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Statistical analysis of lifetime distributions under Type-II censoring scheme is based on precise lifetime data.
However, in real situations all observations and measurements of Type-II censoring scheme are not precise
numbers but more or less non-precise, also called fuzzy. This paper deals with the estimation of exponential
mean parameter under Type-II censoring scheme when the lifetime observations are fuzzy and are assumed to
be related to underlying crisp realization of a random sample. We use Newton-Raphson algorithm as well as
EM algorithm to determine the maximum likelihood estimate (MLE) of parameter. We also obtain the estimate,
via moment method and Bayesian procedure, of the unknown parameter. In addition, a new numerical method
for parameter estimation is provided. Monte Carlo simulations are performed to investigate performance of the
different methods. Finally, an example is presented in order to illustrate the methods of inference discussed
here.
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1. Introduction

In life testing and reliability studies, the experimenter may not always obtain complete information
on failure times for all experimental units. Data obtained from such experiments are called censored
data. One of the most common censoring scheme is Type-II (failure) censoring, where the life
testing experiment will be terminated upon the r-th (r is pre-fixed) failure. This scheme is often
adopted for toxicology experiments and life testing applications by engineers as it has been proven
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to save time and money. Several authors have addressed inferential issues based on Type-II censored
samples; see for example, [13], [2], [19], [3], [9], [16], [11], [17], and [10]. Their research results
for estimating parameters of different lifetime distributions under Type-II censoring are limited to
precise data. However, in real situations all observations and measurements of continuous variables
are not precise numbers but more or less non-precise. For instance, the lifetime observations may be
reported as imprecise quantities such as: about 1000%°, *approximately 1400/°, *almost between
1000/ and 12004°, ’essentially less than 12004°, and so on. This imprecision is different from
variability and errors. The best up-to-date mathematical model for this imprecision are so-called
non-precise (fuzzy) numbers. Classical statistical procedures are not appropriate to deal with such
imprecise cases. Therefore, we need suitable statistical methodology to handle these data as well.

In recent years, several researchers pay attention to applying the fuzzy sets to estimation theory.
Huang et al. [8] proposed a new method to determine the membership function of the estimates of
the parameters and the reliability function of multiparameter lifetime distributions. Coppi et al. [4]
presented some applications of fuzzy techniques in statistical analysis. Pak et al. [14], [15] con-
ducted a series of studies to develop the inferential procedures for the lifetime distributions on the
basis of fuzzy numbers. In this paper, our objective is to devise the methods for parameter estimation
regarding a life-test from which the Type-II censored data are reported in the form of fuzzy num-
bers. We analyze the data under the assumptions that the lifetimes of the test units are independent
identically distributed exponential random variables. In Section 2, we first present in greater detail
the problem addressed in this paper. Some preliminary concepts about fuzzy numbers is included in
this section. In Section 3, we introduce a generalization of the likelihood function based on Type-II
censoring from fuzzy data and then discuss Newton-Raphson algorithm as well as EM algorithm
to determine the MLE of the unknown parameter. We then study the estimate via moment method
and estimate via Bayesian procedure for the mean parameter. A new parameter estimation method,
called ’computational approach estimation’ (CAE), is also established. In Section 4, simulation
study is carried out to assess the performance of the proposed methods and a real data from the life
testing experiment is analyzed for illustrative purposes.

2. Problem description

Consider a reliability experiment in which n identical units are placed on a life-test. Let X, ..., X,
denote the lifetimes of these experimental units. We assume that these variables are independent
and identically distributed as Exponential E(0), with probability density function (pdf)

f(x;@):éexp(—%) ,x>0,0>0. (2.1
Let X1, < X5, < ... <X, denote the corresponding ordered lifetimes. Suppose the experimenter
decides to carry out the life-test until the time of the rth failure, then the data arising from such a
life-test would be of the form X;., < X5., < ... < X}, with the remaining n — r lifetimes being more
than X,.,. This situation is referred to as Type-II censoring. We also denote the observed values of
such a Type-II right censored sample by xi.,,...,X,,. Based on these observations, the likelihood

function is given by:

n! Z Xin + (n - r)xr:n

(n—r)'6" exp(~1= 0 )

