International Journal of Networked and Distributed Computing, Vol. 4, No. 2 (April 2016), 106-115

An Extended Web Displaying System based on Multiple Tablet Devices

Shota Imai,! Shun Shiramatsu,! Tadachika Ozono,! Toramatsu Shintani!

! Department of Computer Science and Engineering, Graduate School of Engineering
Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya-shi, Aichi, 466-8555 Japan

E-mail: {imasho, siramatu, ozono, tora} @toralab.org

Abstract

We propose an extended Web displaying system based on multiple tablet devices to help users to conduct
collaborative works anywhere without a large display. Users can use multiple tablet devices as a pseudo
mobile large display on demand by using our system. For example, users can make discussions by using
Web applications anywhere. We present management methods of the arranged displays and two types of
synchronous messages. One uses positional information and the other uses operational information for
Web page synchronization. We show two applications based on the extended Web displaying system, a

piano score system and a map viewer system.

Keywords: Distributed Display System, Tablet Devices, Web, Synchronization

1. Introduction

We have been implementing an extended Web dis-
playing system for tablet devices, which makes mul-
tiple tablet devices to operate as one large display
unit for Web viewing and aims to support collab-
orative works!. Tablet devices have high mobility
because of their battery performance, lightweight
properties, larger screens than smartphones, and so
on. Thus, the system enables users to use large dis-
plays and makes collaborative works. For example,
users can make discussions by using Web applica-
tions with a pseudo large display based on multiple
tablet devices anywhere.

There are a variety of extended display systems.
Distributed Multihead X combines multiple displays
on multiple PCs that are distributed on a network,
and the displays are presented to the user as a sin-
gle unified screen?. MaxiVista extends PC’s display

area by using another PC as a secondary display>.
Ueda proposed Tenmads that is a software multi-
display implementation that runs on Microsoft Win-
dows and focused on cost effectiveness and simplic-
ity in configuration so that most PC users can set up
multi-display environments without any help from
computer experts*. Seifert et al. proposed an ap-
proach for extending mobile user interfaces by using
external screens’. Users can utilize more space and
can thus overview a larger information context. Our
focus is to realize Web applications on an extended
display system without any modification to Web ap-
plications.

The usability of large displays is discussed in the
paper 8. One of large-display usability issues is los-
ing the mouse cursor. As screen size increases, users
can lose the mouse cursor. A system that can be used
as a pseudo large display by using multiple tablet
devices with touch-screen has a high usability be-

Published by Atlantis Press
Copyright: the authors

106

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

cause it has no mouse cursor. Lyons et al. studied
about collocated groups of individuals using multi-
display composition on two different types of mo-
bile computers’.

Our aim is to develop a new approach to display-
ing a Web application on extended displays without
any modification to Web applications. Existing re-
searches do not focus on issues particular to execute
a dynamic Web application on extended displays of
multiple tablet devices, which requires coordination
techniques on a JavaScript event detection mecha-
nism among separated Web browsers.

Fig. 1. Example of an extended Web displaying system

Figure 1 shows an execution example of our ex-
tended Web displaying system. In the example, two
tablet devices are used for viewing a single Web
page. Users operations for one tablet device influ-
ence the other in real time. When a user zooms in,
zooms out, scrolls, and follows links on the left de-
vice, the system automatically redraws the displayed
content on the right one in synchronization with the
left one. When a user interacts with the right one,
the displayed content on the left one is automatically
redrawn by the system.

The rest of the paper is organized as follows. In
Section 2, we explain the extended Web displaying
system based on multiple tablet devices. In Section
3 and Section refOperational Synchronous Message,
we show two types of synchronous messages: a
positional synchronous message and an operational
synchronous message, and explain an implemen-
tation of a synchronization mechanism for Google
Maps. In Section 5, we show applications of the
system. In Section 6, we discuss the advantage of

the system, and review related works and systems in
the area of display systems for collaborative works.
Finally, we conclude the paper in Section 7.

2. An Extended Web Displaying System

An extended Web displaying system is defined as
a pseudo display that consists of multiple displays.
Our system is also designed to support collabora-
tive working on users’ tablet devices. Although the
systems proposed in the paper ®3 require a large dis-
play, our system requires no large display because
users’ tablet devices become a pseudo large display
by using the system.

