

IntegrityMR: Exploring Result Integrity Assurance Solutions for Big Data Computing
Applications

Yongzhi Wang 1, Jinpeng Wei 2, Mudhakar Srivatsa 3, Yucong Duan 4, Wencai Du 5

1 School of Computer Science and Technology, Xidian University,
2 South Taibai Road, Xi’an, Shaanxi, China

The Key Laboratory of Grain Information Processing and Control (Henan University of Technology),
Ministry of Education, Zhengzhou, Henan, China

yzwang@xidian.edu.cn

2 School of Computer and Information Sciences, Florida International University,
11020 SW 8th Street, Miami, Florida, USA

weijp@cis.fiu.edu

3 Network Technologies Department, IBM T.J. Watson Research Center,
1101 Kitchawan Road, Yorktown Heights, New York, USA

msrivats@us.ibm.com

4 ,5Information Science and Technology College, Hainan University,
No. 58, Renmin Avenue, Haikou, Hainan, China

4 duanyucong@hotmail.com; 5wencai@hainu.edu.cn

Abstract

Large-scale adoption of MapReduce applications on public clouds is hindered by the lack of trust on the
participating virtual machines deployed on the public cloud. In this paper, we propose IntegrityMR, a multi-public
clouds architecture-based solution, which performs the MapReduce-based result integrity check techniques at two
alternative layers: the task layer and the application layer. Our experimental results show that solutions in both
layers offer a high result integrity but non-negligible performance overheads.

Keywords: Big Data; MapReduce; Integrity Assurance; Cloud Computing

1. Introduction

Big data applications have drawn more attentions in
recent years when MapReduce1 and cloud computing
techniques are getting mature. However, when the
public cloud venders offer big data applications as

public services, new challenges appear when
retrospection is performed from the security
perspective. MapReduce, the fundamental infrastructure
of such a service, when deployed on the public cloud,
suffers from the result integrity vulnerability. Given the
distributed architecture of MapReduce, merely one
malicious participant can render the overall computation

International Journal of Networked and Distributed Computing, Vol. 4, No. 2 (April 2016), 116-126

Published by Atlantis Press
Copyright: the authors

116

mailto:msrivats@us.ibm.com
mailto:duanyucong@hotmail.com

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

result useless. This is because the cloud vendor is not
responsible for the integrity of computations inside each
virtual machine that runs MapReduce tasks.
Specifically, due to the openness of public cloud
architecture, customers have the freedom to choose
virtual machine image provided by anybody, including
the malicious provider. Sven et al. 21 pointed out a
security vulnerability that Amazon EC2 suffers from:
any member of the EC2 community can create and
upload Amazon Machine Images (AMIs), which can be
used by any EC2 user. If the AMIs are malicious and
are widely used, it could flood the whole EC2
community with malicious applications, including
MapReduce.

Our goal in this paper is to increase the result
correctness of big data computing applications, known
as the result integrity. To achieve our goal, we propose
a novel architecture that combines the benefits of
private clouds and public clouds. Our solution, named
IntegrityMR, overlays the MapReduce framework on
top of hybrid cloud. The master and a small number of
workers called verifiers are deployed on the private
cloud, while other workers are deployed on multiple
public clouds. The workers on public clouds finish the
majority of work. While the master and verifiers on the
trusted private cloud control the correctness. The key
rationale of our solution is to retain control “at home”,
while delegating the more resource-intensive
computations to the public cloud. Such hybrid cloud
architecture is enlightened by the previous work Cross-
Cloud MapReduce (CCMR)22. However, we extend the
idea into multiple public clouds environment. Since
IntegrityMR assigns tasks to multiple public clouds, it
raises a bar for the attackers who have to construct
collusive malicious workers across multiple public
clouds that can collude with each other to commit
stealthier cheat.

We explore the design space of result integrity
checking in two alternative layers of the MapReduce
application software stack: the MapReduce task layer
(we call it task layer in the following sections for
brevity.) and the application layer. At the task layer, we
resort to the techniques proposed in our previous
work18,22, and extend the techniques to multiple public
clouds environment. We build a prototype system that
support most big data applications. At the application
layer, we make a case study on Pig Latin8, a popular

MapReduce based big data management application.
We propose a technique to transform Pig Latin scripts to
introduce invariant to map tasks and the invariant check
to the succeeding reduce tasks.

To the best of our knowledge, this is the first paper
proposing multiple public clouds architecture for
MapReduce computation. Moreover, this is the first
paper proposing to introduce invariant to the
MapReduce job to guarantee result integrity.
Specifically, our contributions are as follows.
• We propose a new hybrid cloud MapReduce

architecture, IntegrityMR, which gains control at
the private cloud and utilizes the computation
capability from multiple public clouds.

• We explore task layer result integrity check
technique by extending the techniques proposed in
our previous works18,22 to the multiple public
clouds environment.

• We study the Pig Latin, and propose an application
layer result integrity checking technique based on a
script transformation technique.

• We make a prototype implementation of
IntegrityMR on Apache Hadoop7 and Pig Latin,
and perform experiments on commercial public
cloud (Amazon EC22 and Microsoft Azure3) and
local cluster to test the efficacy of both layer
solutions.
The rest of this paper is organized as follows.