L(0;x) =
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Thus the maximum likelihood estimator of 6 can be obtained by

me — 1) Xpn)-

However, in many fields of application, it is sometimes impossible to obtain exact observations
of lifetime. The obtained lifetime data may be imprecise most of the time. For instance, consider a
life-testing experiment in which n identical ball bearings are placed on test, and we are interested
in the lifetime of these ball bearings. In practice, however, measuring the lifetime of a ball bear-
ing may not yield an exact result. A ball bearing may work perfectly over a certain period but be
braking for some time, and finally be unusable at a certain time. So, the number of revolutions to
failure (in millions) for ball bearings may reported by means of the following imprecise quantities:
“approximately lower than 45 , “approximately 50 to 70 ”, “approximately 75 ”, “approximately
80 ”, “approximately 90 to 100 ”, “approximately higher than 120 ”, and so on. In order to model
imprecise lifetimes, a generalization of real numbers is necessary. These lifetimes can be repre-
sented by fuzzy numbers. A fuzzy number is a subset, denoted by X, of the set of real numbers
(denoted by R) and is characterized by the so called membership function (.). Fuzzy numbers
satisfy the following constraints (see [5]):

(1) uz : R —[0,1] is Borel-measurable;

(2) Ixp €R : pz(xg) =1;

(3) The so-called A—cuts (0 < A < 1), defined as B, (X) = {x € R: uz(x) > A}, are all closed
interval, i.e., By (¥) = [ay,b,], VA € (0,1].
Among the various types of fuzzy numbers, LR-type fuzzy numbers (the triangular and trapezoidal
fuzzy numbers are special cases of the LR-type fuzzy numbers) are most convenient and useful in
describing fuzzy lifetime data. Therefore, we shall focus on the set of LR-type fuzzy numbers.

Definition 2.1. (see [21] pp.62). Let L (and R) be decreasing, shape functions from R* to [0, 1]
with L(0) = 1; L(x) < 1 forall x > 0; L(x) >0 forallx < 1; L(1) =0 or (L(x) > 0 for all x and
L(+4o0) =0). Then a fuzzy number % is called of LR-type if form,ot >0, B >0in R,

L(™=%) x<m

e (x) = {R(xam) x; m’

where m is called the mean value of X and a and 3 are called the left and right spreads, respectively.
Symbolically, the LR-type fuzzy number is denoted by X = (ot,m, ).

Definition 2.2. Suppose that %; = (o, m;, B;), i = 1,...,n, be the LR-type fuzzy numbers. The fuzzy
mean value of these numbers can be obtained as

2.2)

=i
Il

=2l
™=
=

3\'—
I -
i

= (a,m,B), with & = ’11; ;

3. Data, likelihood and parameter estimations

In this section, we will first introduce a generalization of the likelihood function based on Type-
II censoring when the lifetime observations are reported in the form of LR-type fuzzy numbers.
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The maximum likelihood estimate of the mean parameter will then be obtained using the Newton-
Raphson as well as the EM algorithm in Section 3.2. The estimation, via moment method, Bayesian
procedure and CAE method, of the unknown parameter will be discussed in Sections 3.3, 3.4 and
3.5, respectively.

3.1. Fuzzy lifetime data and the likelihood function

Suppose that n independent units are put on a test and that the lifetime distribution of each unit
is given by (2.1). Now consider the problem where under the Type-II censoring scheme, failure
times are not observed precisely and only partial information about them are available in the form
of fuzzy numbers %; = (o4, m;,;), i = 1,...,r , with their corresponding membership functions
M, (X1), s Mz, (x). Let the maximum value of the means of these fuzzy numbers to be ;. The
lifetime of n — r surviving units, which are removed from the test after the mth failure, can be

encoded as fuzzy numbers %1, ..., %, with the membership functions
0 z< my) .
(7)) = = 1,...
'LLZ_/(Z) {1 Z>m(r) ) J r+ yeeey

The fuzzy data W = (X1, ...,%r, 2541, ..., Zn) 1S thus the vector of observed lifetimes. The correspond-
ing observed-data log-likelihood function can be obtained, using Zadeh’s definition of the probabil-
ity of a fuzzy event (Zadeh [20]), as

o(W;0) Zlog/—exp Hx,( Ydx+ (n—r)log /—exp —%)dz
()
mr)
— —rlog® N - : 3.1
rlog0+ Y. fexp (5 ) e (01" 31

3.2. Maximum likelihood estimation

The maximum likelihood estimate of the parameter 8 can be obtained by maximizing the likelihood
function (3.1). By taking the derivative of the log-likelihood (3.1) with respect to 6, we have

[ grexp (—%) e (x)dx
Jexp (_*) M, (x)dx

0 T
%Lo(w,e)— 5+Z

Mr)

)" (32)

To achieve estimation via ML method, it is not easy to solve the equation %LO(W;G) =0, directly.
In the following, Theorem 1 discusses the existence and uniqueness of the MLE of 6.