2.1. Management Methods of Device Placement

Information

Device placement information is extremely impor-
tant to use many devices as one large display sys-
tem. All tablet devices need to have some coordi-
nation method to adjust their coordinate system of
displays to realize a pseudo large display because
the tablet devices do not share one absolute coordi-
nate. For example, how many devices are used in
all, how many rows and columns are in the device
matrix, where is the device in the device matrix, etc.
In this paper, a position of the device is written in
(row, col) format.

We need support methods for making a device
matrix because it is quite time-consuming. We
adopted three ways to make a device matrix for de-
tecting placement information (1) using an acceler-
ation sensor, (2) using a Pair Swipe gesture, and (3)
using a management device.

(1) Using an acceleration sensor is based on col-
lision detection by using acceleration sensors of two
tablet devices. Hinckley have described a pairing
method by using built-in acceleration sensors of
tablet devices. Signals available from acceleration
sensors when two devices are in collision are used
for pairing in Hinckley’s method®.

(2) Using Pair Swipe is based on a gesture recog-
nition for pairing two tablet devices. Paring means
that two adjacent displays share their own coordi-
nate system. Suzuki et al. proposed a method to

Published by Atlantis Press
Copyright: the authors

107

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

generate a device matrix by a swipe gesture between

the adjoining devices with touch screens. The oper-
»10

ation is called “Pair Swipe

Base
(0,0) 0,1
[°] (]
Base H Base
0.0 L0, 1) (0,0) 0,1
.]’.{lib\\-lgc
-]f |—> ® ®
"I'._'!.' (1,0)
] -]

Fig. 2. Making a device matrix by using Pair Swipe

An example of Pair Swipe is shown in Figure 2.
This example shows the process of making a device
matrix of three tablet devices by using swipe ges-
tures. The three tablet devices in Figure 2 do not
share any device matrix initially. In the first step
shown in the top-left of Figure 2, a user do a left-to-
right swipe gesture from the left device to the right
device, then the two devices share the device matrix
including (0, 0) and (0, 1) as the top-right of Fig-
ure 2. In the second step shown in the bottom-left
of Figure 2, a user do a top-to-bottom swipe gesture
from the top-left device to the bottom device, all the
devices share the device matrix including all of them
as the bottom-right of Figure 2.

(3) Using a management device is based on a
helper device to determine a device matrix. An ex-
ample of a management device is shown in Fig-
ure 3. In this example, we can make a device ma-
trix for detecting placement information by using a
smartphone on the left side in Figure 3. There are
one smartphone and four tablet devices in Figure 3.
Firstly, the user input the number of tablet devices
into the smartphone, then the smartphone displays
placement information of the four tablet devices and

the tablet devices display different numbers (1-4).
Next, a user arranges the position of the four tablet
devices on a grid pattern (2 by 2 in in Figure 3) as
the placement information displayed on the smart-
phone. Now the user can assign positions to tablet
devices by using the smartphone. Consequently, the
smartphone and the four tablet devices can share the
device matrix including all the tablet devices.

Fig. 3. Using a management device to make a device matrix

2.2. System Architecture

We show the system architecture of the extended
Web displaying system in Figure 4. Our system is
composed of seven parts: a user interface, an ac-
celeration sensor, a Web browser, a Web content
synchronizing module, a placement information (PI)
management module, and a PI determining Mod-
ule. The PI determining module contains a PI mode
module, a device orientation module, a pair swipe
PIDM, an acceleration PIDM, and a management
device PIDM.

We can interact with the system by the user in-
terface. The Web browser gives information such
as URLs, scroll offsets, and zoom levels. Hereafter
we define these types of information as Web con-
tent information. The Web browser displays a Web

Published by Atlantis Press
Copyright: the authors

108

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

Web browser <> Jes Contant

T

Synchronizing Module

Pl Determining Module(PIDM)

User
4-.-” User Interface —— p| Mode
Module
) Acceleration >
sensor
\ Device
Orientation
Module

Pl Management
Module

\

1]

Other Synchronous

<4

’'q

Pair Swipe PIDM

N Vv 7

Acceleration PIDM

Devices
Management Device P >
PIDM(Manual) D
Management Device .
PIDM (Camera) Management
Device

PI = Placement Information

Fig. 4. System architecture

page, and exchanges Web content information with
the Web content synchronizing module. The Web
content synchronizing module reflects the Web con-
tent information that is received by the PI determin-
ing in displaying Web pages or scroll offsets. The
PI management module exchanges Web content in-
formation between other devices. The module has
information of devices to synchronize. So the mod-
ule controls a group of the resulting large display.

