estimate the costumer consumption
changes: the constant elasticity of substitution (CES). The
CES is an application to electricity pricing centers on the
substitution of consumption.

A functionality provided by SG is the Energy Usage
Scheduling [6]. The prices may vary in the market, so the
consumer may schedule his energy usage in a lower price
time. Home area networks can be deployed to connect the
electrical appliances in a house to a scheduler, which activates
each appliance at the appropriate time to minimize the cost of
using electricity. Examples of appliances are washer, dryer, air
conditioning, fan, light, and electric vehicle.

In [7] is made a study case of the benefits of demand
response, the consumer profile changes in response to the
prices that updates according to the energy demand. The peak
time demand could potentially be reduced by 20% in Finland,
for instance. It was studied the impact of demand response in
1,600 consumers in Kainnu, Finland. Results shown that just
10% of demand response potential would improve the peak
system load,network loss and service reliability in 5,6%, 1,3%
and 1,7%, respectively. The potential impact of each appliance

that can be scheduled the use was analyzed, and almost the
entire benefits could be achieved by heating and ventilation
systems.

A review of load forecasting, dynamic pricing, and demand
side response (DSM) is done in [8]. DSM is an approach for
planning, implementing and monitoring the energy consump-
tion during the peak time. Some schemes of dynamic pricing
discussed are Time of Use (ToU), Critical Peak Pricing (CPP)
and Real Time Pricing (RTP). ToU differs the price only on
peak time and off-peak time. CPP is a modification of ToU,
the price is different some time of year where the energy
demand is very high as compared to the rest of peak time
during the year. At last, the RTP can be of two types, hourly
pricing and day ahead pricing. The first can be achieved just
with a good network performance, since it is a scheme the
calculates the price in real time. The second one was explained
above in RTP-DA-2. The load forecasting techniques consists
of statistical based models or artificial intelligence that predicts
the future requirements of the energy system.

An assessment of sustainability indicators for renewable
energy technologies is made in [9], and instead of the hydro-
electric energy gains in the indicators of price, availability
and limitations, and efficiency, it loses in land use, water
consumption and social impacts. So this framework could be
used to avoid hydro-electric energy generation, for instance.

B. Network Performance

The current communication capabilities of the existing
power systems are limited to small-scale local regions that
implement basic functionalities which do not yet meet the
demanding communication requirements. We need to identify
the communication scenarios and characteristics in power
systems and develop practically usable network solutions [6].

Some standardization were described following the lead of
some organizations around the world [10]. A common standard
in smart grids is the use of a Home Area Network (HAN)
gateway at the users home to provide information to the grid,
because other devices normally are limited in computational
power. Also an architecture that uses Machine-to-Machine
Communications (M2M) is discussed where SG needs a
decentralized organization instead of hierarchical organization
to transmit data regarding energy consumption.

A PLC communication technology used in the smart grid
is the Narrow Band PLC (NB-PLC). It can be used in high-
voltage transmission and reaches a distance of 150 km or more.
Neighborhood Area Network (NAN), FAN and WAN are
examples of networks that uses this technology. Advantages
of PLC are that the communication infrastructure are already
constructed, it has lower operation and maintenance costs, and
it’s possible a physical disconnection opportunity according
to other networks. Disadvantages are higher signal losses and
channel interference, disruptive effects caused by appliances
and other electromagnetic interferences, a complex routing,
and it’s hard to transmit higher bit rates.

A performance analysis using PLC for AMR was made
using impulsive noise interference [11]. Two different topolog-
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ical structures were used in a simulation: radial and tree. And
two schemes were studied called Clustered Simple Polling
(CSP) and Neighbor Relay Polling (NRP). CSP is simple
because every meter sends his consumption to the DC. NRP
is used when occurs a problem called ”silent node”, the node
tries to send a packet but an impulse noise interrupts the
transmission. Then, the ”silent node” tries to send his packet to
a neighbor, and his neighbor sends his information to the DC.
Results shown that the tree topology obtained a considerable
lower delay, but obtained lower throughput when both schemes
are used.

