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Abstract

Demand Response (DR) has been extensively studied as one of the important features of smart grid. The
DR strategies can be grouped into two categories, one is incentive-based DR and the other is pricing-based
DR. Our work focuses on DR involving both pricing factor and incentive factor using scoring rule. In the
literature, several DR mechanisms have been proposed, however, most studies have not focused on the
cooperation among consumers although it is important to devise an efficient and stable DR. In this paper,
we propose a cooperative demand response mechanism by using a truthful allocation mechanism with
scoring rule. The brief ideas of our model are the following: the consumers will be rewarded a discount
on the price to measure up how well they predict demand shift. A reward mechanism is based on a strictly
proper scoring rule. This mechanism is applied between consumer agents (CA) to Cooperative Demand
Response System (CDRS) and Generation Company (GENCO). The proposed mechanism is tested on
real data provided by Chubu Electric Power Company and we show that this mechanism is capable of

reducing peak demand.
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1. Introduction

With the growing needs of environmental sustain-
ability and continuous change in electric power
deregulation, smart grid becomes an inevitable
choice for the society. As one of the important fea-
tures of smart grid is Demand Response (DR). DR
is gaining importance in designing grid functionali-
ties specially at the end user (consumers) level. For-
mally speaking, DR is a mechanism that influences
the consumers to modify their energy usages from
the normal consumption patterns in response to the
changes in the price of electricity over time 2.

In order to fully utilize the DR capability, smart
houses had already start to adopt devices which
can be controlled, maintained, monitored and even

scheduled as necessary. Smart house technologies
make all electronic devices around the house to act
”smart” and become more autonomous. Most of the
important appliances in the future will take advan-
tage of this technology through home networks and
the Internet. Such feature of smart grid is a way for
ordinary electronics and appliances to communicate
among themselves, consumers and even higher en-
tities such as GENCOs. In such an environment,
consumers (actually a consumer agent, refereed as
CA hereafter, will be responsible to take such deci-
sion in conjunction with smart-meter) can respond
to day-ahead dynamic pricing signal effectively and
also intelligently managing and scheduling devices
thereby flattening out peak demand and achieving
better resource utilization.
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DR has been studied in various fields. DR strate-
gies can be grouped into two general categories, one
is pricing-based DR and another is incentive based
DR. In the pricing-based DR 212, consumers dy-
namically adjust their consumption according to the
time varying pricing while maximizing their pay-
offs. And for incentive based DR 3, consumers
are given incentives in payment, to reduce their
consumption in response to the system reliability.
Pricing-based DR such as RTP (Real-Time Pricing)
has problem in terms of an efficient stable power
system operation, because it is too difficult to know
in advance how much consumers actually participate
in DR. As an example, ! shows that RTP mecha-
nisms do not necessarily lead to peak-to-average ra-
tio reduction, because large portions of load may be
shifted from a typical peak hour to a typical non-
peak hour. When attention is paid only to effi-
ciency and stability, “direct load control” in which
a power company controls the amount of electricity
consumption of consumers from outside is most ef-
fective, but it has problem in terms of usability. In
addition, most studies have not focused on the co-
operation among consumers, but it is important to
develop efficient and stable DR.

On a different note, in order to numerically mea-
sure the actual realization of a probabilistic event
which will forecast ahead, scoring rule was defined
154 Moreover, it binds the assessor to make a care-
ful prediction and hence truthfully elicit his/her pri-
vate preferences. That is why, scoring rule has been
applied successfully while designing a truthful in-
centive mechanism in a diverse applications such
as voting rules 3! 1°. Strictly proper scoring rules
can be employed by a mechanism designer to as-
certain that agents accurately declare their privately
calculated distributions, reflecting their confidence
in their own forecast. The applicability of scoring
rule is being investigated in field of smart-grid. For
instance, 2* presented a methodology for predicting
aggregated demand in smart grid.

However, it is not enough to apply scoring rule to
our model because our model uses auction for task
allocation. When using scoring rule alone, agents
are in fact able to misreport their belief in order to
get task. Therefore, we also apply Viclrey-Clarke-

Groves Mechanism %216 to our model. The ap-
plicability of VCG mechanism is being investigated
in field of demand side management. For instance,
25 presented a VCG mechanism for demand side
management programs to encourage efficient energy
consumption among the users. In our model, we
combine scoring rule and VCG mechanism to truth-
fully elicit agent’s private preferences.