The PI determining module (hereafter referred
to as the PIDM) connects a display to a manage-
ment device or other devices, and deals with the
placement information that is generated by the pro-
cess. Depending on the way in which to determine
placement information, the PIDM decide a mod-
ule to determine placement information. The pair
swipe module decides a connection by swipe oper-
ation, and the acceleration PIDM deals a connec-
tion by the acceleration sensor, and the manage-
ment device PIDMs deals a connection by manage-
ment device. Furthermore, two management de-
vice PIDMs are prepared: Manual module that de-
termines placement information by users with the
management device, and camera module that deter-
mines placement information by using cameras. The
pair swipe PIDM and the acceleration PIDM receive

placement information from communication with
other devices, and the management device PIDMs
receive placement information from communication
with management devices. We can select which
PIDMs use by PI mode module. The device orien-
tation module receives the orientation of the device
from the acceleration sensor and other PIDMs use
the information to determine placement information.

2.3. Sending Synchronous Message

The Web content synchronizing module checks
users’ interaction. A device touched by a user,
which is called as an “operator” in this paper, sends
a synchronous message to other devices.

Synchronous messages must be sent to all de-
vices in the device matrix. A method to manage IP
addresses of all devices in an integrated fashion is
a cumbersome procedure because the IP addresses
table must be updated every time when devices in-
crease or decrease in number.

UDP broadcast is adopted in the system to send
synchronous messages. The broadcast is sending
packets to all nodes in a local area network. An op-
erator sends a synchronous message to a broadcast
address and all devices receive the message and re-

Published by Atlantis Press
Copyright: the authors
109

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

fresh their screen based on the message.

In this system, we implemented two types of syn-
chronous messages: a positional synchronous mes-
sage that synchronizes information of scroll orienta-
tions of Web pages, and an operational synchronous
message that synchronizes information of user oper-
ations. The procedures of two types of messages are
shown in the later sections.

3. Positional Synchronous Message

The positional synchronous message realizes syn-
chronization among displays by using display loca-
tion and position of Web pages. It contains infor-
mation of a url, a scroll offset, and a zoom level. A
method that exploits this synchronous message can
use widely for generic static Web pages without spe-
cific settings. But the method cannot be adapted to
dynamic Web pages that cannot synchronize Web
pages by only location and position information.

3.1. Structure of the Positional Synchronous
Message

The positional synchronous message contains five
attributes listed in Table 1. We will describe these
attributes in detail.

Table 1. Structure of the Positional Synchronous Message

attribute description
ip_addr an IP address of the sender,
which is a machine that sent the
message
date a UNIX time when a message
was sent
url a URL of a displayed content
scale a zoom level of a displayed
content
(scrlx, scrl_y) | a scroll offset, x and y coordi-
nate

The attribute ip_addr is the operator’s IP address,
which is used to identify to reject received own syn-
chronous messages. UDP broadcast messages reach
to the device to which the message was transmitted.

It is not needed to synchronize based on own syn-
chronous messages. Devices that received the mes-
sage determine if the message was sent from other
devices or not by using the ip_addr attribute.

The attribute date is the time when the message
was sent by the operator, which is in UNIX time.
The date is used to synchronize based on the newest
message. A UDP header does not have a sequence
number. So, when two messages are sent by UDP,
the second message will reach before the first one’s
arrival. UDP does not guarantee an order of a se-
quence of packets. It means that UDP does not
promise rt(mt) < rt(mt + 1), and often rt(mt) >
rt(mt +1). Here, mt indicates the synchronous mes-
sage that is sent on time ¢ and r7(mt) indicates the
time when another device received mf. Redrawing
based on mt after redrawing based on mr + 1 will
take place mis-synchronous between multiple de-
vices. The synchronous messages must contain the
message sent time and the system redraws their con-
tents based on newest messages by using the time
attribute.