The performance of NB-PLC was analyzed using a low
power transmission of Internet Protocol version 6 (IPv6) to
provide network reliability with acceptable latency for AMI
[12]. The NB-PLC (below 500 kHz) supports indoor and
outdoor uses and can deliver maximum of about 500 kbps. It’s
also analyzed the throughput (per node) using different number
of nodes. Results shown that throughput of the network varies
linearly with packet size. Meter reading comprising of 300
meters will require a raw throughput of 2 kbps per node in
certain cases. With a packet size of 64 bytes, the results shown
a close throughput of 2 kbps for 100, 400 or 1000 meters in
the network. It’s concluded that the packet size is a major
determinant of AMI application performance. It’s also shown
that services like power outage, pricing notification, event and
emergency messages have the following QoS requirements for
AMI: a traffic class value of high priority and critical, more
than 98% packet delivery within 5 seconds and payload less
than 100 bytes. The demand response applications have the
following communication requirements: 14-100 kbps band-
width per node, 99% for reliability and 500 ms of several
latency.

In [13] is discussed Routing Protocol for Low Power and
Lossy Networks (RPL) in AMI Networks. AMI networks
are composed of millions of endpoints distributed across
both urban and rural environments. Devices in the network
communicate directly with other devices in close proximity
using a variety of low-power and/or lossy link technologies
that are both wireless and wired. In addition to serving as
sources and destinations of packets, many network elements
typically also forward packets and thus form a mesh topology.
In a typical AMI deployment, groups of meters within physical
proximity form routing domains, each in the order of a 1,000
to 10,000 meters. Thus, each electric meter mesh typically
has several thousand wireless endpoints, with densities varying
based on the area and the terrain.

A research challenge is to develop minimum-latency solu-
tions, mainly referring to security issues. The security mech-
anisms provide strong protection but incur in transmission
and processing delay of the message. The transmission delay
should be minimum keeping the necessary security. So there
is a trade-off between security performance and the total delay
[6].

C. Security

Some security questions are discussed in [14]. A DoS or
Distributed DoS attack may halt a device such as smart meters,
power devices and appliances. The smart meter attacks may
cause to loss of pricing data that is critical to serious economic
implications. Therefore, the integrity of billing information,
meter data, commands, and running software is quite impor-
tant. The information privacy is provided by using crypto-
graphic functions on the entire grid to encrypt and decrypt
data. The Public Key Infrastructure (PKI) technologies are
considered to meet attack detection, prevention, and privacy
requirements owing to their interaction with trusted softwares.
PKI includes several policies and procedures to identify cus-
tomers depending to its digital certification framework that
defines management, configuration, and operation strategies.

A performance comparison study of Elliptic Curve Cryp-
tography (ECC) and Advanced Encryption Standard (AES)
was made in commercial and research sensor nodes [15].
Were analyzed the Elliptic Curve Diffie-Hellmann (ECDH)
and Elliptic Curve Integrated Encryption Scheme (ECIES).
ECDH is a key agreement protocol that allows to establish
a shared secret between two non-authenticated parties. On the
other hand, ECIES is an encryption protocol based on EC
public-key. It’s also analyzed the Elliptic Curve Menezes-Qu-
Vanstone (ECMQV) scheme. This protocol is a key agreement
scheme based on EC public key that supports key authentica-
tion. A Field Programmable Gate Arrays (FPGAs) was used
to enhance the performance. The FPGAs serve as accelerators
of complex algorithms, making it possible to process a vast
amount of sensing data in real time. A chyptographic co-
processor at 12 MHz frequency was used in the experiment.
It’s obtained a delay time of 0.148, 0.148 and 0.011 seconds
for ECDH, ECIES and ECMQV respectively.

III. METHODOLOGY

This section shows how we performed our experiment in
three subsections. The first one explains how we obtained the
wind and solar energy generation curves and the costumer
consumption curve in order to start a simulation. The second
subsection describes the strategy to choose a suitable price.
Finally, the last subsection gives details about the simulation
like: the sequence of events, authentication process, security
mechanisms and network issues.