Theorem 3.1. Under the Type-II censoring, the MLE of the mean parameter 0 of an Exponential
population exists and is unique.

Proof. Let A = é. Due to the invariance property of MLEs, we will show the existence and unique-
ness of the MLE of A instead of 6. The log-likelihood function L = Ly(W;A) based on a Type-II
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censored sample can be written as
-
L=rlogA+Y 1og/exp (—Ax) tg; (x)dx — (n—r)Amy, (3.3)
i=1

Differentiating of (3.3) with respect to A yields

r foexp —Ax) Uz (x)dx
8/1 2 Jexp (—Ax) tg (x)dx

Let g(A) denote the function on the right-hand side of the expression in (3.4). Then it is easily seen
that

—(n—=r)m). (3.4)

lim g(A) = ce.

Since the two terms (n—r)m,) and [ xexp (—Ax) Uz (x)dx in (3.4) are both positive, we have

[ & rep(-Anpg(dy
fim (4) zhi’i[ Z Texp (=) o (dx 1 1me)
r
<ama =0

VA € (0,0). Therefore, the equation g(4) = 0 has at least one root in (0, o). To prove that the root
is unique, we consider the first derivative of g, g(A), given by

r 82
gA) = _% + Z —zlog/exp(—lx) Uz, (x)dx. (3.5)
A2 &=L
Now let

s(A) = exp(~Ax),

wi2) = [ exp(~2:) i ()

Then g(A) can be written as
r r
§A) = 2 Z Og wi(0
=

It is clearly that s(A) is a log-concave function of A, and this implies that w;(A), i =1,...,r, are also
log-concave in A (see Prekopa-Leindler inequality in the Appendix A). It follows that g is a strictly
decreasing function w.r.t. A and hence the equation g(A) = 0 has exactly one solution. O

Since there is no closed form of the solution to the likelihood equation (3.2), an iterative numerical
search can be used to obtain the MLE. In the following, we describe the Newton-Raphson method
and the EM algorithm for determining the MLE of the parameter 6.

Published by Atlantis Press
Copyright: the authors
185



N.B. Khoolenjani and F. Shahsanaie

3.2.1. Newton-Raphson algorithm

Newton-Raphson algorithm is a direct approach for estimating the relevant parameters in a like-
lihood function. In this algorithm, the solution of the likelihood equation is obtained through an
iterative procedure. Let (") be the parameter value from the h—th step. Then, at the (h+1)—th step
of iteration process, the updated parameter is obtained as

8
HeD) _ gl _ M (3.6)

B 2 Lo(W:0)

where the notation A |, for any partial derivative A, means the partial derivative evaluated at 6%,
The second-order derivative of the log-likelihood with respect to the parameter, required for pro-
ceeding with the Newton-Raphson method, is obtained as follows.

% r m,

3.7

The iteration process then continues until convergence, i.e., until ‘G(h“) — Q(h)} < €, for some pre-
fixed € > 0. It should be pointed out that the second-order derivative of the log-likelihood is required
at every iteration in the Newton-Raphson method. Sometimes the calculation of the derivatives
based on censored fuzzy data are complicated. Another viable alternative to the Newton-Raphson
algorithm is the well-known EM algorithm. In the following, we discuss how that can be used to
determine the MLE in this case.

Once the maximum likelihood estimate of 6 is obtained, we can use the asymptotic normal-
ity of the MLEs to construct the approximate confidence interval. It is known that the asymptotic
distribution of the MLE of 0 is given by

(6—6) — N(0,Var(8)).

