Factor Decomposition of Carbon Emissions from Energy Consumption of Shanxi Province Based on LMDI

LI Ya-jie^{1, a}, Kong Feng^{2, b}, Wei Wei^{3, c}

^{1,2,3}School of Economics and Businesses, North China Electric Power University, Baoding 071003, China.

^a1334492142@qq.com

Keywords: Shanxi Province; Energy consumption carbon emission; Factor decomposition; LMDI

Abstract. This paper based on the "2006 IPCC guidelines for national greenhouse gas inventories" to measure a variety of energy carbon emission coefficient and calculate the carbon emission from energy consumption of Shanxi Province in 2004-2013. Using the application of logarithmic mean weight decomposition method (LMDI), Shanxi Province carbon emissions from energy consumption is divided into four aspects, economic growth, industrial structure, energy intensity, energy consumption structure. The results of the study show that: taking 2003 as a base period, economic growth is the biggest driving factor of energy consumption carbon emission in Shanxi Province; Energy intensity is the biggest factor to curb carbon emissions; industrial structure also has a promoting effect on energy consumption structure both has positive and negative effects on carbon emission, and its positive effect is greater than negative. Finally, many corresponding suggestions are put forward based on the results of the analysis.

1. Introduction

LMDI is a commonly used method of IDA, it not only can eliminate the residual items which can't be explained, but also can deal with the 0 value problems in data. Many scholars have used the LMDI method to study the carbon emission problem in China and have made great achievements in recent years. Li Guozhang and Wang Shuang used the LMDI method to decompose the energy intensity changes of 1995-2005 in China in 2008 and found that technological progress in the region factor which is displayed though regional energy intensity is the determinants of Chinese energy intensity changes[1];Song Jiekun studied the decomposition of carbon emission factors of energy consumption in Shandong province by using LMDI method in 2012 [2];Zhang Wei and Zhang Jinsuo used the LMDI method and extended Kaya model in 2013 to analysis the influence about five factors to the energy consumption carbon emissions in Shaanxi Province[3].However, the existing research results are not enough to fully reflect the characteristics of carbon emissions in different regions of China.

On the basis of these realities, this paper calculates the carbon emissions from energy consumption in Shanxi Province during 2004-2013 by using LMDI method after dividing the energy consumption of Shanxi province into four aspects, including economic growth, industrial structure, energy intensity, energy consumption structure and so on. Finally, we provide many suggestions for Shanxi province to make and adjust the policy of reducing emissions.

Method

1.1 LMDI Model introduction

The decomposition model of energy consumption carbon emissions is as follows.

$$E = \sum_{i=1}^{4} Q \times \frac{Q_i}{Q} \times \frac{C_i}{Q_i} \times \frac{E_i}{C_i}$$
(1)

In the above formula, E, Q, C represent carbon emission, GDP and energy consumption. In detail, Q_i is the gross domestic product of the *i*-th industry (i = 1,2,3); C_i is the energy consumption of the *i*-th industry; E_i is the carbon emission of the *i*-th industry.

$$S_{i} = \frac{Q_{i}}{Q} , \quad I_{i} = \frac{C_{i}}{Q_{i}} , \quad U_{i} = \frac{E_{i}}{C_{i}}$$
$$E = \sum_{i=1}^{4} Q \times S_{i} \times I_{i} \times U_{i}$$
(2)

So,

In eq. (2), S_i is the proportion of the *i*-th industry in Shanxi Province and it represents industrial structure effect; I_i is the energy intensity of the *i*-th industry and it represents energy intensity effect; U_i is the carbon emissions from a unit of energy consumption in the *i*-th industry and it represents energy consumption structure effect.

$$\Delta E_{tot} = \Delta E_e + \Delta E_p + \Delta E_s + \Delta E_c \tag{3}$$

$$\Delta E_{e} = \sum_{i=1}^{3} L\left(E_{i}^{t}, E_{i}^{0}\right) \ln\left(\frac{e_{i}^{t}}{e_{i}^{0}}\right)$$
(4)

$$\Delta E_{p} = \sum_{i=1}^{3} L\left(E_{i}^{t}, E_{i}^{0}\right) \ln\left(\frac{p_{i}^{t}}{p_{i}^{0}}\right)$$
(5)

$$\Delta E_{s} = \sum_{i=1}^{3} L\left(E_{i}^{t}, E_{i}^{0}\right) \ln\left(\frac{s_{i}^{t}}{s_{i}^{0}}\right)$$
(6)

$$\Delta E_{c} = \sum_{i=1}^{3} L\left(E_{i}^{t}, E_{i}^{0}\right) \ln\left(\frac{c_{i}^{t}}{c_{i}^{0}}\right)$$
(7)