A. Consumption and Generation Curves

We obtained data of wind speed curve from Pernambuco
state of Brazil in [16]. Annual average monthly and daily
average hourly wind speed were obtained from Monteiro
region. The power potency curve from a wind turbine was
obtained in [17]. So the daily energy generation curve was
estimated using the daily average hourly wind speed combined
to the power potency curve. And later, a multiplicative factor
using the annual average monthly wind speed was created
to increase or decrease the curve. Let PMAX be month with
maximum capacity of wind energy generation. PM is the month
we chose to simulate. PW is the maximum generation capacity
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we want. PH is the generation capacity on each hour. The
multiplicative factor F given by (1). Later, the generation
capacity on each hour is calculated PH = F * PH. As a
result, it’s obtained the daily capacity curve of wind energy
generation for each month.

F =

(
PM

PMAX

)
∗ PW

24∑
i=1

PHi

(1)

The anisotropic diffuse solar irradiation of Botucatu city in
São Paulo state was obtained in [18]. We used an efficiency of
22% of the solar irradiation for the power generation capacity.
So we obtained the daily average hourly solar irradiation
curve to estimate the daily solar energy generation capacity
curve. And a multiplicative factor was created using the annual
average monthly solar irradiation curve to obtain the daily
capacity curve of solar energy generation for each month.
The same equation (1) was used to obtain the solar energy
generation capacity for each month.

The daily energy consumption curve and mean deviation
were obtained in [19] for residential consumers with average
mensal consumption between 100 and 200 kWh of São Paulo
city. In this work, we estimate that each Smart Meter (SM)
will have an average monthly consumption of 150 kWh. So a
multiplicative factor was created to calculate the SM average
daily energy consumption curve and the mean deviation of
energy consumption. Let CH be the energy consumption on
each hour. The multiplicative factor FC is given by (2). Later,
the energy consumption on each hour was calculated by CH

= FC * CH. These values were used at every hour to generate
random numbers from the normal distribution in order to
simulate the SM consumption.

FC = 150

/ 24∑
i=1

CHi (2)

Figure 1 shows the estimated curves for a fictitious scenario
of 49 MWh mensal consumption with a generation capacity of
50% of this demand being supplied by wind and solar energy
in October. The fossil fuels energy generation is obtained
calculating the difference between the total consumption and
the renewable energy generation. As we can see, in this
scenario there are some times the renewable energy generation
capacity is higher than the consumption, specially from 9
AM to 4 PM. Assuming that there isn’t enough power banks,
renewable energy maximum capacity would not be used. Our
goal is to reduce the peak time consumption and increase the
off-peak time consumption with a great capacity of renewable
energy generation.

B. Price Selection

The wind and solar energy prices were simulated varying
between 0% and 100% of the original price, and the fossil fuels
energy price varying between 100% and 200%. The costumer
behavior changes were estimated using the CES model right

Fig. 1. Energy generation capacity and consumption curves in October

after calculated the energy price at every hour of the day.
Then we compared the changed consumption to the original
consumption without dynamic pricing implementation.

There is a concern to reduce the peak time consumption
in order to flat the curve reducing investments on generation
capacity. So it is guaranteed that after the new price this
generation during the off-peak time (between 8 AM and 4 PM)
does not exceed the previous traditional peak time generation
(between 5 PM and 11 PM) on each month. It’s also necessary
that the distributor has a stable profit, thus the price of each
kind of source energy is selected so that the variation of
average profit is limited and the reduce peak time consumption
is maximized.

The distributor profit may increase or decrease according
to the selected prices. Thus, we selected an appropriate price
for each source in order to maintain a close profit. Another
concern is to limit the costumer bill. It’s because in a sporadic
time the costumer can consume more than usual in a high price
time resulting in additional payments. A strategy could be used
verifying each individual consumption curve of the costumers
like in RTP-DA [2]. But this strategy will be implemented in
future work.

C. Network Simulation

After estimated the generation and consumption curves,
we begin the network simulation to calculate the price. We
used a MATLAB oriented object program to create the nodes
and their functionalities. In the proposed topology, each SM
communicates to a Leaf Hub (LH) that concentrates the
sustainability indexes and generated power. Each LH will cal-
culate the Resultant Power (RP) and Resultant Index (RI) and
will communicate to a Intermediate Hub (IH) that concentrates
the same information from the LHs. Each IH communicates
to a Root Hub (RH) which concentrates information about a
distribution domain and calculates the price. Figure 2 shows
an example of this network topology.