Here, the asymptotic variance Var(6) can be approximated by

1
1(6)’

where 1(8) denotes the observed Fisher information given by

Var(0) ~

A 0?2
1(0) = —ﬁLO(Wﬂ) lo—¢ -

Remark 3.1. In the above proofs, we have exchanged integration and differentiation in (3.2), (3.4),
and (3.7). Strict justification of these exchanges requires application of the dominated convergence
theorem. To use this theorem, we note that the functions that we encounter in these relations can
be readily verified to be bounded by Lebesgue integrable functions. Hence, for the cases that we
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considered, the dominated convergence theorem can be readily applied to exchange the order of
integration and differentiation.

3.2.2. EM algorithm

Expectation Maximization (EM) algorithm has emerged as a very important tool for estimating
the parameters involved in a model, especially when the available data are incomplete. Since the
observed fuzzy data W can be seen as an incomplete specification of a complete data, the EM algo-
rithm is applicable to obtain the maximum likelihood estimate of the parameter. First of all, denote
the lifetime of the failed and censored units by X = (X,...,X,) and Z = (Z,41,...,Z,), respectively.
The combination of (X,Z) = W forms the complete lifetimes and the corresponding log-likelihood
function is denoted by L(W;0). In the following, we use the EM algorithm to determine the MLE
of 0.

The log-likelihood function based on the complete lifetime W becomes

Y xit+ Y zj] : (3.8)
i=1

1
L(W;0) =—nlogf — —
6 j=r+1

To perform the E-step of the EM algorithm, we need to compute the conditional expectation of the
complete-data log likelihood conditionally on the observed data W, using the current fit 6 of the
parameter 0:

1
Egn (L(W;0) | W) = —nlog6 — )

Y Eoon (Xi | %)+ ) Ee<h>(Zj|Zi)], (3.9)
i=1

j=r+1

where

Frexp (~ iy ) s
Equ (Xi | Xi) = , i=1,..r,

oo~y )

Ee(h)(Zj’Zj)ZWl(r)-f-G(h), j=r+1,...n

The M-step then consists in finding 8"*!) which maximizes E g (log L(W;8) | W). This is easily

achieved by solving the likelihood equation. From
d -
59 Leow (10gL(W:6) | W) =0,

we get

A

1 r

60 — ~ |y Egu (X; | %)+ (n—r) (mq +9<’”)] : (3.10)
nli=1

The MLE of 6 can be obtained by repeating the E- and M-steps until the difference Lo (W; 9(’”1)) —

Lo(W; 9(”)) becomes smaller than some arbitrary small amount. Due to the result of the Theorem
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3.1, it is then evident that the EM algorithm and the Newton_Raphson method would converge to
the same value. The maximum likelihood estimate of 8 via EM algorithm is thereafter refereed as
“Bp”in this paper.

3.3. Method of moments

Let X be random variable which has the Exponential distribution with pdf given by (2.1). It is
well-known that the kth moment of the Exponential model with parameter 0 is

E(X*) =0T (k+1). (3.11)

Equating the first sample moment to the corresponding population moment, the following equation
can be used to find the estimate of moment method.

9:% z’,’fxexp(—%)#x.(x)dx+(n_r) (m(,)+9) ‘ (3.12)

L Texp(— 5 ()d

Since the closed form of the solution to Eq. (3.12) could not be obtained, an iterative numerical
process to obtain the parameter estimate is described as follows:

1. Let the initial estimate of 8, say 8(©) with 1 = 0.

2. In the (h+ 1)th iteration, we compute new estimate of 6, say 8"+1) from:
1| & Jxexp(— 50 )M (x)dx
gl — - O () (g + 0% | (3.13)
o & Ten(— g ax 00

3. Checking convergence, if the convergence occurs then the current 8("+1) is the estimate of 6 by

the method of moments; Otherwise set 4 = 2+ 1 and go to Step 2. The resultant estimate of 0 is
thereafter refereed as “Oy,”'in this paper.

