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Testing EBUmg f Class of Life Distributions based on Goodness of Fit approach
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Based on the goodness of fit approach, a new test is presented for testing exponentiality against”exponential
Better than Used in moment generating function ordering class”(EBUmg f ). The critical values and the powers of
this test are calculated. It is shown that the proposed test enjoys good power and performs better than previous
tests in terms of power and Pitman’s asymptotic efficiencies for several alternative. Finally sets of real data are
used as examples to elucidate the use of the proposed test in practical application.
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1. Introduction

The new better than used aging classes have been studied by reliability, statisticians, survival ana-
lysts and others. Such classes are defined by stochastic comparisons of the residual life of a used
unit with the lifetime of new one. Such classes can be derived based on several notions of compar-
ison between random variables. The stochastic and the increasing concave comparisons are used
by Muller and Stoyan [1] and Shaked and Shanthikumar [2]. Formally if X and Y are two random
variables then we say that X is smaller than Y in the:

(i) stochastic order (denoted by X ≤st Y ) if E[φ(X)]≤ E[φ(Y )] for all increasing functions φ .

(ii) increasing concave order (denoted by X ≤icv Y ) if E[φ(X)] ≤ E[φ(Y )] for all increasing
concave functions φ .

In the context of lifetime distributions the above ordering has been used to give characterizations
and new definitions of aging classes. One of the most important approaches to the study of aging
is based on the concept of additional residual life. Let X be a lifetime random variable such that
distribution function F with F(0) = 0. Given a unit which has survived up to time t, its additional
residual life (Barlow and Proschan,[3]) is given by

Xt = [X− t|X > t], t ∈ x : F(x)< 1
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The comparison of the additional residual life at different times has been used to produce several
notions of aging. In particular, X is said to be

(i) New better than used (denoted by X ∈ NBU) if F̄(x+ t)≤ F̄(t)F̄(x) for all t ≥ 0.
(ii) New better than used in the increasing concave order (denoted by X ∈ NBU(2)) if∫ x

0
F̄(u+ t)dx≤ F̄(t)

∫ x

0
F̄(u)du, ∀x, t ≥ 0

.

For more details about the former aging notions, one may refer to Bryson and Siddiqui [4] Bar-
low and Proschan [3] and Deshpande et la. [5]. Elbatal [6] compared the survival function of a
component of age t to a new component having the exponential distribution as its survival function.

Definition 1.1. X is exponential better (worse) than used (denoted by X ∈ EBU) If

F̄(x+ t)≤ F̄(t)e
−x
µ , ∀x, t ≥ 0.

The closure properties under reliability operation, moment inequality, and heritage under shock
model have been discussed by Elbatal [6]. Statisticians and reliability analysts studied exponential
better than used classes of life distributions from various points of view. For more details we refer
to Hendi et al. [7] for EBU class, Attia et al. [8] for EBUA class, Abdul moniem [9] for EBUASI
class, Hendi and AL-Ghufily [10] for EBUC class and AL-Ghufily [11,12] for EBUCA class.

Given two non-negative random variables X and Y , with survival functions F̄ and Ḡ, respec-
tively, X is said to be smaller than Y in the moment generating function ordering (denoted by
X ≤mg f Y ) if and only if,∫

∞

0
eλxF̄(x)dx≤

∫
∞

0
eλyḠ(y)dy for all λ > 0.

Recently based on this notion, Abbas [13] introduced a new aging class of life distributions.

Definition 1.2. We say that X is exponential better than used in the moment generating function
order (denoted byX ∈ EBUmg f ) if Xt ≤mg f Y for all t > 0, where Y is an exponential random
variable with the same mean as X .

Equivalently, X ∈ EBUmg f if and only if,∫
∞

0
eλxF̄(x+ t)dx≤ µ

1−λ µ
F̄(t), ∀λ , t ≥ 0. (1.1)

Note that, the definition (1.2) is motivated by comparing the moment generating function of the
life time Xt of a component of age t with the moment generating function of another new life time
Y of a component which is distributed exponentially with mean µ .
In the current investigation, we present a procedure to test X is exponential versus it is EBUmg f

and not exponential in Section 2. In Section 3, the Pitman asymptotic efficiencies are calcu-
lated for some commonly used distributions in reliability. Monte Carlo null distribution critical
points and the power estimates are simulated in Section 4. Finally numerical examples is presented
in Section 5.
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2. Hypothesis testing problem

Our goal in this section is to present a test statistic based on goodness of fit approach for testing
H0: F is exponential against H1: F belongs to EBUmg f class and not exponential. We propose the
following measure of departure

δ = µ

∫
∞

0
F̄(t)dF0(t)− (1−λ µ)

∫
∞

0

∫
∞

0
eλxF̄(x+ t)dxdF0(t),

where F0(t) = e−t

The following lemma is essential for the development of our test statistic.