Define it:

$$L(E_{i}^{t}, E_{i}^{0}) = \begin{cases} \frac{E_{i}^{t} - E_{i}^{0}}{\ln(E_{i}^{t} / E_{i}^{0})}, E_{i}^{t} \neq E_{i}^{0} \\ E_{i}^{t} \mathbb{R} E_{i}^{0}, E_{i}^{t} = E_{i}^{0} \end{cases}$$
(8)

1.2 Estimation of carbon emission coefficient

Combined with "IPCC national greenhouse gas inventory guide" in 2006, the carbon emission coefficients of five main energy sources in Shanxi province were calculated. The calculation results are shown in Table 1.

Net Calorific Standard Coal Carbon emission Carbon Content Coefficient Type Value coefficient (kg/Gg) (kg Standard Coal/kg) (TJ/Gg) (kg/kg Standard Coal) Raw coal 26.2 0.7143 20.9084 0.7669 Cleaned coal 25.8 0.9000 26.3441 0.7650 Coke 0.9714 28.4340 29.2 0.8547 Gasoline 1.4714 43.0696 19.0 0.5571 Natural gas 1.3300 38.9307 15.3 0.4478

 Table 1 Carbon emission coefficients of various energy sources

1.3 Estimation of carbon emission

The calculation formula of energy consumption carbon emission of Shanxi Province is as follows.

$$E = \sum_{i=1}^{3} \sum_{j=1}^{5} E_{ij} = \sum_{i=1}^{3} \sum_{j=1}^{5} C_{ij} \times \gamma_{j}$$
(9)

In e q.(9), E_{ij} is the carbon emissions from energy consumption of the *j*-th energy in the *i*-th industry. c_{ij} is the consumption of the *j*-th energy in the *i*-th industry. γ_j the carbon emission coefficient of the *j*-th energy. Get 2004-2012 energy consumption carbon emissions of Shanxi Province in Table 2.

Time	Carbon emissions	Fixed base growth Rate(%)	MoM growth Rate (%)
2003	6012.908223	/	/
2004	6371.730834	5.97	5.97
2005	6814.508886	13.33	6.95
2006	7563.699888	25.80	11.00
2007	7831.487819	30.24	3.54
2008	8438.962486	40.35	7.76
2009	8993.324183	49.57	6.57
2010	9431.637559	56.86	4.87
2011	10003.46659	66.37	6.06
2012	10511.47552	74.82	5.08

Table 2 2004-2012 energy consumption carbon emissions of Shanxi Province

As can be seen from the table 2, carbon emission has been rising since 2003 in Shanxi province. Growth rate of carbon emission was rising as the same time.

2. Results

Taking 2003 as the base period, we can get the five factors' year by year effect and cumulative effect shown in Table 3, table 4.

Table 3 Energy consumption carbon emissions of various factors year by year effect in	
2004-2012(Unit: 10,000 tons)	