This paper presents a scoring rule based truthful
cooperative demand response mechanism for CAs
provided by the GENCO in response to the dynamic
day-ahead time dependent pricing. The proposed
method can be viewed as a bridge between incentive
based DR and pricing based DR. The main ideas of
our model can be summarized as follows: the con-
sumers will be rewarded a discount on the price to
measure how well they predict the shift demand that
represents shifting the devices/loads towards speci-
fied time periods. The reward mechanism is based
on a strictly proper scoring rule and VCG mech-
anism. The scoring rule is chosen to work with
continuous variable (the normal distribution, as in
the proposed method) and measure how accurate the
prediction could be. The Continuous Ranked Prob-
ability Score ! possess such characteristics. In our
mechanism, CA has incentive to participate in CDR
using The Wisdom of Crowds *’ such as lot of CAs
prediction is better than a CA prediction. In addi-
tion, our mechanism has several desirable properties
such as rruthfulness and individual rationality and
scalability.

The contributions of this paper are summarized
as follows:

« We propose a scoring rule based truthful coopera-
tive demand response mechanism for GENCO to
encourage efficient peak cut. The proposed model
can be viewed as a bridge between incentive based
DR and pricing based DR. The consumers will be
rewarded a discount on the price to measure up
how well they predict the shift demand.

« We investigate some of the desired properties of
our model. Such as, truthfulness and individual-
rationality of the proposed mechanism are proved
and we fulfill those properties by combining scor-
ing rule and VCG mechanism.

¢ We show that, each consumer has incentive to
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cooperate with each other by comparing CDRS
and Singleton in experimental results. In ad-
dition, proposed model has scalability that the
even-though number of CA increases, Wisdom of
Crowd *" can work and the accuracy of prediction
of CDRS also increase. We show that the larger
the number of CA, gives better accuracy of pre-
diction in the experiment.

« We tested proposed mechanism on real data pro-
vided by Chubu Electric Power Company and we
validated that, this mechanism is capable to re-
duce peak demand.

The remainder of the paper is organized as fol-
lows, Firstly, we describe our model of cooperative
demand response. Second, we describe the details
of CDR Algorithms and a mechanism. Third, we
describe the results of the experiments and our eval-
uation. Fourth, we describe the relative works. Fi-
nally, we conclude with a discussion of possible av-
enues for future work.

2. Cooperative Demand Response Model

We begin the situation where N consumer agents
(CAs) use a same generation company (GENCO).
In this paper, we represent cooperation among CAs
introducing CDRS (Cooperative Demand Response
System) that represents a set of CAs. Each CA has
a smart meter that communicates with the various
devices at the CA and also GENCO. Each CA has
two types of devices, one is ’base load” that can not
be shifted, such as lights or computers. Another is
“flexible load” that can be shifted, such as Al robots
or household electrical appliances. GENCO will try
to flatten out the peak demand by incentivizing CA
to cooperative shift flexible load consumption. CA
will try to maximize the reward from GENCO. The
reward depends on actual shift demand and accuracy
of prediction.

Our model assumes a dynamic “day-ahead” pric-
ing signal 7, CAs receive their prices one day in
advance. This pricing signal offers users more cer-
tainty than other common implementations of dy-
namic pricing 213, such as “hour-ahead” or real-
time pricing. With day-ahead pricing, CAs can
schedule their device usage for the upcoming day

S0 as to optimize their amount spent and willingness
to shift their device usage. Hour-ahead or real-time
pricing would force the ECC (Energy Consumption
Controller) to use less optimal scheduling algorithm
to solve an online knapsack problem. We note, how-
ever, that our algorithm can be easily adapted to
hour-ahead pricing.

As a mechanism is design to incentivize CAs
for providing private probabilistic information accu-
rately (truthfully) and to the best of their forecasting
ability, scoring rule is being applied in this model.
Especially, strictly proper scoring rules can be em-
ployed by a mechanism designer to ascertain that
agents accurately declare their privately calculated
distributions, reflecting their confidence in their own
forecast. The detailed flow of information and task
assignment process are presented in Figure 1. As we
can see, GENCO will send the price information as
a signal to CAs. The price signal is typically deter-
mined based on the generation costs of electricity.

