
Distributed and High Performance Big-File Cloud Storage Based On Key-Value
Store ∗

Thanh Trung Nguyen,1,2 Minh Hieu Nguyen 2

1 Le Quy Don Technical University ,
No 236 Hoang Quoc Viet street, Cau Giay District,

Ha Noi, Viet Nam
E-mail: thanhnt@vng.com.vn

2 Research and Development Department, VNG Corporation,
Trung Kinh Street, Cau Giay District,

Ha Noi, VietNam
E-mail: minhnh@mta.edu.vn

Abstract
This research proposes a new Big File Cloud (BFC) with its architecture and algorithms to solve difficult

problems of cloud-based storage using the advantages of key-value stores. There are many problems when

designing an efficient storage engine for cloud-based storage systems with strict requirements such as big-file

processing, lightweight meta-data, low latency, parallel I/O, deduplication, distributed, high scalability. Key-

value stores have many advantages and outperform traditional relational database in storing data for heavy

load systems. This paper contributes a low-complicated, fixed-size meta-data design, which supports fast and

highly-concurrent, distributed file I/O, several algorithms for resumable upload, download and simple data

deduplication method for static data. This research applies the advantages of ZDB - an in-house key-value

store which was optimized with auto-increment integer keys for solving big-file storage problems efficiently.

The results can be used for building scalable distributed data cloud storage that support big-files with sizes

up to several terabytes.

1. Introduction

Cloud-based storage services commonly serve mil-

lions of users with storage capacity for each user can

reach to several gigabytes to terabytes of data. Peo-

ple use cloud storage for the daily demands, for ex-

ample backing-up data, sharing files to their friends

via social networks such as Facebook 14, Zing Me 4.

Users also probably upload data from many different

types of devices such as computer, mobile phone or

tablet. After that, they can download or share them

to others. System load in a cloud storage is usu-

ally really heavy. Thus, to guarantee a good qual-

ity of service for users, the system has to face many

difficult problems and requirements: Serving inten-

sity data service for a large number of users without

bottle-neck; Storing, retrieving and managing big-

files in the system efficiently; Parallel and resum-

able uploading and downloading; Data deduplica-

tion to reduce the waste of storage space caused by

∗ The preliminary version of this paper was presented in the 16th IEEE/ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2015) 20 June 2015

International Journal of Networked and Distributed Computing, Vol. 4, No. 3 (July 2016), 159-172

Published by Atlantis Press
Copyright: the authors

159

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

storing the same static data from different users. In

traditional file systems, there are many challenges

for service builder when managing a huge number

of big-file: How to scale system for the incredi-

ble growth of data; The challenges in distributing
data in a large number of nodes; Effective meth-

ods to replicate data for load-balancing and fault-

tolerance; How to cache frequently accessed data

for fast I/O, minimize the latency, etc. In many Dis-

tributed File Systems and Cloud Storages, a com-

mon method for solving these problems is split-

ting big file into multiple smaller chunks, storing

them on disks or distributed nodes and then man-

aging them using a meta-data system 7,6,29,1. Stor-

ing chunks, meta-data efficiently and designing a

lightweight meta-data are significant problems that

cloud storage providers have to face. After a long

time of investigating, we realized that current cloud

storage services have a complex meta-data system,

at least the size of meta-data is linear to the file

size. Therefore, the space complexity of these meta-

data system is O(n) . For big-files which have sizes

of serveral Gigabytes or Terabytes can lead to big

meta-data sizes. And it is not well scalable for big-

files.

In this research, we propose a new big-file cloud

storage architecture and a better solution to reduce

the space complexity of meta-data.

Key-Value stores have many advantages for effi-

ciently storing data in data-intensive services. They

often outperform traditional relational databases in

the ability of heavy load and large-scale systems.

In recent years, key-value stores have an unprece-

dented growth in both academic and industrial fields.

They have low-latency response time and good scal-

ability with small and medium key-value pair size.

Current key-value stores are not designed for

directly storing big-values or big-files in our case.

We executed several experiments in which we put

whole file-data to key-value store, the system did not

have good performance as usual for many reasons:

firstly, the latency of put/get operation for big-values

is high, thus it affects other concurrent operations

of key-value store service and multiple parallel ac-

cesses to different value reach limited. Secondly,

when the value is bigger, there is no more space to

cache other objects in main memory for fast access

operations. Finally, it is difficult to scale-out system

when the number of users and data increased. This

research is implemented to solve those problems

when storing big-values or big-file using key-value

stores. It brings many advantages of key-value store

in data management to design a cloud-storage sys-

tem called Big File Cloud (BFC).