Section 2 declares the system assumptions and attacker
model. Section 3 presents the design, implementation,
and evaluation of task layer result integrity checking
approach. Section 4 describes the application layer
result integrity checking approach using the Apache Pig
as a case study. Section 5 discusses related work, and
Section 6 concludes the paper.

2. Background and System Assumptions

2.1. System Assumptions

IntegrityMR overlays MapReduce on multiple clouds:
one private cloud and multiple public clouds. We
assume the private cloud is trusted since it is deployed
in the user’s organization. Hence the master and the
verifiers that are deployed on the private cloud are
trusted. We assume the public clouds are not trusted.
Hence the workers that are deployed on the public

Published by Atlantis Press
Copyright: the authors

117

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

clouds are not trusted. Since the integrity of the
Distributed File System (DFS) can be guaranteed with
the storage integrity assurance techniques5,6, we assume
DFS is trusted. Finally, we assume the infrastructures
provided by the cloud provider, such as virtualized
hardware and network, are trusted, although the virtual
machine instances can be compromised. Overall, from
the perspective of MapReduce, the only untrusted
entities in the IntegrityMR environment are the workers
deployed on public clouds.

2.2. Attacker Model

We model the attacker as a “powerful adversary”
that controls a set of malicious nodes in each public
cloud. It receives and shares information collected from
malicious nodes and instructs a selected subset of
malicious nodes to return incorrect result at the
coordinated time in order to introduce as many errors as
possible while not being detected. In other words, if two
malicious workers are assigned to execute the same
task, they can collude with each other. We call such
malicious workers collusive workers.

3. Task Layer Result Integrity Check

We explore the task layer integrity check technique in
this section.

3.1. System Design

IntegrityMR redefines the architecture of
MapReduce: the master and verifiers, the trusted slave
workers are deployed on the trusted private cloud within
the customer’s organization. The remaining slave
workers are deployed on multiple public clouds. The
verifiers are used to re-compute tasks to arbitrate
inconsistent results and detect non-collusive workers, or
to verify consistent results in a probabilistic manner to
detect collusive workers. The master is responsible for
assigning tasks and checking the consistency of the task
results. Since the DFS is trusted, we deploy DFS across
the multiple public clouds. The system architecture is
shown in Fig. 1. We adapt the techniques proposed in
our previous work22 to meet the requirement of
IntegrityMR. In the previous work22, the authors
propose CCMR, a single private cloud and single public
cloud architecture. CCMR employs random replication,

random verification and credit based management
techniques on such MapReduce. We extend these
techniques to the multiple public clouds architecture. In
task assignment, instead of picking a worker from the
single public cloud, IntegrityMR can randomly choose a
public cloud and pick a worker from the chosen cloud.
However, complete randomized task assignment would
bear significant performance loss due to the existence of
shuffle phase, where the mappers send their
intermediate results to the reducer. If the mappers and
the reducers are not in the same cloud, the data
transmission would slowdown the overall computation.
We solve this problem by having the master assign the
original map tasks and reduce tasks to the same cloud,
and the replicated map tasks and reduce tasks to another
cloud. Since the reducer only accepts map results from
the same cloud, shuffle would only happen inside a
cloud.

Fig. 1. The Architecture of task layer result integrity check

Fig. 2. The Control flow of task layer result integrity check

Published by Atlantis Press
Copyright: the authors

118

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

The control flow of IntegrityMR is depicted in Fig.
2. Cloud A and cloud B are two clouds randomly picked
from the available public clouds in the IntegrityMR
environment. W1 and W2 are two slave workers
randomly picked from cloud A and B respectively. The
“Arbitrate task” and “Verify task” steps are executed by
the verifier. Other components in the figure, including
the Task Queue and the History Caches for the worker
W1, are all maintained in the master. Whenever the
Task Queue is not empty, the master will pick one task
(e.g., t2) from the Task Queue and assign it (step 1) to
two workers randomly picked from any two clouds
among all the public clouds (W1 and W2 in cloud A and
B, respectively). According to the hold-and-test strategy
proposed in CCMR, the task is first assigned to W1.
Only when the result R1 (hash value) is returned (step
2), the replicated task is assigned to W2 (step 3). By
doing this, if the first worker W1 is a malicious worker,
it cannot determine whether it is safe to cheat because it
does not know whether W2 assigned in the future is a
collusive worker or not. W1 stores the actual task result
in its local storage and return the hash value of result R1
to the master, which is stored in the history cache of
W1. When the result R2 is returned by W2 (step 4), the
master will compare R1 and R2 to detect the malicious
workers. If R1 and R2 are consistent, the master
increments the credit of the first worker W1; otherwise,
the task is arbitrated by the master (i.e., by asking a
verifier to re-compute it) to identify which worker is
malicious. If R1 and R2 are consistent, the consistent
result is still verified with certain probability v
(verification probability). If the verified result is
different from R1/R2, both W1 and W2 are determined
to be malicious workers. If the verified result is the
same as R1/R2, the master increments the credit of
worker W1. If the credit of W1 exceeds a certain value
N (credit threshold), the task results buffered in W1’s
local storage are accepted by the master in one result
batch. Meanwhile, its history cache is cleared and its
credit is reset to 0.

