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1. Introduction

Adding parameters to a well-defined model is a novel way of constructing flexible families of uni-
variate and bivariate distributions. For a better understanding of this point, we refer the interested
reader to Marshall and Olkin works. Marshall-Olkin Extended (MOE) distribution, introduced by
Al-Jarallah et al. [1] has pd f (probability density function) and cd f (cumulative distribution
function) given respectively by

f (x) = f (x;α,δ ) =
αδk (x)

[
αK (x)

]δ−1[
1−αK (x)

]δ+1 , x ∈ R (1.1)

and
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F (x) = F (x;α,δ ) = 1−
[

αK (x)
1−αK (x)

]δ

, x ∈ R (1.2)

where k (x) = d
dx K (x) is the baseline pd f , K (x) = 1−K (x) and α > 0 (α = 1−α) , δ > 0

are parameters.
The pd f of the mth upper record value, XU(m) , of a random variable with pd f (1.1) is given

by

fXU(m)
(x) =

αδ δ m

(m−1)!

(
− log

(
αK(x)

1−αK(x)

))m−1 k(x)(K(x))δ−1

(1−αK(x))δ+1
, x ∈ R (1.3)

On the other hand, the joint probability density function of the mth and nth upper record values
XU(m) and XU(n), n > m≥ 1, of a random variable with pd f (1.1) is given by

fXU(m),XU(n)(x,y) =
αδ δ n

(m−1)!(n−m−1)!

(
− log

αK(x)
1−αK(x)

)m−1

×
(
− log

(
1−αK(x)

K(x)
· K(y)

1−αK(y)

))n−m−1

×
k(x)k(y)

(
K(y)

)δ−1

K(x)(1−αK(x))(1−αK(y))δ+1
, x < y.

The rest of the paper is organized as follows. In Section 2, we derive the moments of the mth

upper record value XU(m), m≥ 1 and the joint moments of the mth and nth upper record values XU(m)

and XU(n), n > m≥ 1. Then we present certain characterizations of MOE distribution in Section 3.

2. Moments of Record values of the MOE family of distributions

As we mentioned in the Introduction, we derive, in this Section, the moments of the mth upper
record value XU(m), m≥ 1 and the joint moments of the mth and nth upper record values XU(m) and
XU(n), n > m ≥ 1 of a random variable X which has pd f given by (1.1). Let us first consider
the single moments. The moments of the random variable XU(m) are given by the following two
theorems.

Theorem 2.1. Let us suppose that a random variable X has the pd f given by (1.1). Let us
suppose that the inverse function of the survival function K(x) can be rewritten in power series
form as K−1

(x) = ∑
∞
i=0 ai(x−x0)

i, 0 < x < 1, x0 ∈ [0,1]. Let {ci} and {bk} be two sequences given
by c0 = al

0, b0 = 1, ci = (ia0)
−1

∑
i
j=1(l j− i+ j)a jci− j and bk = k−1

∑
k
j=1(i j− k+ j)α jbk− j. If

0 < α < 2, then the moments of the random variable XU(m) are given as

E
(

X l
U(m)

)
= δ

m
∞

∑
i=0

ci

i

∑
j=0

(
i
j

)
(−x0)

i− j
∞

∑
k=0

bk

k

∑
r=0

(
k
r

)
(−1)r(δ + j+ r)−m .
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Proof. The lth moment of the random variable XU(m) is given by

E
(

X l
U(m)

)
=

αδ δ m

(m−1)!

∫
∞

−∞

xl
(
− log

αK(x)
1−αK(x)

)m−1 k(x)(K(x))δ−1

(1−αK(x))δ+1
dx.

Setting t =− log
(

αK(x)
1−αK(x)

)
, the above integral can be rewritten as

E
(

X l
U(m)

)
=

δ m

(m−1)!

∫
∞

0

(
K−1

(
e−t

α +αe−t

))l

tm−1e−δ tdt. (2.1)

Using the power series expansion of the inverse function K−1
(x) and equation (0.314) of [5],

we obtain

(
K−1

(
e−t

α +αe−t

))l

=

(
∞

∑
i=0

ai

(
e−t

α +αe−t − x0

)i
)l

=
∞

∑
i=0

ci

(
e−t

α +αe−t − x0

)i

.

