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Abstract. In cellular wireless location, the non line of sight (NLOS) error can seriously affect the 
accuracy of the position estimation of the mobile station. A Gaussian particle filter localization 
algorithm (Gauss-PF) is proposed, which is based on the Gauss transform. In this algorithm, the 
high precision of Gauss filtering and the latest observation data are used to ensure the accuracy of 
the mobile station, which can not only reduce the NLOS error of the nonlinear filter, but also solve 
the problem of particle degradation in classical particle filter. The simulation results show that the 
algorithm can maintain high accuracy and robustness in the case of NLOS error. 

1. Introduction 

In recent years, wireless positioning technology based on the cellular network has been widely 
used in  many fields such as target tracking [1], image processing [2], and map navigation [3]. 
Cellular network of wireless location mainly includes the signal strength (SS) positioning method, 
the angle of arrivals (AOA) positioning method and the time difference of arrival (TDOA) 
positioning method, and the positioning method based on time difference of arrival become the 
most commonly used method due to the simple algorithm, high positioning accuracy. As a 
result, the CHAN algorithm [4] and the Taylor series expansion method [5] are proposed. 
On this basis a fusion algorithm [6] which combined with CHAN algorithm and the Taylor series 
expansion algorithm is presented. However, the algorithms apply only to non line-of-sight 
environments. 

In nonlinear non-Gaussian environment, location accuracy will be serious decline due to the 
complexity of noise and multipath interference. In order to reduce the error, a method of un-scent 
Kalman filtering is proposed [7]. The algorithm improves the accuracy by approximation of 
nonlinear model, but it does not apply to non-Gaussian environment. A method which based on 
un-scent particle filter for target tracking is proposed in [8] and it has achieved a certain effect under 
nonlinear and non-Gaussian environment. The Gaussian particle filter algorithm is based on TDOA 
measurement information using Gaussian transform method. 

2. The nonlinear model and the particle filter algorithm 

Assume that the state equation and measurement equation of the nonlinear system can be 
described as follows, 

1k1kk exx   )(f                                   (1) 

kkk nxy  )(h                    (2) 

Where n
k Rx  is the state vector in k time, n

k Ry  is the measurement vector in k time, ke is the 

state noise and kn is the measurement noise, ke and kn are independence each other and the noise 
sequence which the covariance is Q and R.  

The basic idea of the particle filter (PF) is, to find a set of random samples (particles) to 
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represent the posterior probability function with the sample average instead of integral operation, 
thus the minimum variance estimation is obtained [9]. A detailed description as follows: Assume 
that the posterior probability density of system is )|( 11  kk yxp in k-1 time, and then select k random 

samples from sample space, after acquisition of measuring information in k time, after time and 
status updates, posterior probability density of particles can approximate )|( kk yxp .The PF 

algorithm can be shown as follows: 
(1)  Initialization 
According to the prior probability density )|( 00 yxp , constructing sampling particles is N
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(2) Importance sampling 
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),|(

)|()|(

:1
)(

1:0
)(

)(
1

)()(
)(
1

)(

k
i
k

i
k

i
k

i
k

i
kki

k
i

k yxxq

xxpxyp
ww




                (3) 

Where, the important density function select optimal important density function [10, 11], then, 
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Normalized weights can be expressed as: 
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(3) Re-sampling 
In order to overcome particles degradation phenomenon, re-sampling is proposed. It is a process 

of removing those particles with lower importance weights and copying those particles with high 
importance weights [12]. Set the effective sampling scale be defined as: 
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If theff NN  , then re-sample. Where thN is threshold. 

(4) State estimation 
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Turn to step (2) and continue the operations. 
Due to selecting prior density function instead of important density function without considering 

the latest observation data, result in the posterior probability distribution has a big error [13]. So this 
method is only suitable for estimation of lower precision. 