3.4. Bayesian estimation

In this subsection we consider the Bayes estimation of the unknown parameter. We first re-
parameterize the model as follows A = %. As conjugate prior for A, we take the Gamma(a,b)
density with pdf given by

a

I(a)

where a > 0 and b > 0. Based on the new parametrization, the posterior density function of A given
the data can be written as follows.

n(A) = A lexp(=Ab), A >0, (3.14)

T(A)E(#:A)
TR A)dA
0

A(A | W) o (3.15)
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where
0 4) = exp [ (1~ r)Am, | T [ exp(-20ms (x)dx
i=1

is the likelihood function based on the Type-II censored sample. Then, under a squared error loss,
the Bayes estimate of any function of 14, say g(4), is

fg(l)n(/l)aw;z)dx fg(,l)eQ<l>d,1
M%) =" =° : 3.16
0

where Q(A) =Inm(A) +1Inl(W;A1) = p(A)+L(A). Since the Eq. (18) can not be obtained analyti-
cally, we adopt Lindley’s approximation to compute the Bayes estimate of 6. Lindley [12] first pro-
posed his procedure to approximate the ratio of two integrals such as (3.16). For the one-parameter
case, Lindley’s approximation of (3.16) is the form

1 1
g(l)+§gnfn +p1g17TI1 +§L3712181, (3.17)
where
Cdg(A)  d%(A)  dp(A)

81 =" 8= "2 P11 = dA

Lz =

»L(A) 2L(A)] !
oA T T |

Evaluating all the expressions in (3.17) at the MLE of A produces the approximation gz to (3.16).
In our case, we have

L(A) = rlogA + Y log / exp(—Ax) s, (X)dx — (n — r)Am, .
i=1

The MLE of A is the solution of the equation ag({t) =0.

Now, to apply Lindley’s form in (3.17), we first obtain

A N 2
I J P exp(=Ax)pg (x)dx | [xexp(—Ax)ps (x)dx
TR A Sep(-Anus(dx | fexp(—Ax)ug (x)dx
Published by Atlantis Press

Copyright: the authors
189



N.B. Khoolenjani and F. Shahsanaie

and

2r [x exp(—A Ax) g, (x)dx
A Jexp(—Ax)ps (x)dx
- [ [ x2exp(—Ax) s, (x)dx] xexp(—Ax) s, (x)dx}

[fexp(~ Ao (]

fxexp(—ixwx( )dx
J exp(—Ax) s, (x)dx
(fx exp(—Ax)ps, (X)dx _ fxexp(—AiX)uxi(X)dx 2
Jexp(=Ax)ug ()dx [ exp(—Ax)uz (x)dx

Ly =

}

+2

The approximate Bayes of 0, say 03, for the squared error loss function is the posterior mean of
g(A) = 4, which is by (3.17) as follows.

éB:l m_2p11'11+L31'121
A A3 272
1

—a-1_
where p; = z b.

3.5. Computational approach estimation method

In this subsection we propose a new parameter estimation procedure called *CAE’. Although the
maximum likelihood estimate obtained in the preceding section is preferable, its computation
requires repeated evaluation of E- and M-steps until convergence occurs. On the other hand, the
CAE method provides not only the computational ease but also reasonable mean squared error.
This finding is further discussed in Section 4.

Suppose X; = (@, m;, B;), i=1,...,r, be the observed fuzzy lifetimes under Type-II censoring
from exponential distribution with unknown parameter 8. Grzegorzewski and Hryniewicz [7] con-
sidered the generalization of exponential model which admits vagueness in lifetimes. They obtained
a fuzzy estimator of the mean lifetime 0 in the presence of vague lifetimes. However, in most appli-
cations, crisp results are required instead of fuzzy ones. So, we propose the following computational
approach to obtain a crisp value as an estimate of 6.

Step 1: Order the means of fuzzy numbers as m(j) < mp) <... <m,).

Step 2: Obtain the fuzzy mean value, say X, of the fuzzy numbers by using (2.2).
Step 3: Convert the fuzzy number X into a real value by using the center of gravity defuzzifica-

tion technique (see in the Appendix B). Denote this defuzzified value by X .
Step 4: The new estimate of 6 is then computed as:

=% +(=—1)my. (3.18)

The resultant estimate of 6 via this approach is thereafter refereed as “Bca”in this paper.
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4. Numerical Study

In this section, we present a Monte Carlo simulation study and one example to illustrate the methods
of inference developed in this paper. First, for fixed 6 = 1 and different choices of n and r, we have
generated Type-II censored samples from Exponential distribution, using the method proposed by
Aggarwala and Balakrishnan [1], as follows.
(1) Generate Z; from U(0,1) fori=1,...,r.

1

(2)SetVi=Z", ai=i+n—r,i=1,...r.