Because of security issues, our framework uses certificates
and signatures from asymmetrical cryptography algorithms
to ensure integrity, authentication, non-repudiation, and con-
fidentiality of the packets transmitted. A PKI will help to
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Fig. 2. Network topology communication example

authenticate the packets from a transmitter [3]. When a node is
connected to the network, it needs to authenticate to the Hub
that will communicate. The authentication will exchange the
public key from each node. All the authentication packets will
be signed by an Agency Regulatory, and the message packets
will be signed by the transmitter. It’s also transmitted to a DC
each node sustainability index or RI in the authentication.

Some sensitive-data needs to be encrypted in the transmis-
sion like the sustainability index and the generated power by
each SM in order to grant confidentiality. In this work we used
the destination public key to encrypt all the sensitive-data. A
timestamp is used to avoid replay attacks, in which one person
with malicious intent can sniff the packet and retransmit the
same packet to disturb the network.

When a receptor receives the packet, it will verify the
transmitter signature with the public key to grant integrity and
authenticity. The asymmetric cryptography algorithm chosen
was Elliptic Curve Cryptography (ECC), which uses 20-byte
keys and 20-byte signatures. Figure 3 shows the simulation
events in the first time a SM will transmit packets to a LH.
Figure 4 shows the simulation events in the first time a LH
will transmit packets to a IH. The packets size are expressed in
bytes. The authentication process between the IH and RH are
the same as LH and IH. Each event in the figures represents a

node executing a function. For instance, the event SM.Send is
the SM node running the Send function to transmit a packet
to another node.

Fig. 3. Simulation events between SM and LH.

Each SM sends the information packet to the LH. So the LH
will calculate the RP right after receiving the last SM packet,
and then will send the RP packet to an IH. The IH needs to
wait every LH sending the RP packet to calculate its own RP,
and then send to the RH. RH will calculate the RP and the
energy price right after the last IH sending the RP.

Once the price is calculated, the RH will send the price
to each IH. Right after an IH receives the price, it will send
the price to each authenticated LH. And finally, right after a
LH receives the price, it will send to each SM. All the nodes
uses the same structure packet to send the price with 27.5
bytes size. Figure 5 shows the simulation events performed to
return the price to a SM.

The NB-PLC, used for long distances and high-voltage
transmissions, was chosen to simulate the communications
between the SG nodes. Normally it operates on the maximum
frequency of 500 kHz, so we adopted a link operating at 500
kHz with the maximum data rate of 500 kbps [12]. PLC has
some problems to propagate through transformers, but in this
work we skipped that problems.

The delay time Dt to transmit a packet between the nodes is
given by (3). We suppose that each SM has a cryptographic co-
processor of 12 MHz using FPGAs. We adopted 0.3 seconds
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Fig. 4. Simulation events between Hubs.

as the processing time. Once the encryption scheme used
by ECC analyzed in [15] has a delay of 0.148 seconds.
Additional delay was added because of the protocol stacks of
the communication technology. In future work we will include
the link layer delay like header size and medium access delay
like concurrence for access the medium. We will also simulate
the PLC interference like impulsive and background noises.

We estimated the total time to calculate the price. Let N be
the number of nodes in the larger cluster. So the delay time
to transmit all the power packets to a Hub is N * Dt. Then
the delay time DT for the RH to receive the last RP packet
once all the nodes are already authenticated is given by (4).
NSM is the number of nodes in the larger SM cluster, NLH is
the number of nodes in the larger LH cluster, and NIH is the
number of IHs. It’s also used the same equation (4) to estimate
the delay for the last SM to receive the price packet.

Dt =

(
PacketSize

LinkDataRate

)
+ ProcessingT ime (3)

DT = NSM * Dt + NLH * Dt + NIH * Dt (4)

In a real scenario of São Paulo was obtained a monthly
average consumption of 49 MWh from a distribution branch
line. So we adopted 327 SMs in the scenario to maintain a
monthly average consumption of 150 kWh per SM. The real

Fig. 5. Simulation events to return the price to SM.

scenario has a number of 87 transformers, so we used 87 LHs
because we suppose that each LH will be at a transformer.
And we supposed that the RH will be at the distribution
feeder. The larger cluster size of SM and LH are 4 and
6 respectively and we varied the number of IHs in order
to achieve the best performance. With these data, we could
estimate that the best delay time for the last SM to receive
the price packet was 13.8217 seconds and 27.6563 seconds
with authentication overhead when using 10 IHs. In order to
analyze the cluster size impact we simulated distinct scenarios
with different numbers of SM, LH and IH.