Replacing the last equation into (2.1), the lth moment of the random variable XU(m) can be
rewritten as

E
(

X l
U(m)

)
=

δ m

(m−1)!

∞

∑
i=0

ci

i

∑
j=0

(
i
j

)
(−x0)

i− j
∫

∞

0
(α +αe−t)− jtm−1e−(δ+ j)tdt. (2.2)

Let us consider the function (α+αe−t)− j. Using the fact that 0<α < 2, equation (0.314) of [5]
and the binomial expansion we arrive at

(α +αe−t)− j = (1−α(1− e−t))− j =

(
∞

∑
k=0

α
k(1− e−t)k

) j

=
∞

∑
k=0

bk

k

∑
r=0

(
k
r

)
(−1)re−rt .

Replacing the last equation into (2.2), we obtain

E
(

X l
U(m)

)
=

δ m

(m−1)!

∞

∑
i=0

ci

i

∑
j=0

(
i
j

)
(−x0)

i− j
∞

∑
k=0

bk

k

∑
r=0

(
k
r

)
(−1)r

∫
∞

0
tm−1e−(δ+ j+r)tdt

= δ
m

∞

∑
i=0

ci

i

∑
j=0

(
i
j

)
(−x0)

i− j
∞

∑
k=0

bk

k

∑
r=0

(
k
r

)
(−1)r(δ + j+ r)−m.

Theorem 2.2. Let us suppose that a random variable X has pd f given by (1.1). Let us suppose
that the inverse function of the survival function K(x) can be rewritten in power series form as
K−1

(x) = ∑
∞
i=0 ai(x− x0)

i, 0 < x < 1, x0 ∈ [0,1]. Let {ci} and {dk} are two sequences given by
c0 = al

0, d0 = 1, ci = (ia0)
−1

∑
i
j=1(l j− i+ j)a jci− j and dk = k−1

∑
k
j=1(i j− k+ j)

(
1− 1

α

) j
dk− j. If

α > 1/2, then the moments of the random variable XU(m) are given as
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E
(

X l
U(m)

)
= δ

m
∞

∑
i=0

ci

α i

i

∑
j=0

(
i
j

)
(−x0)

i− j
∞

∑
k=0

dk(δ + j+ k)−m .

Proof. The proof is similar to that of Theorem 2.1. The difference is that the series expansion of
the function (α +αe−t)− j is now given by

(α +αe−t)− j = α
− j
(

1−
(

1− 1
α

)
e−t
)− j

= α
− j

(
∞

∑
k=0

(
1− 1

α

)k

e−kt

) j

= α
− j

∞

∑
k=0

dke−kt .

Using this expansion we obtain the expression for the lth moment of the random variable XU(m).

Example 2.1. Let us suppose that a random variable X has the Marshall-Olkin extended exponen-
tial distribution, i.e. let us suppose that the survival function is K(x) = e−x, x ≥ 0. The first two
moments of the nth upper record value have been considered in Jose et al. [9]. Here we will present
formula for derivation of lth moments, l ≥ 1. The inverse survival function is

K−1
(x) =− logx =

∞

∑
i=1

(−1)i

i
(x−1)i.

Thus, we have that x0 = 1 and the coefficients ai are given as ai = (−1)i/i, i ≥ 1. For derivation
of moments we need the recurrence formulas for coefficients ci. We have that c0 = c1 = cl−1 = 0,
cl = (−1)l , and

cl+i =
1
i

i

∑
j=0

(l j− i+ j)
(−1) j

j+1
cl+i− j, i≥ 1.

Then the expression for moments follows from the above two theorems.

Example 2.2. Let us suppose that a random variable X has the Marshall-Olkin extended Pareto
distribution. Parent survival function is given as K(x) = x−γ , x ≥ 1, γ > 0, and the corresponding
inverse function is

K−1
(x) = (1− x)−1/γ =

∞

∑
i=0

(−1)−1/γ

(
−1/γ

i

)
(x−1)i.

