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A note on the Fisher information matrix of the Birnbaum-Saunders distribution
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1. Introduction

Fatigue is a structural damage which occurs when a material is exposed to stress and tension fluctu-
ations. When the effect of vibrations on material specimens and structures is studied, the first point
to be considered is the mechanism that could cause fatigue of these materials. The fatigue process
(fatigue life) begins with an imperceptible fissure, the initiation, growth, and propagation of which
produces a dominant crack in the specimen due to cyclic patterns of stress, whose ultimate exten-
sion causes the rupture or failure of this specimen. The failure occurs when the total extension of
the crack exceeds a critical threshold for the first time. The partial extension of a crack produced by
fatigue in each cycle is modeled by a random variable which depends on the type of material, the
magnitude of the stress, and the number of previous cycles, among other factors.

Motivated by problems of vibration in commercial aircraft that caused fatigue in the materi-
als, [5, 6] proposed a family of two-parameter distributions to model failure time due to fatigue
under cyclic loading and the assumption that failure follows from the development and growth of
a dominant crack. This distribution is known as the two-parameter Birnbaum—Saunders (‘BS’ for
short) distribution or as the fatigue life distribution. The BS distribution is an attractive alternative to
the Weibull, gamma, and log-normal models, since its derivation considers the basic characteristics
of the fatigue process. It was later derived by [11] using a biological model which followed from
relaxing some of the assumptions originally made by [5]. The relationship between the BS distribu-
tion and the inverse Gaussian distribution was investigated by [12], who demonstrated that the BS
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distribution is an equal-weight mixture of an inverse Gaussian distribution and its complementary
reciprocal. For book treatments of inverse Gaussian and BS distributions and their relationships,
see [25, Chapter 13] and especially [32, Chapter 10].

The BS distribution has received significant attention over the last few years by many researchers
and there has been much theoretical developments with respect to this distribution. The develop-
ments have covered many aspects of the distribution. Improved frequentist inference as well as
interval estimation are discussed in [22,24] and [34], while Bayes estimation is presented in [2].
Goodness-of-fit tests are considered in [26]. The shape of the hazard function of the BS distribution
is discussed in [19], who showed that the hazard function is not monotone and it is unimodal for
all ranges of the parameter values. Some generalizations and extensions of the BS distribution are
proposed in [7-9,13,15-18,21,29], among others. Other important works about the BS distribution
are [3,4,23], among many others.

The BS distribution has also received wide ranging applications. Some recent applications
include: modeling of hourly SO, concentrations at ten monitoring stations located in different zones
in Santiago [20]; modeling of diameter at breast height distributions of near-natural complex struc-
ture silver fir-European beech forests [30]; modeling of hourly dissolved oxygen (DO) concentra-
tions observed at four monitoring stations located at different areas of Santiago [33]; statistical
analysis of redundant systems with one warm stand-by unit [27]. Because of the widespread study
and applications of the BS distribution, it is very important to have a Fisher information matrix
which works for all the values of the model parameters. In the next section we show that the Fisher
information matrix of the BS distribution can present numerical problems for some values of the
shape parameter. The aim of this note is to provide a Fisher information matrix which works for all
the values of the model parameters of the BS distribution.

2. The BS distribution

The cumulative distribution function of a random variable 7 with BS distribution, say 7 ~
BS(a,B), is F(t) = ®(v), with t > 0, where ®(-) is the standard normal cumulative function,
v=v(t)=p(t/B)/a, p(z) =z"/> —z"'/2, and & > 0 and B > 0 are the shape and scale param-
eters, respectively. The scale parameter is also the median of the distribution, since F(f) = 1/2.
For any k > 0, it follows that kT ~ BS(a, kf3). It is noteworthy that the reciprocal property holds for
the BS distribution: 7-! ~ BS(a, 7!). The probability density function of T ~ BS(«, B) is f(t) =
(@, B)1 32 (14 B)expl—t(t/B)/(202)], where k(at, B) = exp(er )/ (20t1/27B) and 7(2) = 2+
z~!'. The BS density function is positively skewed and the asymmetry of the distribution decreases
with . As a decreases, the distribution becomes more symmetric around f3, the median. The
expected value, variance, skewness and kurtosis are, respectively, E(T) = B (1 + a?/2), var(T) =
(aB)*(1+502/4), u3 = 160> (11a*> +6) /(50> +4)% and g = 3+ 6a>(9302 +41) /(50> +4)>.