IV. EXPERIMENTS

This section shows our experiments results. All the ex-
periments were made 30 times in order to achieve a 95%
confidence interval. This section is separated in two subsec-
tions. The first presents the impact of the RTP on consump-
tion changes through selecting distinct prices to each energy
source. The second shows the delay time to calculate the price
in a NB-PLC transmission adopting different cluster sizes.

A. Impact of Real Time Pricing

A common objective when using Dynamic Pricing is to
flat the consumption curve adopting a suitable price to reduce
the investments of generation capacity. To choose a suitable
price, we need to balance the renewable and non-renewable
energy prices in order to maintain a close distributor profit.
The renewable energy can not be so lower than the traditional
because of the costumer may schedule their appliances in a
time to reduce costs and we would increase the off-peak time
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consumption a lot. We don’t want to shift almost the entire
demand to an off-peak time.

We believe that each month or maybe each season needs to
have a distinct price for each source in order to achieve the
maximum reduction on peak time consumption and to encour-
age the renewable energy consumption on off-peak time. It is
because each season or month has different renewable energy
generation capacity according to wind speed, solar irradiation,
ocean current, etc.

In a fictitious scenario of 49 MWh mensal energy con-
sumption with a generation capacity of 50% of this demand
being supplied by wind and solar energy, we selected suitable
prices for each month in order to shift the energy demand and
maintain a stable distributor profit. We adopted two different
prices: for the renewable energy and for fossil fuel energy.
For instance, the renewable energy price in November could
be 43% of the traditional and the fossil fuel energy price could
be 132%. Figure 6 shows the hourly price in November. Note
that between midnight and 7 AM the price is higher than
traditional, although the consumption is low there isn’t enough
renewable energy available and almost the entire consumption
is provided by fossil fuel energy which is more expensive.
From 8 AM to 4 PM the price is lower because there is a lot
of renewable energy available.

Fig. 6. Price (%) in November.

Figure 7 shows the old energy consumption and energy
generation in November. We can see that there are renewable
energy lost sometimes. Figure 8 shows the new consumption
and energy generation in the same period when using the
selected price. Results shown that the consumption decreased
6.84 MWh on peak time and increased 9.12 MWh on off-peak
time. The new consumption uses the almost the maximum
renewable energy generation capacity and reduces the fossil
fuel energy generation by 3.81 MWh.

Tables I, II and III shows suitable prices on each month
when 40%, 50% and 60% of the energy consumed is from
renewable sources, respectively. As we can see, the more is
the domain capacity of renewable energy generation the more
the prices will increase to maintain a close distributor profit.

The consumption increase and decrease is different for
each month. It’s because each month has a different capacity
of renewable energy generation. The more renewable energy

Fig. 7. Old consumption and energy generation in November.

Fig. 8. New consumption and energy generation in November.

Month Fossil Fuels price (%) Renewable price (%)
1 130 29
2 126 24
3 127 29
4 129 31
5 124 25
6 122 25
7 127 25
8 129 27
9 130 32
10 137 35
11 138 36
12 136 32

TABLE I
SUITABLE PRICES WITH 40% OF RENEWABLE ENERGY GENERATION

Month Fossil fuels price (%) Renewable price (%)
1 139 36
2 137 30
3 137 32
4 137 29
5 128 30
6 132 28
7 133 29
8 139 34
9 144 36

10 146 41
11 132 43
12 121 32

TABLE II
SUITABLE PRICES WITH 50% OF RENEWABLE ENERGY GENERATION
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Month Fossil fuels price (%) Renewable price (%)
1 152 37
2 143 36
3 144 38
4 143 44
5 137 34
6 133 34
7 141 36
8 144 35
9 150 41
10 163 48
11 166 49
12 152 48

TABLE III
SUITABLE PRICES WITH 60% OF RENEWABLE ENERGY GENERATION

generation the distribution domain has the more the price will
be lower than traditional on off-peak time. And then, the con-
sumption will decrease more on peak time and increase more
on off-peak time. Figure 9 shows the consumption decrease
on peak time and fossil fuel energy generation decrease using
the suitable prices for a scenario which 50% of the energy is
from renewable sources.