A detected malicious worker will be added to the
blacklist. And the tasks buffered in its history cache will
be rescheduled. (i.e., putting the tasks back to the Task
Queue)

3.2. Security Analysis

IntegrityMR has two lines of defense against the
attacker. The multiple public clouds architecture raises
the bar for the attackers. Since each task is replicated
and assigned to two (or more) workers from different
cloud service providers, successfully breaking in
multiple public clouds is already non-trivial challenge
for the attacker. Figuring out which virtual instance
corresponds to a specific MapReduce job in each cloud
and compromising them to construct collusion is even
more difficult for the attackers.

Even if the first line of defense is breached,
IntegrityMR can still protect the accuracy of
computations by the techniques such as hold-and-test,
verification and credit based trust management. Even
though IntegrityMR includes multiple public clouds, the
task assignment design is similar to the map phase
integrity assurance design of CCMR22. Therefore, we
can straightforwardly adapt the theoretical analysis
result (Theorem 1) of CCMR. Given the space limit, we
skip the theoretical accuracy and overhead analysis of
IntegrityMR, and refer readers to the original paper of
CCMR.

3.3. Experiment Environment

We implement the IntegrityMR based on the
Apache Hadoop and deploy it on the environment
consisting of one private cloud and two public clouds.

3. 3. 1 Environment Configuration

Our experiment environment consists of the
following entities: a Linux server (2.93 GHz, 8-core
Intel Xeon CPU and 16 GB of RAM) is deployed on the
private cloud, running both the master and the verifier. 6
slave workers are running on Microsoft Azure extra
small instances (Windows Server 2008 32-bit, 1 core@
1GHz, 768MB Memory). Another 6 slave workers are
deployed on the Amazon EC2 small instances (Amazon
Linux AMI 32-bit, 1 ECU, 1 core, 1.7GB Memory).
Since each Azure instance runs Windows system, we
install Cygwin on each Azure instance so that Hadoop
required SSHD service can work on it. Since the cloud
provider assigns each virtual instance a unique URL,
IntegrityMR uses such URL to identify different worker
on public cloud. The topological information such as
which worker is deployed on which cloud is statically

Published by Atlantis Press
Copyright: the authors

119

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

configured in Hadoop configuration file (mapred-
site.xml). In addition, the mapred-site.xml of
IntegrityMR also configures the verification probability
v and credit threshold N.

3. 3. 2 Collusive Worker Implementation

To test the effectiveness of IntegrityMR, we
implement the collusive workers according to the
analysis in CCMR: Since hold-and-test is applied, the
collusive worker can only work as follows: when it
receives a task, it first queries the adversary whether the
same task (replicated one) has been executed previously
by another malicious worker. If yes, the adversary will
instruct the current malicious worker return the same
result as the previous one. Otherwise, the current worker
has to decide whether to cheat and send the decision
back to the adversary. Our implementation assumes that
the worker cheats with probability p when the adversary
fails to give an instruction. We therefore define p as the
cheat probability.

3.4. Experiment Result

Using the environment described in Section 3. 3. 1,
we run a set of experiments to evaluate the effectiveness
of IntegrityMR in terms of accuracy, overhead and
performance overhead. Our test applications include not
only example application such as Hadoop Word Count
but also popular big data analytical application such as
Mahout23. Specifically, our experiment tests the
following Mahout applications: Mahout Bayes
Classification, Canopy Clustering, K-means Clustering,
Fuzzy K-means Clustering, and Dirlchlet Process
Clustering. And all of these applications can run
successfully under the IntegrityMR solution, showing a
wide range of support for the big data applications.

3. 4. 1 Accuracy and Overhead

We measure both the computation accuracy and
the overhead of the IntegrityMR in the task layer. Since
in IntegrityMR, the map and reduce design share the
same technique, our measurement only considers the
map tasks. The reduce task measurement should have a
similar result. We define the following metrics to
measure the accuracy and overhead.

Error rate: The percentage of incorrect map task
results accepted by the master in one job execution.

Worker overhead: The percentage of extra
number of map tasks executed on the workers on public
cloud in one job execution.

Verifier overhead: The percentage of map tasks
executed by the verifiers on the private cloud in one job
execution.

We assume that each execution of the same task
consumes the same amount of resource (e.g., CPU time,
memory, disk space, etc). Therefore, the worker
overhead and the verifier overhead below represent the
overhead of IntegrityMR across all resources.
Comparatively, the performance overhead reported in
Section 3. 4. 2 covers only the end-to-end execution
time of the entire job.

We use Hadoop word count application to test the
accuracy and overhead. The word count job computes
the occurrences of each word in a batch of text input. In
our experiment, each word count job consists of 100
map tasks and one reduce task. We introduce several
collusive workers whose behavior is described in
Section 3. 3. 2. In each job, we adjust the malicious
node fraction n, cheat probability of malicious worker p,
and credit threshold N. We set the verification
probability v as constant value of 0.15.

We introduce the same number of malicious nodes
in each public cloud. We vary the number of malicious
workers from 1 to 3. Therefore, the values of n can be
0.15, 0.3 or 0.5. We pick four different environment
configurations with different value of n and p, and test
the effectiveness of IntegrityMR with different value of
credit threshold N (1, 3, 5, 7, and 9).