GENCO |

Stepl: Pricing signal and threshold

CAs

Step2: Predicts shift demand

Step3: Bids task candidates

CDRS Step4: Accepts based on threshold

Step5:
Reports aggregated predictions

(After realization of actual shifting)
Day d

Step6: Calculates the profit

Step7: Calculates the revenue Step8: Allocates the revenue

CDRS 2]

Fig. 1. CDR model flow

CA located in consumer’s household integrated
with ECC. Therefore, it can access the local infor-
mation and data of that particular consumer. This
information includes device usage schedule, dura-
tion, energy consumption, etc. CA also keeps track
of the previous schedule prediction. Using such in-
formation plus the day-ahead dynamic pricing, CA
makes a pre-schedule plan of different devices based
on its forecasting accuracy and consumer’s prefer-
ences. However, it will report CDRS the prediction
confidence in a form of Gaussian distribution and
tentative schedule of assigned devices. For each de-
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vice, CA calculates its uncertainty over the error it
expects to make using a statical model of random
errors. So, CA makes its prediction through a Gaus-
sian Distribution. This assumption is based on the
sampling of higher number of devices, since eventu-
ally an CDRS must handle a wide range of devices.
Central Limit Theorem tells us in a case of wide
range of events, the probability distribution that de-
scribes the sum of random variables tends towards
a Gaussian Distribution as the sum approaches to-
wards infinity. According to that, we can say that, in
the perspective of CDRS, reporting error in the form
of Gaussian Distribution is valid and portrays some
form of accuracy.

We assume that each CA is various environment
such as communication speed and load composition.
Therefore, our model achieves the cooperation by
combining scoring rule and VCG. Our model has
some of the desired properties such as truthfulness
and individual rationality and scalability based on
The Wisdom of Crowds such as a lot of CAs predic-
tion is better than a CA prediction.

3. Algorithm

In this section, we introduce detail of the CDR al-
gorithm. First of all, set of CAs can be represented
as N ={1,2,...n} and CAs try to maximise the ex-
pectation utility. Each CA has type 6; € ®; which
determines the preferences over different outcomes;
i.e vi(a, 6;) is the value of CA i with type 6; for out-
come a € A. In our model, we use VCG mecha-
nism and the choice rule g : ® — A and payment
rule p : ® — R and utility function are presented in
Eq.(1) and Eq.(2) and Eq.(3).

g(0) = argerglavai(a,Gi) (1)

pi(e):Zvj(g(g—i)’ej)_Zvj(g(e)’ej) (2)
J# J#i

u,-(O,-) = V,’(a, 9,) —pi(e) (3)

Stepl: Pricing signal and threshold

GENCO estimates the total demand curve in the
next day and assumes threshold 7'/ that signifies the
goal of peak cut. In general, time periods that has
larger demand is assigned high price, In order to
shift and control demand 3. In our model, we as-
sume that there exist exactly two different price lev-
els price, > price;. Time interval ¢ of each is ex-
pressed in Eq.(4).

vicel — pricey, if TotalDemand' > Th @
P | price;, if TotalDemand' < Th
The intervals during which price’ = price” are

considered to be peak-intervals, at which consump-
tion needs to be reduced.

Step2: Predicts shift demand

CAs predict the shift demand sd?, based on price
signal and load composition. CAs have two type of
devices, one is “base load” and another is “flexible
load”. CAs predict the demand of flexible load in
ty,. Therefore, predicted shift demand of CA i in spe-
cific time periods ¢ is presented in Eq.(5). where DV;
is a set of flexible load of CA;.

P o_
sdl.J =

Z Shi ftDevicesDemandf .
JEDV; ’

&)