Lemma 2.1. If φ(λ ) =
∫

∞

0 eλxdF(x) and µ =
∫

∞

0 F̄(x)dx, then

δ (λ ) = λ (1+µ)(1−φ(−1))− (λ µ−1)(1−φ(λ ))

Proof. Note that

δ = µ

∫
∞

0
e−t F̄(t)dt− (1−λ µ)

∫
∞

0

∫
∞

0
eλx−t F̄(x+ t)dxdt

= µI1− (1−λ µ)I2.

One can show that

I1 =
∫

∞

0
e−t F̄(t)dt = E

∫ X

0
e−tdt = 1−φ(−1),

and

I2 =
∫

∞

0

∫
∞

0
eλx−t F̄(x+ t)dxdt =

∫
∞

0

∫
∞

t
e−teλ (u−t)F̄(u)dudt

=
1

λ (1+λ )
[φ(λ )−1−λ (1−φ(−1))].

Thus the result follows.

To make the test scale invariant, we let δ1(λ ) =
δ(λ )

µ2 .

Note that under H0 : δ1(λ ) = 0, while under H1 : δ1(λ )> 0.
To estimate δ1(λ ), let X1,X2 ,X3 , · · · ,Xn be a random sample from F, so the empirical form of δ1(λ )

is

δ̂1n(λ ) =
1

n2X̄2

n

∑
i=1

n

∑
j=1

[λ (1+Xi)(1− e−X j)− (λXi−1)(1− eλX j)]. (2.1)

By defining

φ(X1,X2) = λ (1+X1)(1− e−X2)− (λX1−1)(1− eλX2),

and define the symmetric kernel

ψ(X1 ,X2) =
1
2! ∑

R
φ(Xi ,X j),

Published by Atlantis Press
Copyright: the authors

163



A.M. Gadallah

where the sum is over all arrangements of Xi and X j, this leads to δ̂1n(λ ) is equivalent to U- statistic

Un =
1(
n
2

)∑
R

φ(Xi ,X j).

The next result summarizes the asymptotic normality of δ̂1n(λ ).

Theorem 2.1. As n→ ∞ ,
√

n(δ̂1n(λ )−δ1(λ )) is asymptotically normal with mean 0 and variance
is σ2 given in (2.5). Under H0 , the variance is reduced to (2.6).

Proof. Let

η1(X1) = E[φ(X1 ,X2) |X1 ]

=
λ

2
(1+X1)+

λ

1−λ
(λX1−1),

(2.2)

and

η2(X2) = E[φ(X1 ,X2) |X2 ]

= 2λ (1− e−X2)− (λ −1)(1− eλX2).
(2.3)

Considering η(X) = η1(X1)+η2(X2), gives

η(X) =

{
λ (1+λ )

2(1−λ )
X−2λe−X − (1−λ )eλX − λ (1+λ )

2(1−λ )
+λ +1

}
. (2.4)

In view of (2.4), the variance is

σ
2 =Var

{
λ (1+λ )

2(1−λ )
X−2λe−X − (1−λ )eλX

}
. (2.5)

Under H0 it is easy to prove that µ0 = E[η(X)] = 0 and the variance σ2
0 reduces to

σ
2
0 =

λ 2(1+λ )2(2λ 2−λ +2)
12(1−λ )2(2−λ )(1−2λ )

. (2.6)

3. The Pitman Asymptotic Efficiency (PAE)

To asses the quality of this procedures, we evaluate its Pitman asymptotic efficiency (PAE) for some
commonly used distributions in reliability, these are:

(1) Linear failure rate family (LFR): F̄θ (x) = exp(−x− θ

2 x2) ,x > 0 ,θ ≥ 0.
(2) Makeham family:F̄θ (x) = exp(−x+θ(x+ e−x−1)) ,x > 0 ,θ ≥ 0.
(3) Weibull family: F̄θ (x) = exp(−xθ ) ,x > 0 ,θ > 0.
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The PAE is defined by

PAE(δ ) =
1

σ0

∣∣∣∣dδ

dθ

∣∣∣∣
θ→θ0

,

where

δθ = λ (1+µθ )(1−φθ (−1))− (λ µθ −1)(1−φθ (λ )).