The coefficients a′is are given as ai =
(−1/γ

i

)
, i≥ 1, and the coefficients ci are given as c0 = 1 and

ci =
1
i

i

∑
j=1

(l j− i+ j)
(
−1/γ

j

)
ci− j, i≥ 1.

Now, we will derive the joint moments of the mth and nth upper record values XU(m) and XU(n),
n>m≥ 1, of a random variable X with Marshall-Olkin Extended distribution. These joint moments
are given by the following two theorems.

Theorem 2.3. Let us suppose that a random variable X has pd f given by (1.1). Let us suppose
that the inverse function of the survival function K(x) can be rewritten in power series form as
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K−1
(x) = ∑

∞
i=0 ai(x−x0)

i, 0 < x < 1, x0 ∈ [0,1]. Let {ci} and {dk} be two sequences given by c0 =

al
0, d0 = 1, ci = (ia0)

−1
∑

i
j=1(l j− i+ j)a jci− j and dk = k−1

∑
k
j=1(i j−k+ j)α jdk− j. If 0 < α < 2,

then the joint moments of the random variables XU(m) and XU(n), n > m≥ 1, are given as

E
(

X r
U(m)X

s
U(n)

)
= δ

n
∞

∑
i=0

∞

∑
j=0

cic j

i

∑
k=0

j

∑
l=0

(
i
k

)(
j
l

)
(−x0)

i+ j−k−l

×
∞

∑
p=0

∞

∑
w=0

dpdw

p

∑
q=0

w

∑
h=0

(
p
q

)(
w
h

)
(−1)q+h(δ + l +h)−n+m

× (k+ l +δ +q+h)−m .

Proof. The joint moment of the random variables XU(m) and XU(n) is given by

E
(

X r
U(m)X

s
U(n)

)
=

αδ δ n

(m−1)!(n−m−1)!

∫
∞

−∞

xr
(
− log

αK(x)
1−αK(x)

)m−1

× k(x)dx
K(x)(1−αK(x))

∫
∞

x
ys k(y)(K(y))δ−1

(1−αK(y))δ+1

×
(
− log

(
1−αK(x)

αK(x)
· αK(y)

1−αK(y)

))n−m−1

dy.

Letting u =− log
(

αK(x)
1−αK(x)

)
and

v =− log
(

1−αK(x)
αK(x)

· αK(y)
1−αK(y)

)
,

the above integral can be rewritten as

E
(

X r
U(m)X

s
U(n)

)
=

δ n

(m−1)!(n−m−1)!

∫
∞

0

(
K−1

(
e−u

α +αe−u

))r

um−1e−δudu

×
∫

∞

0

(
K−1

(
e−(u+v)

α +αe−(u+v)

))s

vm−1e−δvdv.

Now, following the same techniques used in Theorem 2.1 we obtain the proof of theorem.

Theorem 2.4. Let us suppose that a random variable X has pd f given by (1.1). Let us suppose
that the inverse function of the survival function K(x) can be rewritten in power series form as
K−1

(x) = ∑
∞
i=0 ai(x− x0)

i, 0 < x < 1, x0 ∈ [0,1]. Let {ci} and {dk} are two sequences given by
c0 = al

0, d0 = 1, ci = (ia0)
−1

∑
i
j=1(l j− i+ j)a jci− j and dk = k−1

∑
k
j=1(i j− k+ j)

(
1− 1

α

) j
dk− j. If

α > 1/2, then the joint moments of the random variables XU(m) and XU(n) are given as
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E
(

X r
U(m)X

s
U(n)

)
= δ

n
∞

∑
i=0

∞

∑
j=0

cic j

i

∑
k=0

j

∑
l=0

(
i
k

)(
j
l

)
(−x0)

i+ j−k−l
α
−(k+l)

×
∞

∑
p=0

∞

∑
q=0

dpdq(δ + l +q)−n+m(k+ l +δ + p)−m .

Proof. Proof is similar to the proofs of Theorems 2.2 and 2.3.