In case CAs do not behave as predicted, it may
lead to retard in planned production of GENCO and
decrease the peak-to-average ratio. In this model,
we introduce a scoring rule to incentivize CAs for
providing private probabilistic information truth-
fully. GENCO calculates the reward for CAs based
on prediction of task achievement and prediction of
confidence. Our model is dealing with devising a
scoring rule for multi-item prediction. Therefore,
conventional scoring rule with single item, such as
Brier score  is of no use for this mode. In order to
rightfully incentivize the CA to make their predic-
tion of device shifting for multiple items rightfully;
the continuous ranked probability score (CRPS) is
applied '°. CRPS is a strictly proper scoring rule that
is used for continuous variables since the traditional
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forms of proper and strictly proper scoring rules usu-
ally do not work with continuous variables. In the
proposed method, Gaussian Distribution is used to
model the consumer’s device shifting prediction and
associated confidence. The usage of CRPS is inves-
tigated before in distributed power system operation
to rightfully score the distributed energy resources
23_ CRPS is able to measure the closeness of the
prediction that means how close a prediction to re-
alized event where higher value is assigned to close
prediction. The relative prediction error e;; of CA;
in each time periods as presented in Eq.(6).

sd?® —sd?

it %t

1
Sdi,t

eis = (6)

where sd}; shows the actual shift demand. Lets
assume each CA i reports its relative prediction er-
ror in a form of uncertainty over it, represented by
Gaussian Distribution Function N(u = 0,07,). Let
0;; be CA; confidence of prediction, CRPS is pre-
sented in Eq.(7).

CRPS(N(IJ = Oactzt)’ei7t)
1 i, 1, 2
:Gi~t|:_2(p<€z> €z<2q)<€t>_1>:|
T Oit Cit Oi

where the probability density function and cu-
mulative distribution function for Gaussian Distri-
bution Function are denoted as ¢ and P, respec-
tively. The notation CRPS(N(u = 0, G,%t),ei,t) can
be simplified using CRPS; ;(6;).

Figure 2 shows realization of scoring factors for
different errors and confidence level. From the graph
presented in Figure 2, it is import to notice that,

o when a CA is highly confident about its predic-
tion (e.g 0;; = 0);then highest score is rewarded
i.e when the realized absolute error is zero.

« when the realized error is relatively higher, then
CA will be benefitted to report lower confidence
(e.g higher values of 0;;).

Therefore, CAs can maximize the score to report the
uncertainty of prediction accurately.

Scoring fuctor

-1 -08 -0.6 -0.4 -02 0 02 04 0.6 08 1

Aggregated relative error

Fig. 2. A CRPS scoring mechanism for different errors

Step3: Bids task candidates

CAs bid for the task candidates to CDRS. In this
model, a single task means that CA shifts a "flexible
load” from specific #, to specific #;. A bid consists of
four elements as presented in Table 1. In this paper,
each CA selects #;, and #; randomly. Each CA can bid
a defined number in advance.

A bid consists of three elements, beginning of
shift demand ¢, end of shift demand ¢;, shift demand
capacity sd;,. In this paper, each CA selects #; and
t; randomly. Each CA can bid a defined number in
advance.

Step4: Accepts based on threshold

CDRS accepts bids from CAs based on threshold.

First, CDRS sorts all bids based on sdi”7 k(1 —0iy).

That is, larger the contribution of peak cut, higher is

the accept rate. Next, CDRS accepts bids based on

following constraints in Eq.(8) and Eq.(9).
[Conditions of Acceptance]

TotalDemand;, — Z sdg ,=Th (8)
bEBids,

TotalDemand;, + Z sd,fl <Th 9)
bEBids,

where Bids; means sorted all bids. Eq.(8) shows
that total demand in #;, is always larger than thresh-
old. That is, this model can not conduct peak
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cut more than necessary in order to guarantee the
safety. Eq.(9) shows that total demand in ¢ is al-
ways smaller than threshold. That is, this model can
not create new peak demand.

Step5: Reports aggregated prediction

CDRS aggregates the prediction from CAs and re-
ports it to GENCO. The task of achieving the pre-
diction and actuality can be expressed as sdﬁ ;=
Yiensdly, sd?, = Yicysdy,, respectively. The rela-
tive error and confidence level of CDRS can be ex-
sdg‘,—sdf', 2 ZieN(Sdip,f*szlt)z

Sdgt > et ():,-E,Vsdft)z ’
spectively. Therefore, the as the number of CA in-
creases, the relative error of CDRS decreases. In the
experiment, we show that, as the number of CA in-
creases, prediction accuracy increases.