Web page
scrl y
scrl x
scrl_y'

@

scrl_x'
(col, row)
@ @

Fig. 5. Transform to coordinates of the device (0, 0)

The attribute url, scale, and (scrl_x, scrl_y) de-
scribe the state of displayed contents on the operator.
The url is a content URL that is displayed on the op-

Published by Atlantis Press
Copyright: the authors

110

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

erator. The scale is zoom level of the displayed con-
tent on the operator. The (scrl_x, scrl_y) are x and
y coordinates of a scroll offset on the operator. The
offsets must be transformed to coordinates based on
the device on at the position (0, 0) as shown in Fig-
ure 5.

When an operator is the device on position (col,
row) and the content offset on the device are (scrl_x’,
scrl_y’), the (scrlx, scrl_y) parameters are calcu-
lated by the formula below. In this formula, o and
B are the height and width pixel count on the device
screen respectively.

The system repeats sending messages to avoid
packet loss. We conduct a preliminary experiment
to determine the number of times messages to send,
and the results show that messages should be sent in
five repetitions.

3.2. Synchronization Algorithm

We explain a synchronization algorithm using po-
sitional synchronous messages. Figure 6 shows
the procedure receivePositionalSyncMessage that is
called when a positional synchronous message has
reached a device. The left numbers on the code are
line numbers. Those that follow are the same.

procedure receivePositionalSyncMessage(mes)
mes : positional synchronous message

(ip_addr, date, url, scale, scrl_z, scrl_y)
This device is disposed on (col, row).

if (ip-addr # own ip addr) A (date > last_sync_date) then
last_sync_date < date
if url # current url then

moveTo(url)

1:

2

3

4;

5. end if
6: if scale # current scale then
7 setZoomScale(scale)

8 end if

9: scrlx’ =scrlx+row-«a

10: serly’ = serly+col - B

11: if (serlz’ # current scrl x) V (serl-y’ # current scrly) then
12: scrollTo(scrl_a’, serly’)

13: end if

14: end if

Fig. 6. The procedure that is called when the system re-
ceives a synchronous message

The line 1 in Figure 6 determines whether the
arrived message was sent from self-device or not,
and the message is the newest message or not. The
last_sync_date must be allocated as a global variable
while the system running. When the message was
sent from other devices and it was the newest mes-
sage, the process for synchronization (after the line
3 in Figure 6) begins.

The lines 3-5 in Figure 6 are the process to show
the same contents on all devices. If a URL of content
displayed on the device is different from displayed
on the operator, content will change to the one that
is displayed on the operator.

The lines 6-8 in Figure 6 are the process for zoom
scale synchronization. If the zoom scale of a device
is different from the operator, the zoom scale of the
operator will be set to the device.

The lines 9-13 in Figure 6 are the process for
scroll offsets synchronization. The parameters in a
message are based on the device (0, 0), so they are
transformed to coordinates based on the device that
the message received. The formulas for the transfor-
mation are shown in the lines 9-10 in Figure 6.

4. Operational Synchronous Message

The operational synchronous message realizes syn-
chronization among displays by using information
on users’ touch, keyboard, and censor events. In this
method, the system detects operational events at the
operator and generates the same events by sending
them. The method that uses this synchronous mes-
sage can use for dynamic Web pages whose content
vary based on parameters provided by a user or a
computer program.

4.1. Sending an Operational Synchronous
Message

The system collects the events of users operation by
monitoring touch operation, or keyboard input op-
eration occurring on Web pages. The system exe-
cutes JavaScript in a Web page on the browser, and
event occurrences can be informed of the system.
The DOM events for which the system listens are
shown in Table 2.

Published by Atlantis Press
Copyright: the authors

111

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

Table 2. The types and trigger timing of DOM events

type trigger timing
touchstart | a finger touched a DOM ele-
ment
touchend | a finger moved on a DOM ele-
ment
touchmove | a finger released from a DOM
element
keypress | a key pressed on a DOM ele-
ment

The type touchstart, touchend, and touchmove
are events occurred by touch events. Moreover, key-
press is an event triggered by a key press.

Table 3. The structure of the operational synchronous message

attribute description
ip_addr | 1P address of the sender, which
is the machine that sent the
message
date UNIX time when the message
was sent
type operation type of an event
property | unique property of an event
type

Detected events by the system are sent as opera-
tional synchronous messages to other devices. The
structure of the synchronous message is listed in Ta-
ble 3. The attribute ip_addr and date are the same
as shown in Table 1. The attribute fype is the iden-
tifier of the operation event by users. The attribute
property is a set of attributes of the event type.