These are our contributions in this research:

• Propose a light-weight meta-data design for big

file. Every file has nearly the same size of meta-

data. BFC has O(1) space complexity of meta-

data of a file, while the size of meta-data of a

file in Dropbox7, HDFS1 has space complexity

of O(n) where n is size of the original file. See

Fig. 13

• Propose a logical contiguous chunk-id for chunk

collections of files. That makes it easier to dis-

tribute data and scale-out the storage system.

• Bring the advantages of key-value store into big-

file data store which is not supported by default

for big-value.

• Study the key-value stores to find the most appro-

priate key-value store for BFC.

These contributions are implemented and evaluated

in Big File Cloud (BFC) that serves storage for Zing

Me 4 users . Disk Image files of CSM Boot-Diskless
†system are stored in Big File Cloud. The rest of this

paper is organized as follow: Section 2 is about re-

lated works analysis and some comparison between

them and BFC. Section 3 presents Big-File Cloud

model, detail architecture, design of BFC, data log-

ical layout and algorithms for parallel upload and

download big files. Section 4 evaluates to find the

best fit key-value store for proposed cloud storage

architecture. Then, it compares BFC and other pop-

ular cloud storage systems to emphasize the advan-

tages of the proposed metadata design. It also has

† http://csmboot.zing.vn

Published by Atlantis Press
Copyright: the authors

160

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

benchmarks to compare BFC and other open-source

solution such as HDFS, Blob of MySQL. Finally,

section 5 presents the conclusion of this research.

2. Related Works

CEPH29 is a distributed storage platform designed

to store object, block and file. Ceph is designed to

provide excellent performance, reliability and scal-

ability. Ceph removes file allocation tables and re-

places them with generating functions, so it sepa-

rates metadata and data operations. This is a sig-

nificant improvement. Because this allows it to dis-

tribute the complex data access operations, update

serialization, replication and reliability, failure de-

tection, and recovery. CEPH uses special-purpose

data distribution function called CRUSH 30, CRUSH

is a pseudo-random data distribution algorithm. Its

advantage is that it can independently calculate the

location of any object by any party in a large system.

In addition, the size of metadata is small and mostly

static unless devices are added or removed. CEPH

breaks files into 8 MB chunks and stores them.

Hadoop Distributed File System (HDFS) 25 is

a distributed file system designed to run on low cost

commodity hardware. The significant advantage of

HDFS is fault-tolerant ability. Typically, an HDFS

instance consists of hundreds or thousands nodes

which to store an extremely large amount of data.

There are two types of node in a HDFS instance: Na-

meNode and DataNode which are the components

to construct a master/slave architecture. An HDFS

cluster includes a single NameNode and a number

of DataNodes. The first one manages the file system

namespace and serves the file access request from

clients. It executes file system namespace operations

such as opening, closing or renaming a file or direc-

tory. DataNodes are responsibility for storing ap-

plication data and serving file system read/write re-

quests. When a client creates a new file in an HDFS

instance, that file will be splited to several blocks

with a configurable size per file (typically 64MB).

After that, HDFS replicates those blocks and stores

them to DataNodes. All of metadatas and transac-

tion logs will be stored at NameNode. When a client

request to read a file in the file system, it send the re-

quest to NameNode to get file metadata, then get all

blocks of that file from DataNodes. Every block of

a file has a checksum value, these value are stored

in a separate hidden file in HDFS namespace, when

client retrieves a block, it will check this checksum

value, if not match, if will find another replica of that

block at another DataNode. This is the way HDFS

avoid corrupted data from disk failure. Beside these

advantages, HDFS has a single point of failure - the

NameNode. It has only a single NameNode in a

cluster, if it crashes, the whole system will down.

Files in HDFS are write-once and have strictly one

writer at any time. This limits the writing throughput

while applications can write data in parallel.

LevelDB 9 is an open source key-value store de-

veloped by Google Fellows Jeffrey Dean and San-

jay Ghemawat, originated from BigTable 2. Lev-

elDB implements LSM-tree 21 and consists of two

MemTable and set of SSTables on disk in multi-

ple levels. When a key-value pair is written, it

firstly is appended to commit log file, then it is

inserted into a sorted structure called MemTable.

When MemTable’s size reaches its limit capacity,

it will become a read-only Immutable MemTable.