Fig. 3 shows the error rate with different value of
threshold under different environment configurations. In
the figure, we learn that when N is increased from 1 to
9, the error rate in different environments decreases
under all configurations. We also observe that when n is
a constant (e.g., n=0.3) and N is small (e.g., N=1), a
higher value of p (e.g., p=1.0) would bring a higher
error rate (e.g., 12%) than an environment with a
smaller value of p (e.g., p=0.5, 7% of error rate).
However, with the increase of N, the error rate with a
higher value of p decreases faster than the one with a
smaller value of p. (e.g., when N=9, p=1.0, the error rate
is 0%. When N=9, p =0.5, the error rate is 1%). Such
changing trend is consistent with theorem 1 in CCMR
paper22.

Published by Atlantis Press
Copyright: the authors

120

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

Fig. 4 shows the worker overhead under different
environment configurations. Under each environment
configuration, the overhead increases with the increase
of credit threshold N. Overall, the worker overhead
ranges from 100% to 120%. Since each task is
replicated, the 100% of overhead should be attributed to
the replication. The remaining overhead should be
attributed to the task reschedule due to the detection of
malicious worker. Intuitively, a higher credit threshold
means more task results are buffered in each worker,
thus incurring more task reschedules if the worker is
determined as malicious. We have to point out that the
overhead will not grow unchecked with the increase of
N. According to the analysis in CCMR, when N is big
enough, the overhead will achieve its upper bound.

Fig. 5 shows that the verifier overhead ranges from
0% to 30% in different environments. Similarly,
according to the analysis in CCMR, the verifier
overhead will also achieve its upper bound when N is
big enough.

3. 4. 2 End-to-end Performance Overhead

Our performance experiment does not contain
malicious slave workers since the customers often feel it
worthy to pay extra running time to detect errors.
However, they are reluctant to pay more if the system
does not contain error. We use Mahout 20 newsgroup
example11 to evaluate the performance of IntegrityMR.
It classifies 20,000 news-group documents into 20
categories using naive Bayes classification. The
classification algorithm is implemented in MapReduce.

We compare the execution time of such a job under
three different environment settings shown as Table 1.

Table 1 Environment composition of performance test

Name Environment Composition Cloud Map
Reduce

Private-
EC2-
Azure

Private cloud with a Linux
server, EC2 cloud with 6
small instances, Azure
cloud with 6 extra small
instances

Cross
Cloud

Integrity
MR

Private-
Azure

Private cloud with a Linux
server, Azure cloud with 6
extra small instances.

Cross
Cloud

Map
Reduce

Azure-
only

Azure cloud with 6 extra
small instances

Inside
Cloud

Map
Reduce

0
200
400
600
800

1000
1200
1400
1600
1800

Private-EC2-
Azure with

IntegrityMR

Private-Azure
with traditional

MapReduce

Azure-only with
traditional

MapReduce

Trainning Time(s)

Testing Time(s)

Fig. 6. Running time of Mahout 20 newsgroup classification

2 4 6 8

0
2

4
6

8
10

12

CREDIT THRESHOLD N

E
R

R
O

R
 R

A
TE

Error Rate vs Credit Threshold

n=0.15,p=0.1
n=0.5,p=0.1
n=0.3,p=0.5
n=0.3,p=1.0

Fig. 3. The error rate of 100-map-task job

2 4 6 8

10
0

10
5

11
0

11
5

12
0

CREDIT THRESHOLD N
W

O
R

KE
R

 O
VE

R
H

EA
D

Worker Overhead vs Credit Threshold

n=0.15,p=0.1
n=0.5,p=0.1
n=0.3,p=0.5
n=0.3,p=1.0

Fig. 4. The worker overhead of 100-map-
task job

2 4 6 8

0
5

10
15

20
25

30

CREDIT THRESHOLD N

VE
R

IF
IE

R
 O

VE
R

H
EA

D

Verifier Overhead vs Credit Threshold

n=0.15,p=0.1
n=0.5,p=0.1
n=0.3,p=0.5
n=0.3,p=1.0

Fig. 5. The verifier overhead of 100-map-
task job

Published by Atlantis Press
Copyright: the authors

121

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

 The Private-EC2-Azure environment is using
IntegrityMR. The other two are using the traditional
MapReduce. In terms of the cloud environment, the
Azure-only platform uses a single cloud, while the other
two use multiple clouds (cross-cloud environment).

In this set of experiments, we fix the value of N as
5, and set value of v as 0.15. We run the same job 5
times on each environment. The running time is shown
in Fig. 6.

In the Azure-only environment where the
traditional MapReduce is applied and the homogeneous
cloud environment is used for communication inside of
the cloud, the running time is the shortest (588s for the
training job and 112s for the testing job). However, in
the Private-Azure environment, where IntegrityMR is
not yet used but the heterogeneous environment requires
the cross-cloud communication, the running time
increases to 1439s and 310s respectively. The increase
percentages from the homogenous environment to the
heterogeneous environment are 145% and 177%,
respectively. When IntegrityMR is applied to the
Private-EC2-Azure environment, the running times
increase to 1694s and 567s, respectively. Compared
with the Private-Azure environment, the increase of
running time in the Private-EC2-Azure is 18% for the
training time and 82% for the testing time.