(3) SetUi=1-V,_jt1Viizn..Vi=1,...,r.

(4) Thus, X; = F~'(U;), i = 1,...,r, is the desired Type-II censored sample from the Exponential
distribution.

Then each realization of x was fuzzified using the method proposed by Pak et al. [15], and the
estimate of 8 for the fuzzy sample were computed using the four methods presented in the preceding
section. We have used the initial estimate of 6 for iterative progresses of Newton-Raphson method,

EM algorithm and moment method to be (0 = % Zr‘, x; . For computing the Bayes estimator, we
have assumed that A has Gamma(a,b) prior. To miakle the comparison meaningful, it is assumed
that the prior is non-informative, and they are a = b = 0. The average values and mean squared
errors of the estimates, the average number of iterations needed for achieving convergence, based
on 1000 replication are presented in Table 1.

In viewing the table, we find that using Newton-raphson or EM algorithm for the computation
of MLE give similar estimation results, but Newton-Raphson method needs smaller iterations for
convergence. The performance of MLE and MME in terms of AVs and MSEs are quite similar to
each other. Among the four procedures developed here, the CAE method produces estimates with
smallest MSE and then followed by MLE and MME and then the Bayes procedure. In all the cases,
it is observed that for fixed n as m increases, the MSEs of the estimates decrease as expected. Since
these four procedures for estimating the mean parameter 6 of Exponential distribution have different
features, we let users to decide based on their preferences.

Example 1. To demonstrate the application of proposed methods, let us consider the following
life-testing experiment in which n = 23 identical batteries are placed on test. The unknown life-
time x; of battery i may be regarded as a realization of a random variable X;, induced by random
sampling from a total population of batteries, which is distributed as Exponential by an unknown
mean parameter of 0. A tested battery may be considered as failed, or -strictly speaking- as non-
conforming, when at least one value of its parameters falls beyond specification limits. In practice,
however, we don’t have the possibility to measure all parameters and are not able to define precisely
the moment of a failure. So, the observed lifetimes (in 1004) are reported in the form of lower and
upper bounds, as well as a point estimate which are as follows.

DATA SET:

(2.90,3.63,3.99), (5.24,6.55,7.20), (6.56,8.20,9.02), (7.14,8.93,9.82),

(11.60,14.51,15.96), (12.14,15.18,16.69), (12.65, 15.82, 17.40), (13.24,16.56, 18.21
(13.67,17.09,18.79), (13.88,17.36,19.09), (15.64,19.56,21.51), (17.05,21.32,23.45
(17.40,21.76,23.93), (17.80,22.26,24.48), (19.01,23.77,26.14), (19.34,24.18,26.59
( ) ( ), (

( ) ( )

)
9

)

~— ~— ~— ~—

23.13,28.92,31.81), (23.34,29.18,32.09), (26.07,32.59,35.84), (30.29,37.87,41.65
43.97,54.97,60.46), (48.09,60.12,66.13), (73.48,91.86,98.04).

9

—~~ ~~ —~
— — ~— ~—
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Table 1. Averages values and mean squared errors of the estimates , average number of iterations (AI) needed for conver-
gence.

nor OnR Oem Omm Op Bca Alng  Algy  Alym

15 5 0.961 0.960 0.961 0.973 0.982 9.183 15.621 33.091
(0.305) (0.304) (0.305) (0.331) (0.300)

8 1.033 1.032 1.033 1.037 1.039 7.886 9.064 18.879
0211) (0.210) (0.211) (0.221) (0.202)

12 1.013 1.012 1.013 1.027 1.007 5.139 7.543 11.293
(0.142) (0.141) (0.142) (0.156) (0.114)

20 5 1.030 1.029 1.030 1.039 1.049 10.052 21.226 45.076
(0.238) (0.237) (0.238) (0.246) (0.235)

10 1.022 1.021 1.022 1.034 1.019  8.155 9932  20.352
(0.110) (0.110) (0.110) (0.119) (0.104)

15 0.995 0995  0.995 1.015 1.009  6.647 5985 12.259
(0.100) (0.100) (0.100) (0.117) (0.086)

30 10 0974 0973 0974 0989 0982 9.159 15446 32.995
(0.118) (0.117) (0.118) (0.126) (0.115)