The log-likelihood function ¢(ct, 3) for a single observation ¢ of T ~ BS(«, ), except for a
constant term, is given by /(a, ) = log[x(a,B)] +log(t + B) — (t/B)/(2&?). By taking partial
derivatives of /(a, ) with respect to a and f3, we obtain the unit score functions: d¢(e,3)/da =
—(142a72)/a+1(t/B)/o and d0(a, B)/B = —1/(2B) + (t+ B) " + p(t>/B?)/(20B). For
interval estimation and hypotheses test inference on the model parameters, we require the 2 x 2 per
observation expected information matrix K(c, f3), namely

o Koo Kaﬁ
Klep) = [ 40
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whose elements are

14+ a2n) 2 h(a)

Kaa = (@B?

2’ Kop =Kpa =0, Kgg=

where

h(a):a(g>l/2—7re2/°‘2 [1—@(2)]. (2.1)

Note that K3 = Kgo = 0 and hence o and B are orthogonal [10]. The algebraic development to
obtain K (o, 3) is provided in the Appendix.

In what follows, we show that Kgg (i.e. the function /(a)) can present some numerical problems
for small values of the shape parameter a. A simple R function [31] to compute /() is given in
the Appendix. Table 1 lists some values of i() obtained by using the R function provided in
the Appendix. From the figures in Table 1, it is evident that the function /() presents numerical
problems for small values of &, once it delivers NaN (Not a Number) for small values of the shape
parameter . It happens because the product

o -of2)

delivers an undefined real number for small values of «; that is, for a small value of ¢, we have that
¢?/%* = oo whereas 1 — ®(2/0t) = 0. So, zero times infinity is an undefined real number. Figure 1
plots the function A(ca) for o € (0,0.3). From this figure, notice that 4(¢) behaves very unstable
for o € (0,0.3). In the next section, we shall derive a simple analytical approximation for /() that
works very well for small values of the shape parameter «.

Table 1. Function A(o) for some values of a.?

o h(a) o h(@) o h(a) o ha) o h(a)
0.001 NaN | 0.013 NaN | 0.025 NaN | 0.037 NaN | 0.049 NaN
0.002 NaN | 0.014 NaN | 0.026 NaN | 0.038 NaN | 0.050 NaN
0.003 NaN | 0.015 NaN | 0.027 NaN | 0.039 NaN | 0.051 NaN
0.004 NaN | 0.016 NaN | 0.028 NaN | 0.040 NaN | 0.052 NaN
0.005 NaN | 0.017 NaN | 0.029 NaN | 0.041 NaN | 0.053 NaN
0.006 NaN | 0.018 NaN | 0.030 NaN | 0.042 NaN | 0.054 0.06768
0.007 NaN | 0.019 NaN | 0.031 NaN | 0.043 NaN | 0.055 0.06893
0.008 NaN | 0.020 NaN | 0.032 NaN | 0.044 NaN | 0.056 0.07019
0.009 NaN | 0.021 NaN | 0.033 NaN | 0.045 NaN | 0.057 0.07144
0.010 NaN | 0.022 NaN | 0.034 NaN | 0.046 NaN | 0.058 0.07269
0.011 NaN | 0.023 NaN | 0.035 NaN | 0.047 NaN | 0.059 0.07395
0.012 NaN | 0.024 NaN | 0.036 NaN | 0.048 NaN | 0.060 0.07520
¢ NaN: Not a Number.

For a random sample ¢ = (t1,...,t,) " of size n from the BS(a, ) model, the total log-likelihood
function takes the form £,(a,B) = Y7, (9 (e, B), where £¥)(a,B) is the log-likelihood func-
tion for the ith observation (i = 1,...,n) as given before. The total score function is U,(a,f) =
(X, 009 (a,B)/da, Y1, 20D (a, B)/9B)T, where 90 (ax, B)/dax and 3¢ (e, B) /3B, for i =

1,...,n, have the forms given earlier. The total Fisher information matrix is K, (¢, ) = nK(a, 3).
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Fig. 1. Function h(c) for o € (0,0.3).