Fig. 9. Consumption decrease on peak time and fossil fuel energy generation
decrease.

As the price varies on each month and the consumption
changes, the distributor profit will vary. Figure 10 shows the
profit along the year with the prices selected for a scenario
which 50% of the energy is from renewable sources. We can
see that the profit keeps stable along the year when we use
the suitable prices. Note that if we use a strategy to protect
the client bill, the prices may change.

B. Delay Time

To simulate a real network scenario at São Paulo we used
87 LHs and 10 IHs. We assume that the data concentrator
(RH) that calculates the price will be at the substation. Each
smart meter has a estimated consumption mean of 150 kWh,
so we used 327 SMs. In this scenario, the delay time for the
last SM to receive the price in the first hour was 27.65 seconds
because of the authentication overhead. The delay time in the
last hours was 13.82 seconds.

We performed simulation with different numbers of SM,
LH and IH. Table IV shows the delay time to conclude a

Fig. 10. Distributor profit (%).

calculating price cycle. For a low density distribution domain
with at most 10,000 SMs the price would be calculated without
many concerns. For a high density distribution domain, for
instance 100,000 SMs, the number of clusters should be
studied carefully.

SM’s LH’s IH’s Delay With Authentication Delay
327 87 10 27.65s 13.82s

1,000 100 25 49.30s 24.63s
1,000 100 10 38.47s 19.23s

10,000 1,000 10 2m 26s 1m 13s
10,000 1,000 50 1m 38s 49.27s
10,000 1,000 100 2m 26s 1m 13s
10,000 1,000 150 3m 22s 1m 40s
10,000 1,000 200 4m 20s 2m 10s
100,000 10 5 3h 20m 35s 1h 40m 14s
100,000 100 10 20m 28s 10m 14s
100,000 1,000 100 4m 14s 2m 7s

TABLE IV
DELAYS RUNNING DIFFERENT SCENARIOS

V. CONCLUSIONS AND FUTURE WORK

We concluded that it’s possible to avoid fossil fuel energy
generation shifting the demand to high availability time of
renewable energy generation in order to utilize the maximum
generation capacity. The price may vary seasonally and maybe
monthly to achieve the maximum renewable energy consump-
tion and to stabilize the distributor profit, but a strategy should
be used to limit the client bill. In a fictitious scenario of 49
MWh mensal energy consumption that is possible to supply
50% of the energy demand by renewable sources, we could
decrease the peak time consumption in 6.84 MWh and avoid
the fossil fuel energy generation in 3.81 MWh in November.
In this work we avoided the fossil fuel energy generation, but
in the future Smart Grid it will be possible to avoid others
energy sources simply assigning a lower price.

There is a concern to achieve a minimum delay when
calculating the price in a real time pricing scheme, because it
needs to compute all the energy generation and consumption
in a distribution domain at the exact moment. Using a NB-
PLC to transmit the information between network nodes, we
simulated some scenarios with 327 until 100,000 smart meters.
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Also we varied the number of clusters in a distribution domain
in order to get the total delay to calculate the price. Results
shown that in a network distribution with high density smart
meters, for instance 100,000 smart meters, it would be possible
to calculate the price in 127.39 seconds using the clustered
network without any interference.

Future work may simulate the NB-PLC with background
and impulsive noise, and to implement the NRP scheme to
collect meters data. We may include a complete protocol
stack delay using other communication technologies. Another
resource we may simulate is the PKI infrastructure in which
a little overhead would be added to the network traffic. A
wireless network could be trivial to enhance the performance
and possible candidates are ZigBee and LTE. A good analysis
is to implement different security schemes adopting distinct
technologies to grant reliability and efficiency without perfor-
mance loss.

This work is supported in part by grant from H2020-EUBR
(grant no 2568).
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