It is necessary to point out the limitations of our
implementation and experiments. Our implementation
directly uses existing DFS implementation, which
indistinguishably distributes storage on two public
clouds. The synchronization among DFS nodes on two
public clouds becomes a bottleneck and reduces the
performance. By redesigning DFS to reduce such
synchronizations would improve the performance. Our
experimental setup only employs two public clouds. It is
interesting to observe the result in a more general
experimental environment, which introduces more
public clouds. The improvement of the above
limitations will be our future work.

4. Application Layer Result Integrity Check:
The Pig Case Study

The accuracy of task layer integrity assurance is
probabilistically determined by the credit threshold N.
The small value of error rate is guaranteed when N is
big enough. For example, in Fig. 3, when N is set to 1,

the error rate can be as high as 12%. Besides, the
overhead of task layer integrity checking is non-
negligible. We propose to transform the MapReduce
application to introduce invariants to the map tasks. By
checking invariants during the job execution, we can
indirectly infer whether the participating nodes are
cheating or not.

Unfortunately, different MapReduce applications
have different characteristics. Thus it is difficult to
define a universal technique for the invariant insertion
that is suitable for every application. Therefore, we
narrow down our exploration to the major classes of
MapReduce applications. One particularly interesting
and widely used class is big data management
application. Apache Pig8 is one of such application
widely used in both academia and industry for
applications such as log analysis and data management.
We choose Apache Pig as a case study to show that by
transforming the Pig script, we can construct invariant
in the map tasks and introduce the invariant check in the
reduce tasks with minimum effort.

4.1. Background

Pig Latin is a scripting language designed to mimic
the declarative style of SQL. The accompanying system,
Pig, can compile Pig Latin script into physical plans that
are executed over Hadoop9.

In Pig Latin, a user specifies a sequence of steps
via a Pig Latin script, where each step specifies only a
single, high-level data transformation. The data
organization in Pig consists of four data types: atom,
atomic value such as string or number; tuple, a sequence
of fields, equivalent to data record in traditional
database; bag, a collection of tuples; map, a collection
of data items where each item has a key with the type of
atom and a value with the type of data bag. Pig Latin
has ample and flexible keywords and operators that can
meet most data manipulation requirements. Here we
pick some relational operators related with our
discussion and list them in Table 2. The full version of
grammar manual can be found in the language menu10.

The execution of Pig Latin script is a series of
transformations of execution plans. Pig parses a Pig
Latin script and translates it into a logical plan. Based
on the logical plan, it translates it into a physical plan.
And finally, it translates the physical plan to a

Published by Atlantis Press
Copyright: the authors

122

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

MapReduce job plan. All the plan translations are
finished on the master. After that, the master assigns
the tasks in the job plan to the workers.

Table 2 Selected operators in Pig Latin

Command Explanation
LOAD Load data from the file system. Return

a data bag, each tuple is in a format as
specified.

FOREACH
GENERATE

Projection and aggregate each tuple in
the bag, remove unspecified field and
aggregate field data (which is usually
built by the previous GROUP
command) as specified.

FILTER BY Drop tuples in the bag that does not
satisfy the condition.

GROUP Equivalent of SQL GROUP BY
command. It will return tuples. Each
tuple represents a distinct group. In
each tuple, the first field is the group
value, the second is a bag with all the
input tuples in that group.

COGROUP Group multiple data sets with common
field. Suppose N data sets 1,2,…N are
COGROUPed, it will return a bag,
each tuple in the bag represents distinct
group. In each tuple, the first field is
the group value, followed by N bags.
In the N bags, the ith bag contains
tuples from the ith data set, but
belonging to that group.

DUMP/STORE Display the result/Store the result to
the file system.

4.2. Invariant construction and check

We propose an invariant constructing and checking
method for applications written in Pig Latin. Our
method is to transform the original Pig Latin script into
another equivalent script. By equivalent, we mean the
two scripts will generate the same results. However, the
job plans corresponding to the two scripts are different.
In the transformed script, each original map plan will be
substituted by two map plans. The two map plans will
operate on some “overlapped” input data. In other
words, a portion input of the two substituting map plans
will be the same. As a result, when the two map plans
are executed, their results should agree on the part
corresponding to the overlapped input. This is the
invariant the map task output should obey. Meanwhile,
the original reduce plan is transformed to introduce the
invariant check. The reduce task will not only check if
the invariant is violated, but also restore the output data

so that the reduce task result will be the same as the
original script result. If any invariant violation is
detected during the reduce task execution, the reduce
task will throw an exception indicating that some map
task outputs contain errors.

Since we rely on the reduce task to check the
invariant, we assume that the reduce task is trusted. To
achieve high assurance of the reduce task, IntegrityMR
can assign the reduce task to the verifiers on the private
cloud. Alternatively, IntegrityMR can apply the task
layer checking techniques in section 3 to each reduce
task.