The maximum likelihood estimates o and E of a and B, respectively, are obtained by setting
U,(a,B) = 0. There is no closed-form expression for the maximum likelihood estimator and its
computation has to be performed numerically using a nonlinear optimization algorithm, such as
Newton-Raphson or Fisher scoring algorithms. Under conditions that are fulfilled for parameters in
the interior of the parameter space, we have that

2

o
5 - 0
o\ g o 2
Al G2 wr |
1+ o (27) 2 h(a)

13

when n is large, “~” denoting approximately distributed. Note that & and E are asymptotically
independent.

The above asymptotic bivariate normal distribution can be used to construct approximate confi-
dence intervals and confidence regions for the parameters. The asymptotic 100(1 —1)% confidence

intervals for o and f3 are given, respectively, by
ol l- ol 1+ ,
{ ( V2n V2n

8 21— /za ) 71— /265
(- viraonmman) f (U arraemsman)|
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where z;_y > is the quantile (1 —1/2) of the standard normal distribution. Notice that i (cr) needs

to be computed correctly, since the asymptotic variance of E (which is used to define the confidence
interval for ) depends on it. However, as showed before, this function can present numerical prob-
lems for small values of the shape parameter. Therefore, an approximation for (o) which works
for small values of o has to be derived. It will be done in the next section.

3. A simple approximation for /(o)
First, we have that
1
P(x) = E—i-zerf(x/\[)

where erf(-) is the error function and it is defined as

erf(x / -2 dz.
f

It follows that

1—q><i) :%—%erf(ﬁ/a),

and hence i(a) can be reduced to

h(a) =« (g) v gez/“z [1 —erf (\@/a)} :

For small values of «, it can be shown that [1, p. 298]

2

1 1t (Vafa)| =< (1- %4+ 28 38 o),

Therefore, for small values of a, the expression for 4(a) in (2.1) can be approximated by

1/2 2 4 6
hl(a):g<72t>/ <1+0;—310é+56i)+0( 9. 3.1)
Equation (3.1) has a very simple form and it does not depend on any complicated function. It is a
simple polynomial in the shape parameter «.

In Table 2, we present some values of /; (@) given in equation (3.1) obtained by using the R func-
tion provided in the Appendix. We consider exactly the same values for the parameter & of Table 1.
As expected, the figures in Table 2 reveal that no problem happens in computing /() presented
in (3.1) for small values of the shape parameter . Figure 2 plots the functions k() and h; ()
for a € (0,0.3). Notice that h;(a) is very stable for a € (0,0.3), whereas h(a) is very unstable.
Therefore, we strongly recommend to use the approximation (3.1) to make inference (confidence
intervals and hypothesis testing) on the model parameters of the BS distribution when o < 0.3.
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Table 2. Function A (o) for some values of o.

a hi (o) o hi (@) o hi (@) o hi (o) o hi (@)
0.001 0.00063 | 0.013 0.00815 | 0.025 0.01567 | 0.037 0.02319 | 0.049 0.03072
0.002 0.00125 | 0.014 0.00877 | 0.026 0.01630 | 0.038 0.02382 | 0.050 0.03135
0.003 0.00188 | 0.015 0.00940 | 0.027 0.01692 | 0.039 0.02445 | 0.051 0.03198
0.004 0.00251 | 0.016 0.01003 | 0.028 0.01755 | 0.040 0.02508 | 0.052 0.03261
0.005 0.00313 | 0.017 0.01065 | 0.029 0.01818 | 0.041 0.02570 | 0.053 0.03324
0.006 0.00376 | 0.018 0.01128 | 0.030 0.01880 | 0.042 0.02633 | 0.054 0.03386
0.007 0.00439 | 0.019 0.01191 | 0.031 0.01943 | 0.043 0.02696 | 0.055 0.03449
0.008 0.00501 | 0.020 0.01253 | 0.032 0.02006 | 0.044 0.02759 | 0.056 0.03512
0.009 0.00564 | 0.021 0.01316 | 0.033 0.02069 | 0.045 0.02821 | 0.057 0.03575
0.010 0.00627 | 0.022 0.01379 | 0.034 0.02131 | 0.046 0.02884 | 0.058 0.03638
0.011 0.00689 | 0.023 0.01442 | 0.035 0.02194 | 0.047 0.02947 | 0.059 0.03700
0.012 0.00752 | 0.024 0.01504 | 0.036 0.02257 | 0.048 0.03010 | 0.060 0.03763
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Fig. 2. Functions () and h; (o) for a € (0,0.3).