Time	Economic Growth	Industrial Structure	Energy Intensity	Energy Consumption Structure	Complex			
2004	2249.510267	201.7277551	-1121.748243	-6.168702358	1323.321077			
2005	1175.687484	338.0600454	-1882.360365	55.78858709	1532.8242485			
2006	3686.100958	409.058266	-2270.31682	88.4741095	1913.316514			
2007	5138.463558	483.77616	-3166.634105	-204.3768585	2251.228755			
2008	6554.632165	510.8290184	-4383.458699	50.17024655	2732.172731			
2009	6452.104695	233.2607472	-4009.226839	177.5623139	2853.700917			
2010	8320.012629	432.5927046	-5340.926748	42.44930375	3454.127889			
2011	10138.83954	611.0373815	-6532.466452	-104.3179595	4113.09251			
2012	10668.18684	353.4091153	-6595.216794	-128.869786	4297.509375			
Table 4	Table 4 Energy consumption carbon emissions of various factors cumulative effect in 2012(Unit: 10,000 tons)							
Time	Economic	Industrial	Energy	Energy				
	Growth	Structure	Intensity	Consumption Structure	Complex			
2004	Growth 2249.510267	Structure 201.7277551			Complex 1323.321077			
2004 2005			Intensity	Structure	•			
	2249.510267	201.7277551	Intensity -1121.748243	Structure -6.168702358	1323.321077			
2005	2249.510267 3425.197751	201.7277551 539.7878005	Intensity -1121.748243 -3004.108608	Structure -6.168702358 49.61988473	1323.321077 1010.496828			
2005 2006	2249.510267 3425.197751 7111.298709	201.7277551 539.7878005 948.8460665	Intensity -1121.748243 -3004.108608 -5274.425428	Structure -6.168702358 49.61988473 138.0939942	1323.321077 1010.496828 2923.813342			
2005 2006 2007	2249.510267 3425.197751 7111.298709 12249.76227	201.7277551 539.7878005 948.8460665 1432.622227	Intensity -1121.748243 -3004.108608 -5274.425428 -8441.059533	Structure -6.168702358 49.61988473 138.0939942 -66.28286427	1323.321077 1010.496828 2923.813342 5175.042096			
2005 2006 2007 2008	2249.510267 3425.197751 7111.298709 12249.76227 18804.39443	201.7277551 539.7878005 948.8460665 1432.622227 1943.451245	Intensity -1121.748243 -3004.108608 -5274.425428 -8441.059533 -12824.51823	Structure -6.168702358 49.61988473 138.0939942 -66.28286427 -16.11261772	1323.321077 1010.496828 2923.813342 5175.042096 7907.214827			
2005 2006 2007 2008 2009	2249.510267 3425.197751 7111.298709 12249.76227 18804.39443 25256.49913	201.7277551 539.7878005 948.8460665 1432.622227 1943.451245 2176.711992	Intensity -1121.748243 -3004.108608 -5274.425428 -8441.059533 -12824.51823 -16833.74507	Structure -6.168702358 49.61988473 138.0939942 -66.28286427 -16.11261772 161.4496962	1323.321077 1010.496828 2923.813342 5175.042096 7907.214827 10760.91574			

According to table 3 and table 4 can get cumulative effect contribution of each factor in 2012 and the year by year effect contribution of each factor in 2004-2012. The results are shown in Fig. 1, Fig. 2.

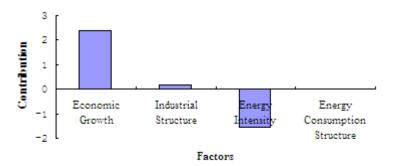


Fig. 1 Cumulative effect contribution in 2012

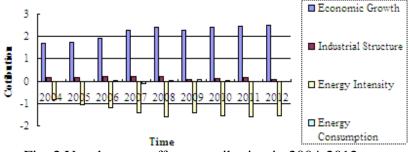


Fig. 2 Year by year effect contribution in 2004-2012

As can be seen from Fig.1 and 2, economic growth is the largest contribution source; energy intensity is greatest negative contribution source; relatively speaking, industrial structure and energy consumption structure are smaller contribution.

3. Conclusion

From the above calculation and analysis can find that:

(1) Economic growth is the main factor in the growth of energy consumption carbon emission in Shanxi Province. So it requires the government to formulate scientific and rational development policies to ensure the coordinated development and green development of the economy.

(2) Energy intensity is the main negative factor in the growth of energy consumption carbon emission in Shanxi Province which has a good inhibitory effect to reduce carbon emissions. So it requires the government to encourage scientific research and improve energy efficiency and output level.

(3) The industrial structure of Shanxi province is not reasonable which must increase carbon emissions. It needs to adjust the industrial structure, carry out the integration of resources and accelerate the pace of upgrading the product.

4. References

- Song Jiekun."Factor Decomposition of Carbon Emissions from Energy Consumption of Shandong Province Based on LMDI," Resources Science, pp.35-41,Vol.34 No.1 Jan.2012.(in Chinese)
- [2]. Zhang Wei, Zhang Jinsuo, Zou Shaohui and Xu Jian." Factor decomposition of carbon emissions from energy consumption of Shaanxi province based on LMDI," Journal of Arid Land Resources and Environment, pp.26-31, Vol.27 No.9 Sep.2013.(in Chinese)
- [3]. Wang C, Chen J and Zhou J." Decomposition of energy-related CO₂ emission in China: 1957-2000," Energy, 2005. Pp.73-83.
- [4]. Liu L and I'an Y."Using LMDI method to analyze the change of China'.s industrial CO₂ emissions from final fuel use: An empirical analysis", Energy Policy, 2007. Pp.5892-5900.

- [5]. C. Ma, D. I.Stem." Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, 2008, pp.2517-2526.
- [6]. IPCC. National greenhouse gas inventory Guide, Japan Institute for global environmental strategy.2006.
- [7]. Shanxi Statistical Yearbook, www. stats-sx. Gov. Cn. 2015.