pressed as, e., =

Step6: Calculates the profit

GENCO calculates the profit based on production
cost and actual shift demand of CAs. The GENCOs
usually operate multiple plants of different types,
e.g. gas, hydroelectric (hydro), renewables and coal.
These plants may be categorized as base, interme-
diate, and peak-load. The base-load plants generally
have a higher capital cost but low operating cost, and
thus run all of the time (e.g., hydro, nuclear). Inter-
mediate load plants (e.g., coal) have a higher oper-
ating cost, and peak load plants (e.g., gas turbines)
have the highest operating cost. In any given time
periods, if CDRS demand exceeds the base-load ca-
pacity, the generator turns to the intermediate-load
plants and then finally, to peak-load plants to gen-
erate additional electricity. Lets ¢, and ¢; represent
the peak-load production cost in #; and intermedi-
ate production cost in #; respectively and the differ-
ence cj, — c; represents the costValue,, the profit of
GENCO is presented in Eq.(10).

pro fit,G = costValue, x sdg, (10)

In this paper, the production cost is based on real
data '12%,

Step7: Calculates the revenue

GENCO calculates the payment based on prediction
and confidence of CDRS’s task achievement. Let
the price difference p; — p; represents the sv;, the
payment is presented in Eq.(11).

Ves(a,0) =
CRPS.;(0) x sv; x sd?, + A x profitZ (11)

The payment is composed of four factors. The
CRPS (scaled between O and 1) is the “accuracy
factor” that incentivizes CDRS to provide as accu-
rate description as possible for its relative predic-
tion error. The sv; is the shift factor” that consti-
tutes the actual price paid by the GENCO to CDRS.
The sd¢, is the actual shift demand of CDRS in set-
tlement time period 7, which is independently ob-
served by the GENCO. The A x profit (0 <A < 1)
is the fraction of production profit. Since GENCO
needs to make profits by CDR, GENCO allocates a
fraction of production profit. The significant point
of Eq.(11) is that it considers not only the differ-
ent price, but also incentive to provide accurate de-
scription. Therefore, our model can remove the un-
ethical” ways such as falsehood and guarantee the
safety.

Step8: Allocates the revenue

CDRS allocates the payment to CAs based on
contribution rate in the total reward and part of
GENCO’s profit. The contribution rate is compo-
sition of actual shift demand and prediction of accu-
racy. The reward of CA; is presented in Eq.(12).

CRPS;(6;) x sdf,
B YjenCRPS;(6)) x sd,

X ver(a,0)(12)

vis(a,6;)
where v, ,(a, ) shows the Eq.(11).
Algorithm properties

Proposed algorithms have several desirable proper-
ties.
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Truthfulness

Truthfulness is an important measure to validate an
agent based protocol or strategy. One obvious way
to deal with truthfulness is to set a mediator which
will observe the behavior of all participated agents
and thus ensures all agents report truthfully. How-
ever, mediator based protocols impose several dif-
ficulties such as centralization, private information
elicitation, etc. At the same time, as the number of
agent increases, Then it will become difficult for a
single mediator to control the information. There-
fore, the best way to ensure is to design the protocol
such a way that, its always the best for an agent to
report truthfully in order to get maximum expected
utility. Our model is strategy-proof by using VCG
mechanism and Scoring rule.

Theorem 1. CDR is strategy-proof for CAs with
quasi-linear preferences.

Proof. We prove that CDR is strategy-proof, such
that truth-revelation is a dominant strategy for each
CA, from which allocative efficiency follows imme-
diately because the choice rule g(6) computes the
efficient allocation in Eq.(1).

The utility to CA i from strategy g, is:

ui(§)

I
=
oQ
—~

~

)= Y vi(s(6-:),6))
J#

Ignoring the final term, because Y- ; v;(g(6-;), 6;)
is independent of an CA i’s reported type.

we prove that truth-revelation 5, = 6; solves:

[v,-(g(é\, 0., 9/\1)791')]

0,6+ Y v;(s(6;
= max [vi(x, Oi)+2vj(x,§j)] (13)