Then a new MemTable is created to handle new up-

dates. Immutable MemTable is converted to a level-

0 SSTable on disk by a background thread. SSTables

which reach the level’s limit size, will be merged to

create a higher level SSTable. We already evaluated

LevelDB in our prior work 19 and the results show

that LevelDB is very fast for small key-value pairs

and data set. When data growing time-by-time and

with large key-value pairs, LevelDB become slow

for both writing and reading.

Zing-database (ZDB) 19 is a high performance

key-value store that is optimized for auto increment

Integer-key. It has a shared-memory flat index for

fast looking-up position of key-value entries in data

files. ZDB supports sequential writes, random read.

ZDB is served in ZDBService using thrift protocol

and distribute data using consistent-hash method. In

BFC, both file-id and chunk-id are auto increment

Published by Atlantis Press
Copyright: the authors

161

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

integer keys, so it is very good to use ZDB to store

data. The advantage of ZDB is lightweight mem-

ory index and performance for big data. When data

grow, it still has a low latency for read and write

operations. Many other researches try to optimize

famous data structures such as B+tree 15 on SSD,

HDD or hybrid storage device. It is also useful

for building key-value stores on these data struc-

tures. With the design and architecture of BFC, the

chunkId of a file has a contiguous integer range,

ZDB is still the most effective to store chunk data.

Distributed Storage Systems (DSS) are storage

systems designed to operate on network environ-

ment including Local Area Network(LAN) and the

Internet. In DSS, data is distributed to many servers

with ability to serve millions of users 22. There are

many type of Distributed Storage System which can

be categorized by its functions, architecture. Ac-

cording to 22, DSS can have these functional require-

ments: Archival, General purpose Filesystem, File

Sharing, Performance, etc. Systems under archival

category provide user backup and retrieve data func-

tions. BFC fully supports these functions. DSS

also provide services as a general purpose file sys-

tem such as NFS 24 or other Distributed File System

(DFS) such as GFS 10,11. BFC is a persistent non-

volatile cloud storage, so it can provide this function

in Linux by using FUSE27 and BFC client protocol.

Applications store data on BFC can take advantages

of its high performance and parallel processing abil-

ity.

UDT12 is a high performance data transport pro-

tocol built on top of UDP. It has reliability control

and congestion control. The congestion control al-

gorithm can be customize to utilize the high network

bandwidth. UDT support socket API similar to OS

socket interface. In BFC, UDT is an option for desk-

top client application, it can choose between TCP or

UDT for exchange data with BFC servers.

3. Big File Cloud Model and Architecture

3.1. General Big File Model

After examining many popular cloud storage system

such as DropBox‡, Google Drive§, OneDrive¶. We can

model the general big file system (BFS) as follow:

BFS = {F,C,M,Aw,Ar} where:

• BFS: Big file system

• F : original file of user in System. It can be iden-

tified by a f ileId. BFS has ability to store large

number of file F .

• C = (c0,c1, ...,cn) : chunks split from original file

F , chunks are often stored in key-value store or a

persistent storage. Each chunk can be identify by

a chunkId.

• M : Metadata that described the organization of F
by its chunks. We need to care about space com-

plexity of this Metadata.

• Aw : Algorithm to write file F into BFS.

• Ar: Algorithm to retrieve content of F from BFS
by f ileId.

Using this model we can easily analyze pros and

cons of a specific architecture of big file system.

Fig. 1. BFC Architecture

‡ http://dropbox.com
§ http://drive.google.com
¶ https://onedrive.live.com

Published by Atlantis Press
Copyright: the authors

162

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

3.2. Architecture Overview

The BFC system includes four layers: Application
Layer, Storage Logical Layer, Object Store Layer
and Persistent Layer. Each layer contains several

coordinated components. They are totally shown in

Fig 2. Application Layer consists of native software

on desktop computers, mobile devices and web-

interface, which allow user to upload, download and

share their own files. This layer uses the API pro-

vided by Storage Logical Layer and applies several

algorithms for efficient downloading and uploading

process which are described in subsections 3.7 and

3.8.

Storage Logical Layer consists of many queu-

ing services and worker services, ID-Generator ser-

vices and all logical API for Cloud Storage Sys-

tem. This layer implements business logic part

in BFC. The most important components of this

layer are upload and download service. In addition,

this layer provides a high scalable service named

CloudAppsService which serves all client requests.