3. Characterization Results

In designing a stochastic model for a particular modeling problem, an investigator will be vitally
interested to know if their model fits the requirements of a specific underlying probability distri-
bution. To this end, the investigator will rely on the characterizations of the selected distribution.
Generally speaking, the problem of characterizing a distribution is an important problem in various
fields and has recently attracted the attention of many researchers. Consequently, various character-
ization results have been reported in the literature. These characterizations have been established in
many different directions. In this section, we present characterizations of MOE distribution. These
characterizations are based on: (i) hazard function; (ii) a simple relationship between two truncated
moments. We like to mention that the characterization (ii) which is expressed in terms of the ratio
of truncated moments is stable in the sense of weak convergence. It also serves as a bridge between
a first order differential equation and probability.

3.1. Characterizations based on hazard function

The following definition is stated here for the sake of completeness.

Definition 3.1. Let F be an absolutely continuous distribution with the corresponding pd f f .

The hazard function corresponding to F is denoted by hF and is defined by

hF (y) =
f (y)

1−F (y)
, y ∈ Supp F , (3.1)

where Supp F is the support of F .

It is obvious that the hazard function of a twice differentiable function satisfies the first order
differential equation

h′F (y)
hF (y)

−hF (y) = q(y) ,

where q(y) is an appropriate integrable function. Although this differential equation has an obvi-
ous form since
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f ′ (y)
f (y)

=
h′F (y)
hF (y)

−hF (y) , (3.2)

for many univariate continuous distributions (3.2) seems to be the only differential equation in
terms of the hazard function. The goal of the characterization based on hazard function is to estab-
lish a differential equation in terms of hazard function, which has as simple form as possible and is
not of the trivial form (3.2). For some general families of distributions this may not be possible.

Proposition 3.1. Let X : Ω→ R be a continuous random variable. The random variable X has
pd f (1.1) if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)− k ′ (x)(k (x))−1 hF (x) =
δ (k (x))2 [1−2αK (x)

]{
K (x)

[
1−αK (x)

]}2 , x ∈ R. (3.3)

Proof. If X has pd f (1.1), then clearly (3.3) holds. Now, if (3.3) holds, then

(k (x))−1 h′F (x)− k′ (x)(k (x))−2 hF (x) =
δ (k (x))

[
1−2αK (x)

]{
K (x)

[
1−αK (x)

]}2 ,

or

d
dx

{
(k (x))−1 hF (x)

}
=

d
dx

{
δ
[
K (x)(1−αK (x))

]−1
}
,

or

f (x)
1−F (x)

= hF (x) =
δk (x)

K (x)(1−αK (x))
=

δk (x)
K (x)

+
δαk (x)

1−αK (x)
.

Integrating both sides of the above equation from −∞ to x , we arrive at

− log(1−F (x)) =−δ log
(
K (x)

)
+δ log(1−αK (x))+δ log(α)

from which we have

1−F (x) =
(
αK (x)

)δ
(1−αK (x))−δ .

3.2. Characterizations based on two truncated moments

In this subsection we present characterizations of MOE distribution in terms of a simple relationship
between two truncated moments. We like to mention here the works of Glänzel [2, 3], Glänzel et
al. (1984), Glänzel and Hamedani [4] and Hamedani [6–8] in this direction. Our characterization
results presented here will employ an interesting result due to Glänzel [2] (Theorem 3.1 below).
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The advantage of the characterizations given here is that, cd f F need not have a closed form and
are given in terms of an integral whose integrand depends on the solution of a first order differential
equation, which can serve as a bridge between probability and differential equation.

Theorem 3.1. Let (Ω,F ,P) be a given probability space and let H = [a,b] be an interval for
some a< b (a =−∞ , b = ∞ might as well be allowed) . Let X : Ω→H be a continuous random
variable with the distribution function F and let g and h be two real functions defined on H
such that

E [g(X) | X ≥ x] = E [h(X) | X ≥ x] η (x) , x ∈ H ,

is defined with some real function η . Assume that g , h ∈C1 (H) , η ∈C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H . Finally, assume that the
equation hη = g has no real solution in the interior of H . Then F is uniquely determined by the
functions g , h and η , particularly

F (x) =
∫ x

a
C
∣∣∣∣ η ′ (u)
η (u)h(u)−g(u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = η ′ h
η h − g and C is a constant,

chosen to make
∫

H dF = 1 .