Examples of event properties are listed in Table
4. When the touchstart, touchend, and touchmove
event are triggered, the events contain x and y co-
ordinate of the finger. As the keypress event is trig-
gered, the event has its key code.

Table 4. An example of event properties

type property
touchstart
touchend | x and y coordinate of a finger
touchmove
keypress | the key code of a key pressed

4.2. Synchronization Algorithm

Figure 7 shows the procedure receiveOperational-
SyncMessage that is called when an operational syn-
chronous message has reached a device.

procedure receiveOperationalSyncMessage(mes)
mes : operational synchronous message

(ip_addr, date, type, property)

1: if (ip-addr # own ip addr) A (date > last_sync.date) then
2: last_sync_date + date

3: if type is "touchstart” then

4 touchdown + true

5 (zs,ys) + getLocal Point(property)

6: else if type is "touchmove” then

7 touchdown + true

8: if touchdown then

9 (z,y) + getLocal Point(property)
10: swipeT'o(z,y)

11: end if

12: else if type is "touchend” then

13: (Ze,Ye) + getLocal Point(property)

14: if touchdown A (zs,ys) = (ze, ye) then
15: tapPage(ze,ye)

16: end if

17: touchdown + false

18: else if type is "keypress” then

19: keycode + getK eyCode(property)
20: doK eypress(keycode)

21: else

22: do the default actions

23: end if

24: end if

Fig. 7. The procedure that is called when the system re-
ceives an operational synchronous message

At first, as is the case with positional syn-
chronous messages, the line 1 in Figure 7 deter-
mines whether the arrived message was sent from
self-device or not, and the message is the newest
message or not. When the message was sent from
other devices and it was the newest message, the
procedure executes different action, depending on
each event type.

The lines 3-17 in Figure 7 are the process to
check the touch event. When the fouchstart event
is detected, the variable fouchdown that indicates

Published by Atlantis Press
Copyright: the authors

112

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

whether users are touching a display or not is as-
signed true, and the getLocalPoint function assigned
the local coordinates where the user touched at the
time to the pair of variables (xy,ys). Similarly, when
the tfouchend event is detected, the pair of variables
(xe,ye) is assigned the local coordinates where the
user touched. At this time, if (x;,y,) and (x,,y.) are
the same coordinates, the rapPage function is called
and the Web page is tapped at the coordinates by
JavaScript codes. When the fouchmove event is de-
tected, the pair of variables (x,y) is assigned the lo-
cal coordinates where the user touched at the time.
The swipeTo function generates swipe event from
the current coordinates to the coordinates (x,y) in
the Web page.

The lines 18-20 in Figure 7 are the process to
check the keyboard event. When the keypressed
event is detected, the getKeyCode function assigned
the pressed keycode to variable keycode from prop-
erty attribute. The doKeypress function generates
keypressed event that presses the key of keycode in
the Web page.

4.3. Implementation for Google Maps

We explain our implementation of operational syn-
chronization for Google Maps on iOS. A method to
extract and reproduce operations on Google Maps
consists the following three steps.

1. Making a special HTML file to handle a na-
tive scheme for Google Maps

2. Extracting and broadcasting scroll events on
Google Maps

3. Reproducing the map scroll on Google Maps
on receivers

1. Making a special HTML file to handle a native
scheme for Google Maps is needed to communicate
between the synchronization mechanism and UIWe-
bView! The page contains the following JavaScript
code, which is a program to extract and notify scroll
operations on Google Maps.

* The UIWebView is a Web page rendering engine on iOS.

01: function initialize() {

02: var lat = 35.156232;

03: var lng = 136.924574;

04: var mtid = google.maps.MapTypeld.ROADMAP;
05: var latlng =

06: new google.maps.LatLng(lat,lng);

07: var opts = {

08: zoom: 15,

09: center: latlng,

10: mapTypeld: mtid

11: 3

12: var elemid = "map_canvas";

13: var canvas =

14: document . getElementById(elemid) ;

15: map = new google.maps.Map(canvas, opts);
16: google.maps.event.addListener(

17: map, "drag", function(){

18: var y = map.getCenter().1lng();

19: var x = map.getCenter().lat();

20: var url =

21: ’native://dragPoint/’ + x + ’:’ +y;
22: var iframe =

23: document .createElement (’ IFRAME’) ;
24: iframe.setAttribute(’src’, url);

25: document .