When the number of clients reaches a certain lim-

ited ones, we can deploy CloudAppsService into

more servers for scaling. Clients do not directly re-

quest to CloudAppsService, but through a dispatcher

which provides public APIs for clients. The dis-

patcher checks user session before forwarding the

client request to CloudAppsService. Moreover, the

dispatcher also checks the number of connections

from a client, if there are too many concurrent con-

nections from a client, the dispatcher can block re-

quests from that client. Storage Logical Layer stores

and retrieves data from Object Store Layer.

Object Store Layer is the most important layer

which has responsibility for storing and caching ob-

jects. This layer manages information of all ob-

jects in the system, including user data, file informa-

tion data, and especially meta-data. In BFC system,

meta-data describes a file and how it is organized

as a list of small chunks. We implemented some

optimizations to make low-complicated meta-data.

Object Store Layer contains many distributed back-

end services. Two important services of Object Store
Layer are FileInfoService and ChunkStoreService.

FileInfoService stores information of files. It is a

key-value store mapping data from fileID to FileInfo

structure.

ChunkStoreService stores data chunks which are

created by splitting from the original files that user

uploaded. The size of each chunk is fixed(the last

chunk of a file may have a smaller size). Splitting

and storing a large file as a list of chunks in dis-

tributed key-value store bring a lot of benefits. First

of all, it is easier to store, distribute and replicate

chunks in key-value stores. Small chunks can be

stored efficiently in a key-value store. It is diffi-

cult to do this with a large file directly in local file

system. In addition, this supports uploading and

downloading file parallel and resumable. All data

on this layer are persisted to Persistent Layer based

on ZDB 19 key-value store. There are multiple ZDB

instances which are deployed as a distributed ser-

vice and can be scaled when data growing. Com-

ponents in these layer are coordinated and automat-

ically configured using Zookeeper 13. Fig 1 shows

the overview of BFC Architecture.

3.3. Logical Data layout

Fig 3 shows the layout of big file data. Every file

consists of one or more fixed-size chunks. Each

chunk has an unique integer ID, and all of chunks

which were generated from a file have a contiguous

range of chunk-id. This is a different point to many

other Cloud Service such as DropBox6 which uses

SHA-223 of chunk as chunk-ID.

3.4. Chunk Storage

Basic data units in the BFC cloud storage system are

chunks. A chunk is a data segment generated from

a file. When a user uploads a file, if the file size is

bigger than the configured size, it will be split into

a sequence of chunks. All chunks which are gener-

ated from a file except the last chunk have the same

size (the last chunk of a file may have an equal or

smaller size). After that, the ID generator will gen-

erate id for the file and the first chunk with auto-

increment mechanism. Next chunk in the chunk set

Published by Atlantis Press
Copyright: the authors

163

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

Fig. 2. BFC Main Backend Components

will be assigned an ID gradually increased until the

final chunk. A FileInfo object is created with infor-

mation such as file-id, size of the file, id of the first

chunk, the number of chunks and stored in a key-

value store implemented in ZDBService 19. Sim-

ilarly, the chunk will be stored in key-value store

as a record with key is the id of chunk and value is

chunk data. Chunk storage is one of the most signif-

icant technique of BFC. By using chunks to repre-

sent a file, we can easily build a distributed file stor-

age system service with replication, load balancing,

fault-tolerant and recovery. Fig 4 describes Chunk

Storage System of BFC.

3.5. Metadata

Typically, in the cloud storage system such as Drop-

box 6, CEPH 29, the size of meta-data will respec-

tively increase with the size of original file, it con-

tains a list of elements, each element contains in-

formation such as chunk size, hash value of chunk.

Length of the list is equal to the number of chunk

from file. So it becomes complicated when the

file size is big. BFC proposed a solution in which

the size of meta-data is independent of number of

chunks with any size of file, both a very small file

or a huge file. The solution just stores the id of first

chunk, and the number of chunks which is generated

by original file. Because the id of chunk is increas-

ingly assigned from the first chunk, we can easily

calculate the ith chunk id by the formula:

chunkid[i] = f ileIn f o.startChunkID+ i (1)

Meta-data is mainly described in FileInfo structure

consist of following fields: f ileName - the name of

Published by Atlantis Press
Copyright: the authors

164

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

Fig. 3. Data layout of Big File in system

ChunkInfo

+chunkID: i64

+chunkSize: i64

+status: TChunkStatus

+data: binary

<<enum>>

TChunkStatus

+EDataNotSet: enum = 1

+EDataSet: enum = 2

ObjectCaching

ZDBService ZDBService ZDBService

Chunk ZDB instances

Zookeeper

ChunkStoreService

+getChunk(fid:i64): ChunkInfo

+putChunk(cid:i64,chunk:ChunkInfo): void

Key: ChunkID
Value: ChunkInfo

Persistent Data

Fig. 4. Chunk storage system

file; f ileID: 8 bytes - unique identification of file in

the whole system ; sha256 : 32 bytes - hash value

by using sha-256 algorithm of file data; re f FileID:

8 bytes - id of file that have previous existed in

Published by Atlantis Press
Copyright: the authors

165

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

System and have the same sha256 - we treat these

files as one, re f FileID is valid if it is greater than

zero; startChunkID : 8 bytes - the identification

of the first chunk of file, the next chunk will have

id as startChunkID + 1 and so on; numChunk: 8

bytes - the number of chunks of the file; f ileSize
: 8 bytes - size of file in bytes; status: enum 1

bytes - the status of file, it has one in four values

named: EU ploadingFile - when chunk are upload-

ing to server, ECompletedFile - when all chunk

are uploaded to server but it is not check as con-

sistent, ECorruptedFile - when all chunk are up-

loaded to server but it is not consistent after check-

ing, EGoodCompleted - when all chunk are up-

loaded to server and consistent checking completed

with good result.

Thus the size of FileInfo object - the meta-data

of a file will be nearly the same for all file in the sys-

tem, regardless of how large or small the file size is

(the only difference meta-data of files is the length

of f ileName). By using this solution, we created

a lightweight meta-data design when building a big

file storage system. Fig 5 describes meta-data store

system of BFC.

3.6. Data distribution and replication

Because BFC is built based on ZDB - a distributed

key-value storage system. It is obvious that the

meta-data of BFC is stored distributed and can be

replicated for fault-tolerance and load-balancing.

Store Services such as FileInfoService, ChunkStore-

Service distribute data using consistent-hashing

which is proposed in16. Chain replication 28is used

to replicate key-value data. Each type of store ser-

vice has its own distributed ZDB instances. Each

ZDB instance has a range [hlowerbound ,hupperbound)
which is used to determine the range of key to store.

If hash(key) is in the range, it is stored in that in-

stance. In BFC, file-id and chunk-id are auto incre-

ment integer keys. We can use simple hash function

hash(key) = key for consistent hashing. It is very

easy to scale-out system in this case.

Fig 6 shows how data is distributed and repli-

cated in the BFC.

3.7. Uploading and deduplication algorithm

Fig 7 describes an algorithm for uploading big file to

BFC. Data deduplication is supported in BFC. There

are many types and methods of data deduplication 26

which can work both on client-side or server-side.

In BFC, we implemented it on server-side. We use a

simple method with key-value store and SHA2 hash

function to detect duplicate files in the whole sys-

tem in the flow of uploading. A comparison between

BFC and other cloud storage systems in deduplica-

tion is shown in Table 1 in Section 4

The upload flow on BFC cloud storage system

has a little different between mobile client and web

interface. On mobile client, after a file to upload is

selected, we call it A, the client computes the SHA

hash value of content of this file. After that, the

client creates a basic information of file including

file name, file size, SHA value. This basic informa-

tion will be sent to server. At server-side, if data

de-duplication mode is enabled, SHA value will be

used to lookup associated fileID, if there is a fileID

in the system with the SHA-value we call it B, this

means that file A and file B are exactly the same. So

we simply refer file A to file B by assigning the id of

file B to re f FileID property of file A - a property to

describe that a file is referenced to another file. The

basic information will be sent back to client , and

the upload flow complete, there is no more waste-

ful upload. In the case there is no fileID associated

with SHA-value of file A or data de-duplication is

disabled, the system will create some of new prop-

erties for the file information including the id of file,

the id of first chunk using IDGenerator and number

of chunk calculated by file size and chunk size. The

client will use this information to upload file content

to the server. Then, all chunks will be uploaded to

the server.

This process can be executed in parallel to max-

imize speed. Every chunk will be stored in the stor-

age system as a key-value pair, with the key is the id

of chunk, and the value is data content of the chunk.

When all chunk are uploaded to the system, there is

a procedure to verify uploaded data such as verify-

ing the equation of SHA-value calculated by client

Published by Atlantis Press
Copyright: the authors

166

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

Fig. 5. Metadata storage system

Fig. 6. Data partitioning and replication from 19

and SHA-value of file created by uploaded chunk in

server. If everything is good, the status field of File-

Info is set to EGoodCompleted.

In web-interface client upload process, the client al-

ways uploads the file to server and saves it in a tem-

porary directory. Then the server computes SHA

hash value of the uploaded file. If there is any file

in the system which has the same SHA value with it.