We create overlapped input data for the two new
map plans by inserting an FILTER statement to each
map plan, and having the conditions of the two FILTER

-- Script 1: GROUP data in houred.txt by hour
raw_data = LOAD './houred.txt' USING PigStorage('\t')

 AS (user, hour, query);
result = GROUP raw_data BY hour;
dump result;

Fig. 7. Script1: Group data in houred.txt by hour

LOAD

GROUP
BY hour

STORE

LOAD

LOCAL
REARRANGE

GLOBAL
REARRANGE

PACKAGE

STORE

MAP

REDUCE

SHUFFLE

(a) Logical Plan (b) Map-Reduce Plan

(2, {(Jerry, 2, facebook)})
(11, {(Tom, 11, skype),(Michael, 11, google)})
(12, {(Tom, 12, facebook),(Joey, 12, yahoo)})
(15, {(Lucy, 15, espn)})

(Jerry, 2, facebook)
(Tom, 11, skype)
(Michael, 11, google)
(Tom, 12, facebook)
(Joey, 12, yahoo)
(Lucy,15, espn)

(c) Input of LOAD

(d) Data after GLOBAL REARRANGE

(e) Data after PACKAGE

(Tom, 12, facebook)
(Tom, 11, skype)
(Jerry, 2, facebook)
(Michael, 11, google)
(Joey, 12, yahoo)
(Lucy,15, espn)

Fig. 8. Execution process of Script 1

-- Script 2: invariant check is enforced
register ./tutorial.jar;
raw_data = LOAD './houred.txt' USING PigStorage('\t')
 AS (user, hour, query);
part1 = FILTER raw_data BY hour>=12;
part2 = FILTER raw_data BY hour<=12;
result = COGRUP part1 BY hour, part2 BY hour;
group_result=FOREACH result GENERATE
 group, org.apache.pig.tutorial.CheckInvariant($1,$2);

Fig. 9. Script 2: Script with invariant check

Published by Atlantis Press
Copyright: the authors

123

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

statements overlapped. For the invariant check, we
develop a function and add an FOREACH statement to
the script to invoke such a function for each record. Pig
will automatically generate reduce plan to execute such
FOREACH statement.

As a concrete illustration, we show how our
method transforms a Pig Latin script (Script 1) in Fig. 7,
which contains the relation operator GROUP, into
another form (Script 2 in Fig. 9) to enforce invariant
check. We use a text file hour.txt in Fig. 8 (c) as a
running example of input file, which contains records
about which users at which hour access what websites.
The information is recorded in the fields “user”, “hour”,
and “query” of a table. Our example Pig application
aggregates the data in houred.txt by the field “hour” so
that we can know the web access record for each
specific hour.

As we can see from Fig. 7, Script 1 uses the
GROUP command to implement the job. We show the
logical and MapReduce plans of Script 1 in Fig. 8
(Since the physical plan is irrelevant to our discussion,
we omit it to save space). The transformation from
Script 1 to the logical plan is straightforward: each
statement in Script 1 corresponds to one step in the
logical plan. However, in the MapReduce plan, the
GROUP statement is broken down into 3 steps: local
rearrange, global rearrange, and package. The
MapReduce plan also indicates whether each step
should be processed in the map phase or the reduce
phase: In our example, the local rearrange is executed
by the mapper, and the package is executed by the
reducer. The global rearrange is automatically carried
out in the shuffle phase. Suppose the data contained in
houred.txt is as Fig. 8 (c), after the local rearrange and
the global rearrange, the data is transformed as shown in
Fig. 8 (d). In the package step, the data is aggregated
into different groups according to the field “hour”.
Therefore, the final output is shown as in Fig. 8 (e).

In order to introduce invariant checks, we
transform Script 1 into Script 2 (Fig. 9) that will
generate an equivalent result. In Script 2, the raw_data
is first split into two parts by applying two FILTER
operations with different conditions (hour>=12 and.
hour<=12, respectively). Since the conditions of the two
FILTERs are overlapped at hour=12, part1 and part2
both contain the records with “hour” equal to 12
(highlighted records in Fig. 10 (c) and Fig. 10 (d)).

Since part1 and part2 overlapped in the records with
hour=12, the invariant of the map task output is that the
records with “hour” as 12 should be the same. Then by
applying COGROUP on part1 and part2 in Script 2, Pig
will generate the result as in Fig. 10 (e). The
COGROUP takes three steps to finish: Local rearrange,
global rearrange and package. (Gray boxes in Fig. 10
(a).) After the package step of COGROUP, the result
map should have duplicate bags when the key is 12.
After that, each COGROUP result bag is processed by
the CheckInvariant function in the FOREACH
statement. The CheckInvariant function processes each
record in Fig. 10 (e). If the key is 12, it will check if the
bags inside the record are the same. If yes, it will delete
one duplicated bag. If not, it will throw an exception. If
the key is not 12, it will remove the empty bag. By
doing this, the data is changed to Fig. 10 (f), which is
the same as the original script result.