We like to mention that this kind of characterization based on the ratio of truncated moments
is stable in the sense of weak convergence, in particular, let us assume that there is a sequence
{Xn} of random variables with distribution functions {Fn} such that the functions gn , hn and ηn

(n ∈ N) satisfy the conditions of Theorem 3.1 and let gn → g , hn → h for some continuously
differentiable real functions g and h . Let, finally, X be a random variable with distribution F
. Under the condition that gn (X) and hn (X) are uniformly integrable and the family {Fn} is
relatively compact, the sequence Xn converges to X in distribution if and only if ηn converges to
η , where

η (x) =
E [g(X) | X ≥ x]
E [h(X) | X ≥ x]

.

This stability theorem makes sure that the convergence of distribution functions is reflected
by corresponding convergence of the functions g , h and η , respectively. It guarantees, for
instance, the ’convergence’ of characterization of the Wald distribution to that of the Lévy-Smirnov
distribution if α → ∞ , as was pointed out in Glänzel and Hamedani [4].

A further consequence of the stability property of Theorem 3.1 is the application of this theorem
to special tasks in statistical practice such as the estimation of the parameters of discrete distribu-
tions. For such purpose, the functions g , h and, specially, η should be as simple as possible.
Since the function triplet is not uniquely determined it is often possible to choose η as a linear func-
tion. Therefore, it is worth analyzing some special cases which helps to find new characterizations
reflecting the relationship between individual continuous univariate distributions and appropriate in
other areas of statistics.
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Remark 3.1. (a) In Theorem 3.1, the interval H need not be closed since the condition is only
on the interior of H. (b) Clearly, Theorem 3.1 can be stated in terms of two functions g and η

by taking h(x) ≡ 1, which will reduce the condition given in Theorem 3.1 to E [g(X) | X ≥ x] =
η (x) . However, adding an extra function will give a lot more flexibility, as far as its application is
concerned.

Proposition 3.2. Let X : Ω→R be a continuous random variable and let h(x) =
[
1−αK (x)

]δ+1

and g(x) = h(x)K (x) for x ∈ R. The pd f of X is (1.1) if and only if the function η defined
in Theorem 3.1 has the form

η (x) =
δ

δ +1
K (x) , x ∈ R.

Proof. Let X have pd f (1.1) , then

(1−F (x)) E [h(X) | X ≥ x] =
[
αK (x)

]δ
, x ∈ R ,

and

(1−F (x)) E [g(X) | X ≥ x] =
δ

α (δ +1)
[
αK (x)

]δ+1
, x ∈ R

and finally

η (x)h(x)−g(x) =− 1
δ

[
1−αK (x)

]δ+1 K (x)< 0 , x ∈ R .

Conversely, if η is given as above, then

s′ (x) =
η ′ (x) h(x)

η (x) h(x)−g(x)
=

δ f (x)
K (x)

, x ∈ R ,

and hence

s(x) =− log(
[
K (x)

]δ
) , x ∈ R.

Now, in view of Theorem 3.1, X has pd f (1.1).

Corollary 3.1. Let X : Ω→R be a continuous random variable and let h(x) be as in Proposition
3.2. The pd f of X is (1.1) if and only if there exist functions g and η defined in Theorem 3.1
satisfying the differential equation

η ′ (x)h(x)
η (x)h(x)−g(x)

=
δ f (x)
K (x)

, x ∈ R.
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Remark 3.2. (a) The general solution of the differential equation in Corollary 3.1 is

η (x) =
[
K (x)

]−δ

[
−
∫

δ f (x)
[
K (x)

]δ−1 [1−αK (x)
]−(δ+1) g(x)dx+D

]
,

for x ∈ R , where D is a constant. One set of appropriate functions is given in Proposition 3.2
with D = 0.

(b) Clearly there are other triplets of functions (h,g,η) satisfying the conditions of Theorem
3.1. We presented one such triplet in Proposition 3.2.
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