15 0998 0997 0998 1.018 0999 8193 9938  20.259
0.066) (0.065) (0.066) (0.072) (0.057)

20 1.006 1005 1006 1.027 1017 7.117 6.898 13.872
(0.063) (0.063) (0.063) (0.070) (0.051)

50 15  1.008 1.007 1008 1.025 1.023 9917 1745 37.002
(0.089) (0.088) (0.089) (0.095) (0.086)

20 1.004 1.003 1004 1019 1.028 9.029 12.842 26.975
(0.058) (0.058) (0.058) (0.062) (0.052)

30 0990 0990 0990 0999 0995 7.65 797  16.013
(0.036) (0.036) (0.036) (0.039) (0.034)

In our approach, each triple is modeled by a triangular fuzzy number X;, and is interpreted as a
possibility distribution related to an unknown value x;, itself a realization of a random variable X;.
Randomness arises from the selection of objects from the total population of batteries. In contrast,
fuzziness arises from the limited ability of the observer to describe the moment of a failure using
numbers, which is not influenced by random factors. Suppose that the last 7 lifetimes out of n
inspection items are missing, then we can only obtain a Type-II censored sample

2.90,3.63,3.99), (5.24,6.55,7.20), (6.56,8.20,9.02), (7.14,8.93,9.82),

11.60,14.51,15.96), (12.14, 15.18,16.69), (12.65,15.82,17.40), (13.24, 16.56, 18.21),
13.67,17.09,18.79), (13.88,17.36,19.09), (15.64, 19.56,21.51), (17.05,21.32,23.45),
17.40,21.76,23.93), (17.80,22.26,24.48), (19.01,23.77,26.14), (19.34,24.18,26.59).

~—~ ~ —~
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From these data, and using the starting value 8(®) = 16.04, which is the estimate of the parameter
computed over the centers of each fuzzy numbers, the final MLE of 0 is found from Newton-
Raphson and EM algorithm to be Gyg = 26.29 and 6gy = 26.28, respectively. Based on Lindley’s
approximation, the Bayes estimate of 6 under squared error loss function becomes 8z = 26.93 . Also
the estimates from the CAE and moment method are QCA =26.35 and éMM = 26.29, respectively.

5. Conclusions

Although the problem of estimation of exponential mean parameter based on the censored data has
been studied extensively, traditionally it is assumed that the data available are performed in exact
numbers. In real world situations, however, we deal with non-precise (fuzzy) data. Therefore, the
conventional procedures used for estimating the unknown parameter will have to be adopted to the
new situation. In this paper we have proposed different procedures for estimating the exponential
distribution parameter under Type-II censoring when the lifetime observations are fuzzy numbers.
They are maximum likelihood estimation, estimation of method moments, Bayesian estimation and
computational approach estimation method. We have then carried out a simulation study to assess
the performance of all these procedures. Based on the results of the simulation study, we see clearly
that, maximum likelihood estimator (via any of the two processes mentioned in the paper) and
“MME”give the same parameter estimates as shown by AV and MSE in Table 1. The “CAE”has
slightly better MSE compared with all the estimators considered here. In all the cases, it is observed
that as the effective sample size increases the performances in terms of MSE become better. The
study of the applicability of the proposed approach in estimating the parameters of exponential
distribution under the other censoring schemes such as Hybrid type-II and Hybrid progressive type-
II censoring are possible topics for further research.

Appendix A. Prekopa-Leindler inequality

In mathematics, the Prekopa-Leindler inequality is an integral inequality closely related to the
reverse Young’s inequality, the Brunn-Minkowski inequality and a number of other important and
classical inequalities in analysis.

Statement of the inequality (see [6]):
Let 0 < A < 1andlet f,g and i be non-negative integrable functions defined on R” satisfying

h((1=A)x+Ay) > f(x)' *g(n)*

[ xjar> < ) f(x)dx)l_)b ( /R ng(x)dx>/l.

Appendix B. Center of gravity defuzzification method

for all x,y € R". Then

Defuzzyfication is the opposite process to the essence of idea of fuzzy sets. Moreover, defuzzyfi-
cation is the last step on fuzzy control system and fuzzy reasoning system. Finally, defuzzyfication
operation reduces, fuzzy number to a single, crisp, numerical value, result carries the best informa-
tion and makes kind of synthesis about this fuzzy number. A common and useful defuzzification
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technique is the center of gravity method. The center of gravity defuzzification technique can be
expressed as ( [18], pp. 99)

o= JdHe(2)dz
J e (2)dz

where z* is the defuzzified output, ys(z) is the membership function of the fuzzy set C.