4.3. Security Analysis

In this section, we give an informal argument about
how effective our method can defeat malicious mappers.
The invariant property injected to the script involves the
application domain knowledge. Since the worker on the
public clouds only works on the MapReduce layer, the
attacker needs to translate the MapReduce layer
semantic into Pig script layer semantic and infer the
invariant, which is a very challenging job. Furthermore,

REDUCE

LOAD1

GLOBAL
REARRANGE

STORE

LOAD2

FILTER1
hour>=12

FILTER2
hour<=12

FOREACH
(CheckIntegirty)

LOCAL
REARRANGE1

LOCAL
REARRANGE2

PACKAGE

MAP2

SHUFFLE

(Tom, 12, facebook)
(Joey, 12, yahoo)
(Lucy,15, espn)

(b) Input of LOAD1, LOAD2

(c) Data after FILTER1

(e) Data after PACKAGE

(Tom, 12, facebook)
(Tom, 11, skype)
(Jerry, 2, facebook)
(Michael, 11, google)
(Joey, 12, yahoo)
(Lucy,15, espn)

(Tom, 12, facebook)
(Tom, 11, skype)
(Jerry, 2, facebook)
(Michael, 11, google)
(Joey, 12, yahoo)

(d) Data after FILTER2

(2 , {null} , {(Jerry, 2, facebook)})
(11 , {null} , {(Tom, 11, skype),(Michael, 11, google)})
(12 , {(Tom, 12, facebook),(Joey, 12, yahoo)} ,
 {(Tom, 12, facebook),(Joey, 12, yahoo)})
(15 , {(Lucy, 15, espn)} , {null})

(2 , {(Jerry, 2, facebook)})
(11 , {(Tom, 11, skype),(Michael, 11, google)})
(12 , {(Tom, 12, facebook),(Joey, 12, yahoo)})
(15 , {(Lucy, 15, espn)})

(f) Data after FOREACH(a) Map-Reduce Plan

MAP1

Fig. 10. Execution process of Script 2

Published by Atlantis Press
Copyright: the authors

124

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

if the invariant check (reduce task) is performed on the
trusted worker, the malicious workers have no way to
access the invariant check logic. Therefore, they can
only guess the checking logic from the transformed map
tasks. Finally, if the map tasks passed to the worker is
obfuscated byte code, the attacker has to perform online
reverse engineering, which is even difficult for the
attacker.

4.4. Performance measurement

We implement a prototype system based on
Hadoop and test the performance slowdown between
Script 1 and Script 2. We launch our experiment on a
Linux Server with 2.93 GHz, 8-core Intel Xeon CPU
and 16 GB of RAM. We deploy 3 virtual machines
(512MB of RAM and 40GB of disk each) on VMware
Workstation 7.11 to construct a MapReduce
environment. Each machine runs on Debian 5.0.6
“lenny”. Out of the 3 nodes, one is running as both a
master and a trusted worker; the other two are running
as untrusted workers. We compare the execution time of
Scrip 1 and Scrip 2 with different input size. The result
is shown in Fig. 11. We can see that when the input size
is small (e.g., 31MB), the slowdown is negligible. When
the input data size increases towards 372MB, the
slowdown also increases to about 35%. The reason for
such a slowdown is that the number of map tasks is
doubled and each reduce task has to check the invariant
on the overlapping part. However, since in Script 2,
each map task only processes partial data, the slowdown
is moderate.

It is necessary to point out that our system
implementation and experiments has their limitations.
Firstly, the transformation of Pig script is performed
manually. Designing and implementing a system that
automates such process would increase the practicality
of our idea. Secondly, our experiments lack scalability
test. It is interesting to observe the performance change
with more worker nodes and bigger input data set.
Improving the above limitation will be our future work.

5. Related Work

Result integrity assurance of distributed system has
been discussed for decades. Several existing techniques
such as replication, sampling, and verification solution

have been proposed to address integrity issue in various
distributed environments such as P2P Systems and Grid
Computing12-17.

Result integrity assurance of MapReduce is
becoming popular in recent years. Wei et al.4 proposed
an integrity assurance framework SecureMR to enforce
the commitment protocol and the verification protocol.
By using non-deterministic duplication, it is effective of
defeating malicious worker only when the malicious
worker ratio is very small. Wang et al. proposed two
MapReduce integrity assurance frameworks: VIAF18
and CCMR22. The latter tried to solve the problem in a
practical cloud environment with hybrid clouds.
Moreover, CCMR22 proposed different design to the
map and the reduce phase given the different
characteristic of different phases.

Compared with VIAF and CCMR, this paper
proposes a new architecture which employs multiple
public clouds to further enhance the security. Moreover,
to the best of our knowledge, this paper is the first paper
proposing the idea of application layer MapReduce
integrity assurance.

6. Conclusion and Future Work

We present the design, implementation, and evaluation
of IntegrityMR, an integrity assurance solution for big
data applications. It overlays MapReduce on top of
hybrid clouds which consists of one trusted private
cloud and multiple public clouds. In order to perform
result integrity check, we have explored the design
space in two layers of the MapReduce software stack:
the task layer and the application layer. Our

0

50

100

150

200

250

31M 124M 248M 372M

Script 1 Running Time(s)

Script 2 Running Time(s)

Fig. 11. Performance comparison between Script 1 and
Script 2

Published by Atlantis Press
Copyright: the authors

125

Yongzhi Wang et al. / IntegrityMR: Exploring Result Integrity

experimental result in the task layer approach shows
high integrity (98% with a credit threshold of 5) with
non-negligible performance overhead (18% to 82%
extra running time compared to original MapReduce).
Our experimental result in the application layer
approach shows improved performance compared with
the task layer approach (less than 35% extra running
time compared with the original MapReduce).