The PAE(δ̂ ) can be written as,

PAE(δ̂,F) =
1

σ0

∣∣λ µ
′
θ (φθ (λ )−φθ (−1))−λ (1+µθ )φ

′
θ (−1)+(λ µθ −1)φ ′θ (λ )

∣∣ ,
where φ ′

θ
(λ ) =

∫
∞

0 eλxdF ′
θ
(x) and µ ′

θ
=
∫

∞

0 F̄ ′
θ
(x)dx.

After some mathematical calculations we get

PAE(δ̂ ,LFR) =
1

σ0

∣∣∣∣λ (1+λ )2

4(1−λ )2

∣∣∣∣ ,
PAE(δ̂ ,Makeham) =

1
σ0

∣∣∣∣ λ (1+λ )(2+λ )

12(1−λ )(2−λ )

∣∣∣∣
and

PAE(δ̂ ,Weibull) =
1

σ0

∣∣∣∣∣∣∣∣
2λ

∫
∞

0
(x−1)e−2xlnxdx+(1−λ )

∫
∞

0
(x−1)e−x(1−λ )lnxdx

− λ (1+λ )

2(1−λ )

∫
∞

0
xe−xlnxdx− (1+λ )

∣∣∣∣∣∣∣∣ .

Table 1. Pitman asymptotic efficiencies for various values of λ

δ̂n Un δ3 δ
(2)
Fn

λ

0.01 0.8746
0.02 0.8829

LFR 0.03 0.89117 0.433 0.408 0.217
0.21 0.98619
0.22 0.98717
0.23 0.9875
0.01 0.28863
0.02 0.2885

Makeham 0.03 0.2870 0.144 0.039 0.144
0.21 0.2649
0.22 0.2623
0.23 0.25962
0.01 1.1990
0.02 1.1972

Weibull 0.03 1.19496 0.132 0.170 0.05
0.21 1.08451
0.22 1.07354
0.23 1.06193
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Table 2. Critical values of statistic δ̂1n(λ ) at λ = 0.23

n 0.01 0.05 0.10 0.90 0.95 0.99
2 -0.020 -0.007 0.002 0.108 0.118 0.129
3 -0.088 -0.048 -0.021 0.088 0.098 0.113
4 -0.106 -0.046 -0.025 0.077 0.086 0.101
5 -0.101 -0.050 -0.025 0.069 0.077 0.089
6 -0.124 -0.052 -0.030 0.064 0.073 0.089
7 -0.112 -0.052 -0.030 0.060 0.070 0.079
8 -0.102 -0.051 -0.030 0.057 0.065 0.079
9 -0.108 -0.050 -0.028 0.054 0.062 0.080
10 -0.107 -0.048 -0.028 0.052 0.060 0.073
11 -0.094 -0.052 -0.030 0.049 0.057 0.071
12 -0.096 -0.044 -0.025 0.048 0.053 0.065
13 -0.096 -0.048 -0.029 0.046 0.052 0.066
14 -0.078 -0.043 -0.027 0.044 0.051 0.063
15 -0.095 -0.049 -0.028 0.043 0.049 0.059
16 -0.093 -0.045 -0.030 0.042 0.048 0.060
17 -0.094 -0.043 -0.027 0.041 0.047 0.058
18 -0.081 -0.044 -0.027 0.039 0.045 0.054
19 -0.076 -0.040 -0.029 0.039 0.045 0.054
20 -0.073 -0.041 -0.027 0.039 0.045 0.053
21 -0.084 -0.041 -0.028 0.037 0.043 0.054
22 -0.072 -0.040 -0.026 0.036 0.042 0.054
23 -0.078 -0.041 -0.028 0.035 0.041 0.051
24 -0.074 -0.042 -0.026 0.035 0.040 0.050
25 -0.071 -0.044 -0.029 0.035 0.040 0.049
26 -0.066 -0.039 -0.027 0.033 0.040 0.049
27 -0.067 -0.040 -0.027 0.033 0.041 0.048
28 -0.058 -0.039 -0.027 0.032 0.038 0.048
29 -0.080 -0.039 -0.026 0.032 0.039 0.047
30 -0.068 -0.039 -0.026 0.031 0.036 0.046
31 -0.059 -0.036 -0.025 0.031 0.036 0.046
32 -0.062 -0.037 -0.027 0.031 0.035 0.047
33 -0.058 -0.041 -0.026 0.030 0.036 0.045
34 -0.056 -0.036 -0.025 0.030 0.036 0.044
35 -0.056 -0.036 -0.023 0.030 0.035 0.043
36 -0.054 -0.034 -0.023 0.028 0.033 0.043
37 -0.052 -0.034 -0.024 0.028 0.033 0.041
38 -0.054 -0.034 -0.024 0.028 0.033 0.042
39 -0.055 -0.033 -0.022 0.028 0.033 0.043
40 -0.055 -0.033 -0.023 0.028 0.032 0.041
41 -0.051 -0.033 -0.023 0.028 0.034 0.043
42 -0.056 -0.033 -0.021 0.028 0.033 0.041
43 -0.055 -0.032 -0.023 0.027 0.033 0.038
44 -0.059 -0.031 -0.022 0.027 0.031 0.040
45 -0.049 -0.031 -0.023 0.026 0.031 0.040
46 -0.058 -0.031 -0.021 0.026 0.030 0.040
47 -0.049 -0.030 -0.020 0.026 0.030 0.039
48 -0.055 -0.030 -0.021 0.027 0.031 0.041
49 -0.049 -0.031 -0.020 0.025 0.029 0.037
50 -0.054 -0.030 -0.023 0.025 0.030 0.038
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Table 1 gives the efficiencies of our proposed test δ̂1n(λ ) for various values of λ comparing
with the tests given by Kango [14](Un), Mugdadi and Ahmad [15](δ3)and Mahmoud and Abdul
Alim [16](δ (2)