Server will refer the uploaded file with this file and

remove the file at temporary directory. Otherwise, a

worker service called FileAdder will upload file to

the system using similar algorithm of the mobile ap-

plication client.

3.8. Downloading algorithm

Mobile clients of BFC have download algorithms

described in Fig 8. Firstly, the client sends the

id of file that will be downloaded to the server.

The dispatcher server will check the session and

number of connection from the client. If they are

Published by Atlantis Press
Copyright: the authors

167

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

Fig. 7. Uploading Algorithm of Application

Fig. 8. Downloading Algorithm of Application

valid, the dispatcher sends download request to the

CloudAppsService server, then it will lookup the

file information in the FileInfoService which stores

meta-data information with file-ID as a key. If

FileInfo is existed with the requested file-ID, this

information will be sent back to the client. The

most important information of the file from FileInfo

structure includes: first id of chunk (chunkIdStart),
number of chunk (chunkNumber), size of chunk

(chunkSize) and size of File (f ileSize). The client

uses these information to schedule the download

process.

After that, the mobile client downloads chunks

of files from ChunkStoreService via CloudAp-

Published by Atlantis Press
Copyright: the authors

168

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

pDispatcher and CloudAppService, chunks with

range ID from chunkIdStart to chunkIdStart +
numberChunk − 1 are concurrently downloaded in

several threads, each chunk has a size of chunkSize,

except last chunk. Native application will pre-

allocate file in local filesystem with file-size speci-

fied in f ileSize field of FileInfo. Every downloaded

chunk will be save directly to its position in this file.

When all chunks are fully downloaded successful,

the download process is completed.

3.9. Secure Data Transfer Protocol

Data confidentiality is one of strict requirements of

cloud storage system. To ensure quality of service,

a light-weight and fast network protocol for trans-

fer data is also required. For web-interface and rest-

ful APIs, we support http secure protocol (https) to

protect the connection from catching packets in all

operations. In both desktop and mobile native appli-

cations, BFC Data transfered over Internet between

client and server are encrypted using AES8 algo-

rithms with simple key exchange between client and

server. We also use UDT 12 - an UDP-based pro-

tocol to use network bandwidth efficiently. This is

detail of simple key exchange method:

• When an user login via https restful API, client re-

ceive Session-ID, User-ID, Secret-AES key, Pub-

lic Key-Index. Secret-AES key is secret between

client and server, it can be generated by client or

server and stored on server as a key-list. It is used

to encrypt chunks for transferring between client

and server.

• In every operation such as uploading or down-

loading chunks, the data is encrypted using secret-

AES key and transferred via network using UDT

or TCP as client selected. Public Key-index is

binded with encrypted packets for peer to deter-

mine secret AES key to decrypt received packets.

4. Evaluation

In this section, we firstly evaluate key-value stores

with proposed design of BFC to examine which is

the most appropriate key-value store for BFC. Then,

we benchmark BFC with some opensource solu-

tions for storing Big-File such as HDFS, Cassan-

dra, MySQL’s Blob in VNG’s data center. Finally

we present several scenarios to evaluate BFC with

other personal cloud storage systems. It consists of

theoretically comparing Metadata, evaluating dedu-

plication ability. In a paper of Idilio Drago et al 5,

many personal cloud storages were benchmarked in

a black-box evaluation method. The test cases in 5

used files with size: 10kB, 100kB, 1MB to compare

Dropbox, SkyDrive, Cloud Drive, Google Drive and

Wuala. In this research, we deployed an instance

of BFC system in Amazon EC2 to compare with

Dropbox which uses Amazon EC2 and Amazon S3.

Clients of both BFC and Dropbox run from Viet-

Nam. According to paper 6 about some aspects in-

side Dropbox, we compared BFC’s metadata with

Dropbox. Then, we did experiments for comparing

deduplication ability of BFC and other cloud stor-

ages such as Google Drive, Dropbox, OneDrive.