Appendix

It should be mentioned that the asymptotic joint distribution of & and B was firstly derived in [14]; see
also [28, p. 286]. However, the expression for the Fisher information matrix derived by [14] involves an
integral that requires numerical solution, unlike the expression for the Fisher information matrix presented
in Section 2, which only involves numerical integration through the evaluation of the standard normal dis-
tribution function @(-) (or the error function erf(-)). So, the main advantage of using the Fisher information
matrix presented in Section 2 over the Fisher information matrix obtained in [14] is that any integral that
requires numerical solution has to be computed.
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In the following, we provide a detailed algebraic development to obtain A(c). The second derivatives of
the log-likelihood function ¢(a, B) = log[k(a, B)] +log(t + B) — t(¢/B)/(2a?) are

(e, B) 1 6 3/t B (e, p) 1 tr B
02 _o¢2+o¢4_a4<[3+t>’ J09p __a3[3< >
*(a,B) 1 1 t
SR 2B (1 +B) o2pF
Let 8 = (a,B)" be the parameter vector. Under some regularity conditions, it follows that K (o, ) =
—E(0%(a,8)/00967). Since E(T) = B(1+a?/2) and E(T ') = B~ (1 + &?*/2), we have that

PU(ap)) _ 2 ?*((a.B)
Kaa =-F <aaz> “or Nap=Kpe="F (aaaﬁ) -

Bt

%, 1+ o022
Kﬁﬁ_E( ;gzﬁ)>_ <Zc§>2ﬁﬁ’

oo = zaﬁlmfo (+B) <[:>1/2+ @ﬂ e"p{‘zéﬂ (E*f‘z)}“

Making the change of variable ¢ = B u in the previous integral, we obtain

—3/2 1
‘ ey g,
PE = 2aﬁ2\/27r/ (u+1) p{ 2a2(u u ) du

Now, making the change of variable u = v? in the above integral, we have that
h(a)
tpp = T R2 A
of?/2n

hla)= /Omvz(ll_’_vz)exp{zéz(v—v_l)z}dv.

Making the change of variable u = v — v~ it follows that

/ W2 —uvul+4 ox _LZ du
~2 u2+4 P\ 2a2

oo 1 M2
2/ exp< >d /w7u2+4exp (W) du

u2
\/f “2a2 )

u
—oy/2— | ——exp(—=— |du
aﬁ /( i)

- [ ool )

where & = 1/a for notational convenience. Then,

o 2 2,2

u E%u
__é,/mu2+4eXp(_ > )du
:—t/ exp (—ézu>du—|—4t/

=—V2m+41g(§);

where

where

Let

1 E2u?
u2+4exp <— > ) du
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that is,

g'(§) =41g(8)—var. ()
The solution of the differential equation (.1) is given by
2
g(8) =™ [C—nD(28)].
Notice that g(0) = 7/2 and then C = &. Thus

it 2u2 )
/_w ,4214“1’ (‘62 )du =g(1/a) = we?/[1 —n®(2/a)].

way=a(3)"-aee fi-a(2)).

Therefore, we have that

and hence

By a similar algebraic development (but of independent interest), we can show that

- 1 1 IS IS N7 S
/0 vz(l-i—vz)zeXp{ T.‘z(v 1% ) }dv—(x<2> 76 1 b a .

Finally, the R functions used in this paper to compute A(¢t) and 4 () in equations (2.1) and (3.1),
respectively, are given by

fh <- function(alpha)

{

hO <- alpha*sqrt(pi/2)
hl <- pixexp(2/(alpha”2))
h2 <- 1 - pnorm(2/alpha)
return(hO - hixh2)

}

fhl <- function(alpha)

{

return((alpha/2)*sqrt(pi/2)*( 1 + (alpha~2)/4
- 3*(alpha~4)/16 + 5*(alpha”6)/64 ))

}
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