I\naX
9i€®i

J#
el'E@,' j;él

where x = g(§,~, ef,) is the outcome selected by
the mechanism. The only effect of the CA’s an-
nounced type 5, is on x, and the CA can maxi-
mize Eq.(13) by announcing 5, = 6; because v; is

strictly proper scoring rule in Eq.(11) and Eq.(12).
As shown Eq.(11), the CRPS part of function is
a strictly proper scoring rule and the entire func-
tion in Eq.(11) is an affine transformation of this
rule (since it only involves multiplication and ad-
dition with other factors which do not depend on
the reports made by the agent). Hence, Eq.(11) and
Eq.(12) are also strict/l}\f proper 3. Then the mecha-

nism computes g(6;,6_;) to explicitly solve:

ma}v,(a 6)+) vi(a 9)
J#i
CRPS;(6;) x sd,

WA YN CRPS;,(6;) x sd*, Xver+ ) vila

J#i

Truth-revelation is the dominant strategy of CA
i, whatever the reported types 0_; of the other CAs.
O

Individual rationality

Individual rationality is ascertained for all CAs
in CDRS, as they all have non-negative expected
gain from participation. Our model is individual-
rationality by using VCG mechanism.

Theorem 2. CDR is individual-rational with quasi-
linear preferences.

Proof. To show individual-rationality, we show
that the utility to CA i in the equilibrium outcome
of the mechanism is always non-negative. We can
assume truth-revelation in equilibrium. The utility
to CA i with type 6; is:

u;(6;,6-;)

- (Zw (6-),6,)— Y. v;(g(
i# J#i

= Zvl(g(@)?@i)—ivj(g(e_

J#i

Eq.(14) is actually the same as VCG mechanism.
Hence, the equilibrium outcome of the mechanism is
always non-negative. d
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Eq.(14) is non-negative because the value of the
best solution without CA i, ¥, 2;v;(g(6-;), 6;), can-
not be greater than the value of the best solution
with CA i, ¥, vi(g(0), 6;). This follows because any
choice with agents j # i is also feasible with all CAs
(monotonicity), and has just as much total value (no
negative externalities).

Scalability

Scalability is important property in the field of smart
grid because there would be so many participants.
In our model, the reward is based on actual demand
shift and accuracy of prediction using CRPS. We as-
sume that each CA is various environments such as
communication speed and load composition. There-
fore, the more number of CA increase, Wisdom of
Crowds " can work and the accuracy of prediction
of CDRS increase. We show that the large number of
CA are better accuracy of prediction in experiment.

4. Experimental Results

4.1. Setting

In this section, some data analysis and simulation re-
sults are presented in order to verify the feasibility of
the scoring rule based cooperative demand response
mechanism. The real parameters are taken based on
Chubu Electric Power Co.,Inc., such as the demand
curve 1928 and production cost !'?°. We conducted
62 days in summer. In each day, we applied a CDR
mechanism. The demand prior to CDR is based on
above data and perturbed up to 10% by a uniformly
distributed random number.

We compared our model with the singleton algo-
rithm in Figure 3. CAs report prediction to GENCO
without CDRS and calculate the reward based on
Eq.(11). The parameters for our experiments are de-
fined as Table 2.

Stepl: Pricing signal and threshold
GENCO l*

Step2: Predicts shift demand

CAs

Step3: Bids task candidates

Step4: Accepts based on threshold

(After realization of actual shifting)
Stepb: Calculates the profit

Day d StepT7: Allocates the payment

Fig. 3. Singleton model flow

4.2. Results

While the quantitative results of these simulations
will vary from market to market, the qualitative re-
sults suggest that CDR mechanism can indeed help
GENCO and CAs.

Effectiveness of peak cut

Let us first consider the effectiveness in terms of
peak cut during half of simulation days. In Figure
4, the vertical axis represents the total energy con-
sumption and the horizontal axis represents the half
of simulation hour. We can see that before-demand-
curve has the cyclic electricity consumption pattern
based on real data and the peak demands of after-
demand-curve are always reduced. Therefore, scor-
ing rule and VCG based proposed mechanism is ca-
pable to reduce peak demand.