Fn
).

One can note that our test is more efficient for all used alternatives.

4. Monte Carlo Null Distribution Critical Points

In practice, simulated percentiles are commonly used by applied statisticians and reliability analyst.
Next, we simulate the Monte Carlo null distribution critical points for δ̂1n(λ ) in (2.1) based on
10000 simulated sample 2(1)50 from the standard exponential distributions. Table 2 gives these
percentile points of the statistics δ̂1n(λ ) at λ = 0.23.

In view of Table 2, it is noticed that the critical values are increasing as the confidence level
increasing and is almost decreasing as the sample size increasing.

4.1. The Power Estimates

Table 3 shows the power estimate of the test statistic δ̂1n(λ ) at the significant level 0.05 using LFR,
Makeham and Weibull distributions. The estimates are based on 10000 simulated samples for sizes
n = 10,20 and 30.

Table 3. Power estimates at λ = 0.23
n θ = 2 θ = 3 θ = 4

LFR 10 0.404 0.504 0.588
20 0.633 0.740 0.806
30 0.804 0.886 0.924

Makeham 10 0.914 0.908 0.918
20 0.992 0.992 0.986
30 1.000 1.000 1.000

Weibull 10 0.780 0.994 1.000
20 0.980 1.000 1.000
30 0.999 1.000 1.000

It is clear from Table 3 that our test has good powers for all alternatives and the power estimate
increase as the the sample size increases. The powers are getting as greater as the class departs the
exponential distribution.

5. Numerical Examples

Example 5.1. The following data represent 39 liver cancers patients taken from Elminia cancer
center Ministry of Health - Egypt, which entered in (1999)(see Attia et al. [8]). The ordered life
times (in years) are:

0.027 0.038 0.038 0.038 0.038 0.038 0.041 0.047 0.049 0.055
0.055 0.055 0.055 0.055 0.063 0.063 0.066 0.071 0.082 0.082
0.085 0.110 0.314 0.140 0.143 0.164 0.167 0.184 0.195 0.203
0.206 0.238 0.263 0.288 0.293 0.293 0.293 0.318 0.411
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It was found that δ̂1n = 0.0523 and this value exceeds the tabulated critical value in Table 2. It
is evident that at the significant level 0.05 this data set has EBUmg f property.

Example 5.2. Consider the following data, which represent failure times in hours, for a specific
type of electrical insulation in an experiment in which the insulation was subjected to a continuously
increasing voltage stress (Lawless [17], p.138):

0.205 0.363 0.407 0.477 0.72 0.782
1.178 1.255 1.592 1.635 2.31

It was found that δ̂1n = 0.0109 which is less than the tabulated critical value in Table 2. Then
we accept H0 which states that the data set has exponential property.
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