Our future work lies on the following two
directions. In the task layer check, we will improve
system performance by reducing cross-cloud
communication and alleviate the DFS bottleneck. In the
application layer check, we will work on the automating
of the Pig script transformation.

Acknowledgement

This paper is supported in part by the Open Fund
of the Chinese Key Laboratory of the Grain Information
Processing and Control (under the Grant No. KFJJ-
2015-202) and NSFC No. 61363007.

References

1. J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Communications of the
ACM, 51 (1): 107-113, 2008.

2. “Amazon Elastic Compute Cloud (Amazon EC2)”
http://aws. amazon.com/ec2/

3. “Windows Azure Compute”, https://www.windowsazure.
com /en-us/home/features/compute

4. Wei Wei, Juan Du, Ting Yu, Xiaohui Gu, “SecureMR: A
Service Integrity Assurance Framework for MapReduce”,
in Proceedings of the 2009 Annual Computer
Applications Conference.

5. Kevin D. Bowers, Ari Juels, and Alina Oprea, “HAIL: a
high-availability and integrity layer for cloud storage”, in
Proceedings of the 16th ACM conference on Computer
and communications security (CCS '09).

6. Raluca Ada Popa et al., “Enabling security in cloud
storage SLAs with Cloud Proof”, In Proceedings of the
2011 USENIX conference on USENIX annual technical
conference (USENIX ATC'11).

7. “What is Apache Hadoop”, http://hadoop.apache.org/
8. “Apache Pig”, http://pig.apache.org/

9. C. Olston et al. “Pig Latin: A not-so-foreign language for
data processing”. In SIGMOD, 2008.

10. “Pig Latin Basics”, http://pig.apache.org/docs/r0.10.0/
basic.html

11. “20 newsgroups classification example”, https://
cwiki.apache.org/
confluence/display/MAHOUT/Twenty+Newsgroups

12. S. Zhao, V. Lo, and C. Gauthier Dickey, “Result
verification and trust based scheduling in peer-to-peer
grids,” in P2P ’05: Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Computing.
Washington, DC, USA.

13. W. Du, J. Jia, M. Mangal, and M. Murugesan,
“Uncheatable grid computing,” In Proceedings of the
24th International Conference on Distributed Computing
Systems (ICDCS’04), Washington, DC.

14. P. Golle and S. Stubblebine, “Secure distributed
computing in a commercial environment,” in 5th
International Conference Financial Cryptography (FC).
Springer- Verlag, 2001, pp. 289–304.

15. P. Golle and I. Mironov, “Uncheatable distributed
computations,” in CT-RSA 2001: Proceedings of the
2001 Conference on Topics in Cryptology. London, UK:
Springer-Verlag, 2001, pp. 425–440.

16. Petros Maniatis, David S. H. Rosenthal, Mema
Roussopoulos, Mary Baker, TJ Giuli, and Yanto Muliadi.
“Preserving peer replicas by rate-limited sampled
voting”. In Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP '03).

17. Nikolaos Michalakis, Robert Soul, and Robert Grimm.
“Ensuring content integrity for untrusted peer-to-peer
content distribution networks”. In Proceedings of the 4th
USENIX conference on Networked systems design &
implementation (NSDI'07).

18. Yongzhi Wang, Jinpeng Wei, “VIAF: Verification-based
Integrity Assurance Framework for MapReduce”, in the
4thIEEE International Conference on Cloud Computing
(CLOUD 2011).

19. “Amazon Elastic MapReduce (Amazon AMR)”,
http://aws.amazon.com/elasticmapreduce/

20. “Cloud Security: Amazon’s EC2 serves up 'certified pre-
owned' server images” http://dvlabs.tippingpoint.com
/blog/2011/04/11/ cloud-security-amazons-ec2-serves-up-
certified-pre-owned-server- images

21. Sven Bugiel et al., “AmazonIA: when elasticity snaps
back”, in the 18th ACM conference on Computer and
Communications Security.

22. Yongzhi Wang, Jinpeng Wei, Mudhakar Srivatsa, “Result
Integrity Check for MapReduce Computation on Hybrid
Clouds” in the 6th IEEE International Conference on
Cloud Computing (CLOUD2013).

23. “What is Apache Mahout”, http://mahout.apache.org/

Published by Atlantis Press
Copyright: the authors

126

	1. Introduction
	2. Background and System Assumptions
	2.1. System Assumptions
	2.2. Attacker Model

	3. Task Layer Result Integrity Check
	3.1. System Design
	3.2. Security Analysis
	3.3. Experiment Environment
	3. 3. 1 Environment Configuration

	3.4. Experiment Result

	4. Application Layer Result Integrity Check: The Pig Case Study
	4.1. Background
	4.2. Invariant construction and check
	4.3. Security Analysis
	4.4. Performance measurement

	5. Related Work
	6. Conclusion and Future Work
	Acknowledgement
	References

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