Figure 5 shows the total demand curve and
threshold. In Figure 5, t19,¢11,%12,t14,115, 16,217,120
belong to #;,, other belong to ¢;. Before-peak-demand
is 1292.4 kwh, threshold is 1163.1 kwh, after peak
demand is 1218.9 kwh. We can see that proposed
mechanism can flatten peak demand without creat-
ing a new peak.
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1400 “~Before-demand-curve

After-demand-curve

1200

1000

800

Energy Consumption [kwh]
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1 169 337 505 673

hour

Fig. 4. Energy usage before (black dotted line) and after
(red solid line) using of CDR algorithm: 31 days

1400
1200
1000

800

600

“"Before-demand-curve

400
— After-demand-curve

200 ~ Threshold

Energy Consumption [kwh]

0
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Fig. 5. Energy usage before (black dotted line) and after
(red solid line) using of CDR algorithm: 24 hours

CA’s average utility: CDRS vs Singleton

Figure 6 shows the CA’s average utility (total reward
divide by number of CA). In Figure 6, the verti-
cal axis represents the CA’s average utility in a day
and the horizontal axis represents the total simula-
tion days. We can see that CDRS is always better
reward than Singleton. That is, each CA has incen-
tive to cooperate with each other because each CA
can increase the utility.

We can see that the utility of CDRS and Sin-
gleton are always non-negative. This is because
we apply VCG mechanism to our mechanism and
individual-rationality is ascertained for all CAs.

Scalability: the large number of CA

Table 3 shows scalability of our mechanism consid-
ering number of CA and CA’s average reward during
total simulation days. AVE in the table represents
the CA’s average utility. We can see that the more
number of CA increases, the more increases aver-
age utility both CDRS and Singleton. However, the
member of CDRS is better than Singleton because
the more number of CA increase, the better of pre-
diction accuracy and also utility.
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Fig. 6. CA’s average utility with CDRS vs Singleton

5. Related Work

In the field of DR, there have been several works that
focused on scoring rule 2*7. 2* presented a method-
ology for predicting aggregated demand in smart-
grid. But these method do not considers demand
shift at the device level and do not examine these
method by real data simulation. Our model can take
heterogeneity at the device level into account and the
proposed mechanism is tested on real data.

7 presented a pricing scheme for smart house en-
vironment which takes advantage of both time and
incentive based DR using CRPS. But this scheme do
not considers the conditions of the demand shift and
do not considers the payment to mechanism. Our
model can consider the conditions of the demand
shift and we combine scoring rule and VCG mecha-
nism to truthfully elicit agent’s private preferences.

In addition, most studies '31%20.7 have not fo-
cused on cooperation among consumers although it
is important to devise an efficient and stable DR.

Published by Atlantis Press
Copyright: the authors

190



K. Hara, T. Ito / A Scoring Rule-based Truthful Demand Response Mechanism

Our model focused on cooperation among consumer
agents using CRPS.

There have been a few studies that focused on co-
operation among agents. !4 presented a formulation
for scheduling demand response among residences
when the cost of electricity is known in advance.
They deal with cooperation as a utility optimization
problem. But they do not consider prediction of de-
mand and scalability of method. 2% focused on de-
mand side management in terms of Virtual Power
Plant and they deal with cooperation using market
mechanism. But they do not consider demand shift
at the device level.

On the other hand, our model achieves the co-
operation using scoring rule and develop some of
the desired properties such as truthfulness and indi-
vidual rationality and scalability by applying CRPS
and VCG mechanism to our model. In addition, our
model can consider demand shift at the device level
using bid.

6. Conclusion

DR program is gaining importance in a smart grid
environment. Due to the lack of energy supply in
comparison with demand, efficient energy manage-
ment and a DR mechanism is essential. This paper
introduces a scoring rule based truthful demand re-
sponse mechanism considering both pricing factor
and incentive factor.

In our model, some of the desired properties such
as truthfulness and individual-rationality are proved.
We fulfill those properties by combining scoring rule
and VCG mechanism. In addition, our model is
that each CA has incentive to participate in CDR
using Wisdom of Crowds such as a lot of CAs pre-
diction is better than a CA prediction. This model
consists of generators, cooperative demand response
system and consumers. The scoring system (facil-
itating Continuous Ranked Probability Score) and
VCG mechanism are designed such a way that it
will incentivize the consumer agents to predict ac-
curately. In the experimental results, we presented
that this mechanism is capable to reduce energy con-
sumption and mechanism is scalable.

We will try to model device sensitiveness to-

wards scheduling and apply such mechanism for
higher scaled power system. Moreover, another po-
tential future research direction is to integrate de-
vice dependency in formulation to make the DR pro-
gram responding towards the heterogeneity of de-
vices. Moreover, we will try to optimize the thresh-
old to flatten peak demand.
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