26: documentElement . appendChild (iframe) ;
27: iframe.parentNode.removeChild(iframe) ;
28: iframe = null;

29: }

30:)

31: }

The initialize function is called on loading
the special Web page. The Web page contains a DIV
element with id map_canvas. The page displays
maps on the DIV element map_canvas by using the
Google Maps APL.

The initialize function consists of (1) setting
an initial position (the lines 2-15) and scale (the lines
16-30) and (2) making a hook to communicate be-
tween the synchronization mechanism and a Google
Maps object in UIWebView. The second step is the
key point of the implementation. The addListener
function in the line 16 is a function to add the hook
function (the lines 18-30) to a Google Maps object.
The hook function is called when a user drags the
map.

2. Extracting and broadcasting scroll events on
Google Maps is implemented as the hook function.
The hook function consists of (2-1) extracting the

Published by Atlantis Press
Copyright: the authors

113

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

current location of the map by using the Google
Maps functions (the lines 18-19), and (2-2) sending
the location to the synchronization mechanism (the
lines 20-28). The key point is url in the lines 20-21,
which is a special url to send the current location to
the synchronization mechanism. The syntax of the
url is the following.

native://dragPoint/lat:ing

The key point is using native scheme in this url,
which can be used to identify the event as scroll
events. The http or https schemes are detected
on page transitions. The /at and Ing are the current
latitude and longitude respectively.

The system sends the current position to the syn-
chronization mechanism by using an IFRAME ele-
ment (the lines 22-28). The program invokes a GET
request of HTTP on the UIWebView. Then the syn-
chronization mechanism receives the GET request
and checks if the request is a native request or not.
If the request is a native request then the mech-
anism broadcasts a scroll synchronization message,
which contains the scroll offset on the map.

3. Reproducing the map scroll on Google Maps
on receivers is described below. When the synchro-
nization mechanism receives the broadcast of the
scroll synchronization messages, it reproduces the
map scroll by creating and executing the following
JavaScript on the UIWebView to reflect the scroll on
its map object.

map.panTo(new google.maps.LatLng(lat,lng))

The lat and Ing in the script are the current lati-
tude and longitude respectively. This code simulates
user’s scroll operation to move to (lat, Ing) on the
map.

5. Applications

We show two applications based on the proposed ex-
tended Web displaying system, a piano score system
and a map viewer system.

The first application shown in Figure 8 is a pi-
ano score system. This application can show many
scores to pianists by placing some tablet devices hor-
izontally on their piano. The system can display a
large image of scores on a Web page. In general, pi-
anists put many scores on the piano horizontally be-

cause they have to watch them at a time, but a large
display is too heavy to be placed on the piano.

Fig. 8. Piano score system

The second application shown in Figure 9 is a
map viewer. The system can display Google Maps
on one integrated display with multiple iPads by us-
ing the method described in Section 4.3. Maps must
be shown on a large display with high-resolution be-
cause maps have large amount of information'!.

Users can interact any devices. If a user scrolls
the map on one of the four devices in Figure 9, the
maps on the rest three devices also scroll in syn-
chronization with the interacted device. When mul-
tiple users scroll different devices at the same time,
the system exclusively processes the operations on a
first-come-first served basis.

Fig. 9. Map viewer system

Published by Atlantis Press
Copyright: the authors

114

S. Imai et al. / An Extended Web Displaying System based on Multiple Tablet Devices

6. Discussion

There are several different display systems for col-
laborative works by using tablets or handheld de-
vices. Cheng et al.® proposed a system that supports
the use of tablet devices for interaction and collabo-
ration with large displays. Users can interact with a
subset of the large workspace on their tablet, while
the same area is visualized on the large display as
a rectangular frame. Liu et al.!? have proposed a
shared display groupware and explore whether the
use of shared displays in classrooms can augment
the handheld devices and enhance the effectiveness
of handheld devices in promoting communication
among participants. Baur et al.!3 proposed virtual
projection which enables users to transfer data from
their phone to a large screen and display it thereon.
The ConnecTable' is an example of a hardware and
an application that use BEACH! that is a CSCW
system. When users connect two ConnecTable sys-
tems, the two display areas become a shared space
automatically and users can move windows between
two displays by stylus pens.