Acknowledgement

The authors are also grateful to anonymous reviewers whose valuable comments and suggestions
led to improvement of the manuscript.

References

(1]

(2]

(3]

(4]
(5]
(6]
(7]
(8]
[9]

R., Aggarwala, and N., Balakrishnan, Some properties of progressively censored order statistics from
arbitrary and uniform distributions with applications to inference and simulation. Journal of Statistical
planning and inference, 70, (1998), 35-49.

N., Balakrishnan, and D., Han, Exact inference for a simple step-stress model with competing risks
for failure from exponential distribution under Type-II censoring. Journal of Statistical Planning and
Inference, 138(12), (2008), 172-4186.

P.S., Chan, H.K.T., Ng, N., Balakrishnan, and Q., Zhou, Point and interval estimation for extreme-value
regression model under Type-II censoring. Computational Statistics & Data Analysis, 52(8), (2008),
4040-4058.

R., Coppi, M.A,, Gil, and H.A.L., Kiers, The fuzzy approach to statistical analysis. Computational
Statistics and Data Analysis, 51(1), (2006), 114.

D., Dubois, and H., Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New
York, (1980).

R.J., Gardner, The Brunn-Minkowski inequality ,Bulletin of the American mathematical society. 39(3),
(2002), 355-405.

P., Grzegorzewski, and O., Hryniewicz, Computing with words and life data, International Journal of
Applied Mathematics and Computer Science, 12(3), (2002), 337-345.

H., Huang, M., Zuo, and Z., Sun, Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets and
Systems, 157, (2006), 16741686.

G., lliopoulos, and N., Balakrishnan, Exact likelihood inference for Laplace distribution based on Type-
II censored samples, Journal of Statistical Planning and Inference, 141(3), (2011), 1224-1239.

D., Kundu, and M. Z., Raqab, Bayesian inference and prediction of order statistics for a Type-II cen-
sored Weibull distribution. Journal of Statistical Planning and Inference, 142(1), (2012), 41-47.

A.J., Lemonte, and S.L.P., Ferrari, Testing hypotheses in the BirnbaumSaunders distribution under type-
II censored samples. Computational Statistics & Data Analysis, 55(7), (2011), 2388-2399.

D.V,, Lindley, Approximate Bayesian method. Trabajos de Estadistica, 31, (1980), 223-237.

H.K.T., Ng, D., Kundu, and N., Balakrishnan, Point and interval estimation for the two-parameter
Birnbaum—Saunders distribution based on Type-II censored samples, Computational Statistics & Data
Analysis, 50(11), (2006), 3222-3242

A., Pak, G.H., Parham, and M., Saraj, On estimation of Rayleigh scale parameter under doubly Type-II
censoring from imprecise data. Journal of Data Science, 11, (2013), 303-320.

A., Pak, G.H., Parham, and M., Saraj, Inferences on the Competing Risk Reliability Problem for Expo-
nential Distribution Based on Fuzzy Data. IEEE Transactions on reliability, 63(1), (2014), 2-13.

H., Panahi, and S., Asadi, Estimation of the Weibull Distribution Based on Type-II Censored Samples,
Applied Mathematical Sciences, 52(5), (2011), 2549-2558.

L., Qian, The Fisher information matrix for a three-parameter exponentiated Weibull distribution under
type 1l censoring. Statistical Methodology, 9(3), (2012), 320329.

Published by Atlantis Press
Copyright: the authors
194



Estimating the parameter of Exponential distribution under Type-II censoring

[18] T.J., Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, Ltd, (2009).

[19] X., Sun, X., Zhou, and J., Wang, Confidence intervals for the scale parameter of exponential distribu-
tion based on Type II doubly censored samples. Journal of Statistical Planning and Inference, 138(7),
(2008), 2045-2058.

[20] L. A., Zadeh, Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications,
10, (1968), 421-427.

[21] H.J., Zimmermann, Fuzzy set teory and its application, Kluwer, Dordrecht, (1991).

Published by Atlantis Press
Copyright: the authors
195