4.1. Evaluate Key-Value store for BFC

We setup a benchmark to evaluate performance of

key-value stores that work in backends of BFC. This

evaluation is useful for choosing the most appropri-

ate key-value store for the design of BFC. We de-

ployed BFC with difference backends in the same

hardware and network environment described be-

low:

• 1 Gigabit Network

• 04 Servers, each server has 32GB Ram, 4TBs

Raid-5 HDD for storing chunks

• 02 Servers, each server has 64GB Ram, 500GB

HDD for storing metadata

BFC deployment contains multiple instances of

ZDBService 19. They can be configured to use dif-

ferent key-value store engine: LevelDB, KyotoCab-

inet, ZDB, etc. In each key-value configuration ,

we evaluate throughput when upload, download file

with different read/write load ratio. The throughput

information is monitored when the data set growing

Published by Atlantis Press
Copyright: the authors

169

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

by the time. The result is shown in Fig 9. It shows

that BFC using ZDB has the best throughput. The

throughput of BFC - ZDB is more stable when the

data set grow. ZDB is designed to optimize storing

and retrieving key-value pair with auto increment in-

teger keys. And it fits with the specification of the

keys in BFC’s storage backends.

Fig. 9. Throughput of BFC when using different key-value

store

4.2. Locally performance comparison

We setup a benchmark to compare BFC with some

other opensource solution such as HDFS 25, Blob

of MySQL 18 and Cassandra 17. All these solu-

tions in the benchmark were deployed in VNG data

center with the same hardware configurations, then

we measured average time to complete reading and

writing files with different size.

To store big-files, we had to re-configure MySQL

to change default maximum field size of tables

(typically each field is configured to limit size of

16MBs). Cassandra often time out when we write

big-value (big files data) into its columns and we

removed it from the comparison. The result of the

benchmark is shown in Fig 10, Fig 11 and Fig 12.

Fig. 10. Latency of Reading

Fig. 11. Latency of Writing

Fig. 12. Latency of concurrent R/W

4.3. Metadata comparison

Dropbox6 is a cloud-based storage system that al-

lows users to store documents, photos, videos and

other files. Dropbox is available on Web interface,

and many types of client softwares on desktop and

Published by Atlantis Press
Copyright: the authors

170

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

mobile operating systems. The client supports syn-

chronization and sharing between devices with per-

sonal storage. Dropbox were primarily written in

Python. The native client uses third parties libraries

such as wxWidgets, Cocoa, librsync. The basic ob-

ject in the Dropbox system is a chunk of 4MB data.

If a file is larger than this configured size, it will be

split in several of basic objects. Each basic object

is an independent element, which is identified by a

SHA256 value and stored in Amazon Simple Stor-

age Service (S3). Metadata of each file in Dropbox

contains a list of SHA256 of its chunks 7,6. There-

fore, its size is linear to the size of file. For big-file,

it has a big metadata caused by many of chunks and

a long list of SHA256 values from them. In our re-

search BFC has a fixed-size metadata of each file, so

it is easier to store and scale storage system for big

file. It reduces the amount of data for exchanging

metadata between clients and servers. The compari-

son is shown in Fig 13.

Fig. 13. Metadata comparison of BFC and DropBox

4.4. Deduplication

This comparison was done to study the deduplica-

tion ability of BFC and other cloud storages: Drop-

box, OneDrive and Google Drive. We used Wire-

Shark 3 to capture network flow of cloud storage

client application. To estimate the deduplication

ability, we did following test cases: (1) A file is mul-

tiply uploaded to different folders by a User; (2) A

file is multiply uploaded by different users. The re-

sult in Table 1 showed that Dropbox supports dedu-

plication per user accounts, it could be done in client

applications. BFC support a global deduplication

mechanism, it saves the network traffic and internal

storage space when many users store the same file

content. Google Drive and OneDrive do not support

deduplication.

5. Conclusion

BFC designed a simple meta-data to create a high

performance Cloud Storage based on ZDB key-

value store. Every file in the system has a same

size of meta-data, regardless of file-size. Every big-

file stored in BFC is split into multiple fixed-size

chunks (may except the last chunk of the file). The

chunks of a file have a contiguous ID range, thus it

is easy to distribute data and scale-out storage sys-

tem, especially when using ZDB. This research also

brings the advantages of key-value store into big-file

data store which is not supported big-value by de-

fault. ZDB19 is used for supporting sequential write,

small memory-index overhead. The data deduplica-

tion method of BFC uses the SHA-2 hash function

and a key-value store to fast detect data-duplication

on server-side. It is useful to save storage space

and network bandwidth when many users upload the

same static data. In the future, we will continue to

research and improve our ideas for storing big data

structure in a larger domain of applications, espe-

cially in the ”Internet of things” trend.

1. D. Borthakur. Hdfs architecture guide. HADOOP
APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf, 2008.

2. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Sys-
tems (TOCS), 26(2):4, 2008.