7. Conclusion

We proposed the extended Web displaying system
based on multiple tablet devices to help users to con-
duct collaborative works anywhere without a large
display. Users can use multiple tablet devices as a
pseudo mobile large display by using our system.

We showed how to cooperate multiple tablet de-
vices to display one Web content without any incon-
sistency. Furthermore, we explained three ways to
determine the positions of the devices: an accelera-
tion sensor, a pair swipe, and a management device.
We proposed the two types of synchronous mes-
sages, the positional and operational synchronous
messages, and their structures and algorithms. We
described two applications, a piano score system and
a map viewer system.

In the future, we would like to establish the eval-
uation method based on user manipulation types
from the basic window manipulation, such as scal-
ing, moving, and scrolling, to more complex manip-
ulation and evaluate the proposed method.

References

1. S. Imai, S. Shiramatsu, T. Ozono, T. Shintani, “On a
Synchronizing Module for Extended Web Displaying
System Based on Multiple Tablet Devices,” In Proc.
of SNPD2013, 669-674 (2013).

2. Distributed Multihead X Project, “Distributed Multi-
head X,” http://dmx.sourceforge.net/

3. Bartels Media, “MaxiVista,” http://www.maxivista.com/

4. M. Ueda, I. Takeuchi, “Tenmads: A Software Dis-
tributed Multi-display Implementation for Practical
and Low-cost Applications,” Software Technologies
for Future Dependable Distributed Systems, 195-199
(2009).

5. J. Seifert, D. Schneider, E. Rukzio “Extending Mobile
Interfaces with External Screens,” In Proc. of INTER-
ACT 2013, LNCS 8118, 722-729 (2013).

6. G. Robertson et al., “The Large-Display User Expe-
rience,” IEEE Computer Graphics and Applications
archive, Vol.25 No.4, 44-51 (2005).

7. K. Lyons, T. Pering, B. Rosario, S. Sud, R.
Want “Multi-display Composition: Supporting Dis-
play Sharing for Collocated Mobile Devices,” In Proc.
of INTERACT 2009, LNCS 5726, 758-771 (2009).

8. K. Cheng, J. Li and C. Miiller-Tomfelde, “Supporting
Interaction and Collaboration on Large Displays using
Tablet Devices,” In Proc. of AVI’12), 774-775 (2012).

9. K. Hinckley, “Synchronous Gestures for multiple Per-

sons and Computers,” In Proc. of UIST 2013, 149-158

(2003).

R. Suzuki, S. Shiramatsu, T. Ozono and T. Shintani,

“On an Implementation of a Smart Signage System

based on Tablet Devices,” Journal of the Japan Soci-

ety for Software Science and Technology on Computer

Software, Vol.30 No.2, 2_176-2_190 (2013).

11. R. Ball , M. Varghese , B. Carstensen , E. Dana Cox,

C. Fierer, M. Peterson, C. North, “Evaluating the Ben-

efits of Tiled Displays for Navigating Maps,” In Proc.

IASTED-HCI ’05, 66-71 (2005).

C. Liu and L. Kao, “Handheld Devices with Large

Shared Display Groupware: Tools to Facilitate Group

Communication in One-to-One Collaborative Learn-

ing Activities,” In Proc. of WMTE2005, 128-135

(2005).

13. D. Baur, S. Boring, S. Feiner, “Virtual projection: ex-

ploring optical projection as a metaphor for multi-

device interaction,” In Proc. of CHI 2012, 1693-1702

(2012).

P. Tandler C. Miiler-Tomfelde, N. Streitz, and

R. Steinmetz,,“ConnecTables: Dynamic Coupling

of Displays for the Flexible Creation of Shared

Workspaces,” In Proc. of UISTO01, 11-20 (2001).

15. P. Tandler. “Architecture of BEACH: The software in-
frastructure for roomware environments,” In CSCW
2000 Workshop on Shared Environments to Support
Face-to-Face Collaboration, 2—6 (2000).

10.

12.

14.

Published by Atlantis Press
Copyright: the authors

115