3. Gaussian particle filter algorithm 

3.1 Gaussian filter 
Gauss integral formula is a Gaussian numerical integral, it can improve the algebraic accuracy by 

choose Gauss point. In one dimensional case, the integral formula can be shown as follows [14] 
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Where )(xW is the weight function, i are the Gauss points, iw are the corresponding weights and 

m is the coefficient of Gaussian point, When i and iw choose corresponding Gauss points and 

weights respectively, on the type of no more than 2 m + 1 polynomial can accurately established 
for )(xf [15, 16]. Setting the weight function as standard normal distribution, the integral formula 
can approximate 
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Where x and are the mean and the covariance respectively, the transformation formula between 
Gauss point is 

xx i
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Assume that the system state and variance are 1|1  kkx and 1|1  kkP in k moment, the system state 

and variance can forecast next step by the means of Gauss point transformation formula 
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kki xPx  and the system state transition equation, 
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On this basis of the above formula, the system state and variance can update by the means of the 

new Gauss point transformation formula 1|1|   kki

T

kki xPx  and the system state transition 

equation,  
)(1|| kkkkkkk zyKxx                   (13) 

T
xzkkkkk PKPP  1||                  (14) 

Where, 





m

i
iik xhwz

1

)(                   (15) 




 
m

i

T
kikkiixz zxhxxwP

1
1| ))()((               (16) 

 
m

i

T
kikiizz zxhzxhwP ))()()((               (17) 

1)(  zzxzk PRPK                  (18) 

3.2 Gaussian particle filter algorithm 
Gaussian particle filter (Gauss-PF) algorithm assumes that the state of the system posterior 

probability function can be approximated by a Gaussian distribution. This algorithm takes into 
account the latest observations, it can better improve the filtering accuracy. 
Particle filter algorithm based on Gauss filter algorithm can be described as follows: 

(1) Initialization 
Sampling particles N
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(2) Gaussian filtering 
Conduct Gaussian filtering for a collection of sample N
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(3) Importance sampling 
Sampling particles N
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Calculate importance weights of the particles by formula (3). 
Normalize the particle weights. 
(4) Re-sampling 
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Determine whether to re-sample as required. After re-sampling, the original sample set is 
mapped to the equal-weighted sample set: }1,~{}~,{ )()()( Nxwx i

k
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k
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k   

(5) Particle state estimation 
Turn to the second step and recursively calculate the state of the next moment. 

4. Simulation and analysis  

4.1 Wireless positioning system model 
Considered in a cellular network environment, we establish the equations by three base stations 

(BS) with TDOA measurement information. The dynamic state space model is given by:  
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Where, kx represents state information of the mobile station at k time, ],[ kk yx is the coordinates 

of the mobile station, ],[ kk yx  is the speed of the mobile station, T represents the sampling interval, 

ke is the process noise sequence which is exponential distribution, 

),( 11 yx , ),( 22 yx , ),( 33 yx represents the location of the three stations, ky represents TDOA 

measurements from the mobile station to the base station, kn is the measurement noise of Gaussian 
distribution. 
4.2 Simulation conditions 

The PF algorithm and Gauss - PF algorithm are applied to tracking in the cellular system. 

Relevant parameter are setting as follows: BS1=(0,0), BS2=(0,100), BS3= )50,3100( , the initial 
position of mobile station is (10,10), the speed of mobile station is (2,4), the process 
noise )2(~1 Expek  , the measurement noise )1.0,0(~ 2Nnk , sT 1 , the particle numbers is 100, 

sampling time is 60s, the initial covariance )5,3,4,2( 22
0|0 diagP  , the Gauss points m=3, the 

mobile station tracking of PF and Gauss-PF is simulate in 50 Monte Carlo runs, the simulation are 
as follows, 
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Fig 1 Tracking trajectory of the mobile station 
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Fig 2 RMSE of the mobile station 

The trajectory tracking of the mobile station is shown in Fig. 1.In the same conditions, the Gauss 
- PF is much closer to the real trajectory. It is obvious that Gauss-PF has much better estimation 
accuracy than PF in non-Gaussian environment.  

In Fig. 2, we compare the RMSE performance of the mobile station when the tracking of the two 
algorithm in non-Gaussian environment. It is found that the RMSE of Gauss-PF algorithm has 
smaller fluctuations than PF algorithm. The result indicates that Gauss-PF can improve accuracy 
and reduce error. 

5. Summary 

The proposed Gauss-PF algorithm, which is based on Gaussian particle filter in cellular network, 
absorb the advantages of the Gaussian filtering and particle filtering, and obtain the better 
importance density function by using high precision Gaussian integral formula. The probability 
density function considers the latest observation, therefore it is closer to the posterior probability 
distribution of systems. The accuracy of mobile station is improved while solve particle degradation 
problem. In an actual positioning and tracking in cellular network, noise are usually non-Gaussian 
model, and the Gauss-PF algorithm still has better estimation precision under non-Gaussian 
environment. Compared with the particle filter algorithm, the proposed algorithm can effectively 
improve the accuracy of the mobile station and reduce the NLOS error. 
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