3. L. Chappell and G. Combs. Wireshark network anal-
ysis: the official Wireshark certified network analyst
study guide. Protocol Analysis Institute, Chappell
University, 2010.

4. V. Corporation. Zing me. http://me.zing.vn. Ac-
cessed October 28, 2014.

5. I. Drago, E. Bocchi, M. Mellia, H. Slatman, and
A. Pras. Benchmarking personal cloud storage. In
Proceedings of the 2013 conference on Internet mea-
surement conference, pages 205–212. ACM, 2013.

Published by Atlantis Press
Copyright: the authors

171

T.T.Nguyen and M.H.Nguyen / Big File Cloud based on Key-Value Store

Table 1. Deduplication Comparison.

Deduplication Dropbox OneDrive Google Drive BFC

Single user yes no no yes

Multi-user no no no yes

6. I. Drago, M. Mellia, M. M Munafo, A. Sperotto,
R. Sadre, and A. Pras. Inside dropbox: understand-
ing personal cloud storage services. In Proceedings
of the 2012 ACM conference on Internet measurement
conference, pages 481–494. ACM, 2012.

7. Dropbox. Dropbox tech blog. https://tech.
dropbox.com/. Accessed October 28, 2014.

8. P. FIPS. 197: the official aes standard. Figure2: Work-
ing scheme with four LFSRs and their IV generation
LFSR1 LFSR, 2, 2001.

9. S. Ghemawat and J. Dean. Leveldb is a fast key-
value storage library written at google that provides
an ordered mapping from string keys to string val-
ues. https://github.com/google/leveldb. Ac-
cessed November 2, 2014.

10. S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. SIGOPS Oper. Syst. Rev.,
37(5):29–43, Oct. 2003.

11. S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 29–43, New York, NY, USA, 2003.
ACM.

12. Y. Gu and R. L. Grossman. Udt: Udp-based data trans-
fer for high-speed wide area networks. Computer Net-
works, 51(7):1777–1799, 2007.

13. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX con-
ference on USENIX annual technical conference, vol-
ume 8, pages 11–11, 2010.

14. F. Inc. Facebook. http://facebook.com, 2014.
15. P. Jin, P. Yang, and L. Yue. Optimizing b+-tree

for hybrid storage systems. Distributed and Parallel
Databases, pages 1–27, 2014.

16. D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web caching with consistent hashing.
Computer Networks, 31(11):1203–1213, 1999.

17. A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating
Systems Review, 44(2):35–40, 2010.

18. A. MySQL. Mysql the world’s most popular open
source database. Internet WWW page, at URL:
http://www. mysql. com, 2015. Accessed April 28,
2015.

19. T. Nguyen and M. Nguyen. Zing database: high-
performance key-value store for large-scale storage

service. Vietnam Journal of Computer Science, pages
1–11, 2014.

20. T. T. Nguyen, T. K. Vu, and M. H. Nguyen. Bfc:
High-performance distributed big-file cloud storage
based on key-value store. In Proceedings of the 16th
IEEE/ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing (SNPD 2015), pages ”1–
6”, Takamatsu, Kagawa, Japan, 2015. ’IEEE/ACIS’.

21. P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The
log-structured merge-tree (lsm-tree). Acta Informat-
ica, 33(4):351–385, 1996.

22. M. Placek and R. Buyya. A taxonomy of distributed
storage systems. Reporte técnico, Universidad de
Melbourne, Laboratorio de sistemas distribuidos y
cómputo grid, 2006.

23. F. PUB. Secure hash standard (shs). FIPS PUB 180-4,
2012.

24. S. Shepler, M. Eisler, D. Robinson, B. Callaghan,
R. Thurlow, D. Noveck, and C. Beame. Network file
system (nfs) version 4 protocol. Network, 2003.

25. K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

26. J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl.
A secure data deduplication scheme for cloud storage.
In International Conference on Financial Cryptogra-
phy and Data Security, pages 99–118. Springer, 2014.

27. M. Szeredi et al. Fuse: Filesystem in userspace, 2010.
Accessed April 28, 2015.

28. R. van Renesse and F. B. Schneider. Chain replica-
tion for supporting high throughput and availability.
In OSDI, volume 4, pages 91–104, 2004.

29. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’06, pages 307–320, Berkeley, CA,
USA, 2006. USENIX Association.

30. S. A. Weil, S. A. Brandt, E. L. Miller, and
C. Maltzahn. Crush: Controlled, scalable, decentral-
ized placement of replicated data. In Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM.

Published by Atlantis Press
Copyright: the authors

172

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

